
École Polytechnique, 3A

Advanced Quantum Information and Computing

Exercise Sheet 4

Exercise 1 (Birthday paradox: an easy proof). Our goal in this exercise is to prove
a weaker form of the birthday paradox (which has the advantage to benefit from an
elementary proof while giving the “good” result). Suppose that we build two lists L1,L2

with L elements picked uniformly at random and independently among a set of size
N . By definition,

L1 = (X1, . . . ,XL) and L2 = (Y1, . . . ,YL)

where the Xi’s and Yi’s are uniformly and independently distributed. Show that

E (♯L1 ∩ L2) = O

(
L2

N

)
What do you deduce?

Exercise 2 (Eigenvalues of a bipartite graph). Let (V,E) be a d-regular graph which
is bipartite so V can be partitioned into disjoint sets V1 and V2, and

{v, w} ∈ E =⇒ (v ∈ V1 and w ∈ B) or (v ∈ V1 and w ∈ V2)

Let P be the transition matrix of the random walk induced by (V,E). Show that P
has a 1 eigenvalue and also a −1 eigenvalue. Give the corresponding eigenvectors.
What can you say about performing a quantum walk on such a graph?

Exercise 3 (Finding a triangle via Grover’s algorithm). We consider a graph (V,E).
Let n

def
= ♯V and m

def
= ♯E. The graph is undirected so {i, j} ∈ E ⇔ {j, i} ∈ E and

without self-loops so {i} /∈ E for each i ∈ V . We have access to an efficient classical
circuit that computes the following function

fE(i, j) =

{
1 if {i, j} ∈ E

0 otherwise

A triangle is a triplet (i, j, k) such that {i, j}, {j, k}, {i, k} ∈ E.

1

École Polytechnique, 3A

1. Use Grover’s algorithm to find a quantum algorithm that finds a triangle in
time O(n3/2) if a triangle exists.

2. Find a quantum algorithm that finds an edge in time O

(√
n2

m

)
. Argue that

the edge found is a random edge from the set of all edges.

3. Given an edge {i, j}, find an algorithm that determines whether there exists k
such that (i, j, k) is a triangle in time O(

√
n).

4. From there, constructs an algorithm that finds a triangle (i, j, k) (if it exists)
in time O(

√
n2

m
+
√
n) and that succeeds with probability at least 1

m
.

5. Use the amplitude amplification technique to design a quantum algorithm for
finding a triangle in time O(n+

√
mn).

6. Compare this complexity with the one from Question 1. When is it better? Can
it be worse?

Exercise 4 (Finding a triangle via a first quantum random walk). We studied in
the previous algorithm Grover and amplitude amplification approaches to solve the
triangle problem (we will use the same notation). We now show how quantum walks
can improve the best algorithms for triangle finding. We assume that it exists a single
triangle. Furthermore, we also have access to the following oracle

OE |u⟩ |v⟩ |b⟩ → |u⟩ |v⟩ |b⊕ “{u, v} ∈ E ′′⟩ .

where “{u, v} ∈ E ′′ is a bit which is equal to 1 if {u, v} ∈ E and 0 otherwise. We
consider as a cost measure only the query complexity, i.e., the number of calls to OE.

For a parameter r, we construct a graph H = (VH , EH) on which we will perform
a quantum walk.

• Each S ∈ VH is of the form S(ver), S(edges) where S(ver) contains a list of
distinct vertices v1, . . . , vr ∈ V . S(edges) contains all the values ei,j = 1 if
{vi, vj} ∈ E and ei,j = 0 otherwise, for each i, j ∈ {1, . . . , r} and i < j.

• A pair (S1, S2) ∈ EH if and only if you can construct S2(ver) from S1(ver) by
removing exactly one element from S1(ver) and adding another element. More
formally:

(S1, S2) ∈ EH ⇐⇒ ∃v1 ∈ S1(ver), ∃v2 ∈ S2(ver)\S1(ver),

2

École Polytechnique, 3A

such that,
S2(ver) = (S1(ver)\{v1}) ∪ {v2}.

• An vertex S ∈ VH is marked if there exist vi, vj ∈ S(ver) and u ∈ V such that
vi, vj, u is a triangle of G.

We want to perform a quantum walk on this graph H, which is a Johnson graph
J(n, r).

1. What is the fraction ε of marked vertices and what is the spectral gap δ of H?

2. Show that the setup cost is O(r2) and the update cost is O(r).

3. Find a quantum algorithm that checks whether a vertex is marked in time
O(r

√
n), what is then the total running time of the quantum walk to find a

triangle in G? Is it better than Grover’s approach?

Exercise 5 (A better quantum walk to find a triangle). The goal of this exercise is to
find a better quantum algorithm by improving the checking procedure. This algorithm
will use another quantum walk. We fix a vertex S = (S(ver), S(edges)) ∈ VH and we
want to check whether S is marked or not. We also fix a vertex u ∈ V , and construct
the graph H ′ = (V ′, E ′) as follows:

• Each S ′ ∈ V ′ is of the form (S ′(ver), S ′(edges), S ′(edgesu)) where

S ′(ver) ⊂ S(ver) with ♯S ′(ver) = r2/3.

We therefore write S ′(ver) = v1, . . . , vr2/3. S ′(edges) contains all the strings
eij = 1 if {vi, vj} ∈ E and eij = 0 otherwise for each vi, vj ∈ S ′(ver). S ′(edgesu)
contains all the strings eui = 1 if and only if {vi, u} ∈ E and eui = 0 otherwise.

• (S ′
1, S

′
2) ∈ E ′ if and only you can go construct S ′

2(ver) from S ′
1(ver) by removing

exactly one element from S ′
1(ver) and adding another element. More formally:

(S ′
1, S

′
2) ∈ E ⇐⇒ ∃v1 ∈ S ′

1(ver), ∃v2 ∈ S ′
2(ver)\S ′

1(ver)

such that
S ′
2(ver) = (S ′

1(ver)\{v1}) ∪ {v2}.

• An element S ′ ∈ V ′ is marked if and only if ∃vi, vj ∈ S ′(ver) such that (vi, vj, u)
is a triangle in G.

3

École Polytechnique, 3A

We want to perform a quantum walk on the graph H ′, which is a Johnson graph
J(r, r2/3). Recall that we consider as a cost measure only the query complexity, i.e.,
the number of calls to OE.

1. What is the setup cost of this random walk? Recall that the edges in S ′(edges)
have already been queried (they are in S(ver)) and can be computed at 0 cost.

2. Show that the update and the checking cost are respectively O(1) and 0.

3. Assume there is a pair vi, vj ∈ S such that vi, vj, u form a triangle in G. In
this case, what is the fraction ε of marked vertices in H ′. In this case, show
that the quantum walk can find a vertex in time O(r2/3).

4. From there, show that the checking cost from Exercise 1 can be reduced to
O(r2/3

√
n). What is therefore the total running time of the quantum walk

described in the previous exercise?

Exercise 6 (Checking matrix multiplication). We consider three matrices A,B,C ∈
{0, 1}n×n, to which we have the following query access

OM : |i⟩ |j⟩ |b⟩ → |i⟩ |j⟩ |b⊕Mi,j⟩ .

for the three matrices M = A,B,C. Our goal is to check whether AB = C or not.
For sets S, T ⊆ {1, . . . , n}, we consider the matrices AS and BT where AS ∈

{0, 1}♯S×n is the sub-matrix with lines in S, and BT ∈ {0, 1}n×♯T is the sub-matrix
of B that only considers columns in T . The multiplication AS ·BT outputs a matrix
in {0, 1}♯S×♯T . Let CS,T be the sub-matrix of C that consists of lines in S and
columns in T . If AB = C then AS ·BT = CS,T .

Construct a quantum walk on a graph (V,E). In each vertex vS,T ∈ V , put all
the bits of AS ,BT ,CS,T for subsets S, T such that ♯S = ♯T = r. A vertex is marked
if AS ·BT ≠ CS,T . You put an edge between two vertices vS,T and vS′,T ′ is S = S ′

and T , T ′ differ by at most 1 elements or T = T ′′ and S,S ′ differ by at most one
element. The graph you construct will have spectral gap

δ = O

(
1

r

)
.

Show that the running time (in the number of queries) of this quantum walk is
O(n5/3), for a well chosen parameter r.Give the running time of the different steps:
Setup, Update, Check and the fraction of marked vertices.

4

École Polytechnique, 3A

Exercise 7 (About 3-SAT). A 3 − SAT instance Φ over n Boolean variables
x1, . . . , xn is a formula which is the AND of a number of clauses, each of which
is an OR of 3 variables or their negations. For example,

Φ(x1, . . . , x4) = (x1 OR x2 OR x3) AND (x2 OR x3 OR x4)

is a 3-SAT formula with 2 clauses. A satisfying assignment is a setting of the n
variables such that Φ(x1, . . . , xn) = 1 (i.e, TRUE). You may assume the number
of clauses is at most some polynomial in n. In general it is NP-hard to find a
satisfying assignment to such a formula. Brute force would try out all 2n possible
truth assignments, but something much better is possible: consider the following
simple algorithm of Schöning, which is a classical random walk on the set of all
N = 2n truth assignments:

(a) Start with a uniformly random x ∈ {0, 1}n

(b) Repeat the following at most 3n times: if Φ(x) = 1 then STOP, else find the
leftmost clause that is false, randomly choose one of its 3 variables and flip its
value.

One can show that this algorithm has probability at least (3/4)n/
√
5n of finding a

satisfying assignment (if Φ is satisfiable). You may assume this without proof.

1. Use the above to give a classical algorithm that finds a satisfying assignment
with high probability in time (4/3)n ·p(n), where p(n) is some polynomial factor.

2. Give a quantum algorithm that finds a satisfying assignment (with high proba-
bility) in time

√
(4/3)n · p(n).

5

