Advanced Quantum Information and Computing

Exercise Sheet 3

Exercise 1 (About von Neumann entropy). The von Neumann entropy of a quantum system, expressed as density operator ρ is (with the convention $0 \log 0 = 0$)

$$S(\rho) \stackrel{def}{=} -\operatorname{tr}\left(\rho \log \rho\right)$$

- 1. Why is $S(\rho)$ well defined? Give the expression of $S(\rho)$ according to the eigenvalues of ρ ,
- 2. Give the entropy of the states $\rho_0 \stackrel{\text{def}}{=} |0\rangle\langle 0|$ and $\rho_1 \stackrel{\text{def}}{=} \frac{|0\rangle\langle 0|+|1\rangle\langle 1|}{2}$,
- 3. Prove that the von Neumann entropy of pure states is 0,
- 4. Give the entropy of the probabilistic mixture of $|+\rangle$ with prob. $\frac{1}{2}$ and $|-\rangle$ with prob. $\frac{1}{2}$,
- 5. Prove that the von Neumann entropy of ρ is zero if and only ρ is a pure state. What happens if ρ is a mixed quantum state?
- 6. Suppose that p_i are probabilities, and the states ρ_i have support on orthogonal subspaces. Show that (where H is the classical entropy),

$$S\left(\sum_{i} p_{i}\rho_{i}\right) = H\left((p_{i})_{i}\right) + \sum_{i} p_{i}S(\rho_{i})$$

7. Joint entropy: suppose p_i are probabilities, $|i\rangle$ are orthogonal states for a system A, and ρ_i is any set of density operators for another system, B. Show that,

$$S\left(\sum_{i} p_{i} |i\rangle\langle i| \otimes \rho_{i}\right) = H\left((p_{i})_{i}\right) + \sum_{i} p_{i}S(\rho_{i})$$

Exercise 2 (Klein's inequality). An important quantity in information theory is the relative entropy, also known as the Kullback-Leibler divergence. Given two distributions $(p_i)_i$ and $(q_i)_i$

$$D_{\mathrm{KL}}(p_i||q_i) \stackrel{def}{=} \sum_i p_i \ \log_2 \frac{p_i}{q_i} \in \mathbb{R} \cup \{+\infty\}$$

This quantity is often useful, not in itself, but because other entropy quantities can be regarded as a special case of $D_{\text{KL}}(\cdot || \cdot)$. The most useful fact is the following inequality (known as Gibb's inequality),

$$D_{\mathrm{KL}}(p_i||q_i) \ge 0$$
 and $D_{\mathrm{KL}}(p_i||\sigma_i) = 0 \iff p_i = q_i \text{ for all } i$

In a similar vein it is also extremely useful to define a quantum version of the relative entropy. Suppose ρ and σ are density operators. The relative entropy of ρ to σ is defined by

$$S(\rho || \sigma) = \operatorname{tr}(\rho \log_2 \rho) - \operatorname{tr}(\rho \log_2 \sigma)$$

As with the classical relative entropy, the quantum relative entropy can sometimes be infinite. In particular, the relative entropy is defined to be $+\infty$ if the kernel of σ (the vector space spanned by the eigenvectors of σ with eigenvalue 0) has non-trivial intersection with the support of ρ (the vector space spanned by the eigenvectors of ρ with non-zero eigenvalue), and is finite otherwise.

- 1. Show that $S(\rho||\sigma) \ge 0$ with equality if and only if $\rho = \sigma$. This inequality is known as Klein's inequality. It is useful to prove many statements involving von Neumann entropy.
- 2. Deduce that the von Neumann entropy is equal to $\log_2 d$ (where d is the dimension of the underlying Hilbert space) if and only if the system is in the completely mixed state \mathbf{I}/d

Exercise 3 (Entropy of a tensor product). Use the joint entropy property of von Neumann entropy to show that

$$S(\rho \otimes \sigma) = S(\rho) + S(\sigma)$$

Prove this result directly from the definition of the von Neumann entropy.

Exercise 4 (Projective measurements increase entropy). Suppose \mathbf{P}_i is a complete set of orthogonal projectors and ρ is a density operator. Then the entropy of the state $\rho' = \mathbf{P}_i \rho P i$ of the system after the measurement is at least as great as the original entropy,

$$S(\rho') \ge S(\rho)$$

with equality if and only if $\rho = \rho'$.

Exercise 5. Compute the von Neumann entropy of

$$\rho_0 \stackrel{def}{=} (1-p) |0\rangle\langle 0| + p |1\rangle\langle 1| \quad and \quad \rho_1 \stackrel{def}{=} (1-p) |0\rangle\langle 0| + p |+\rangle\langle +|$$

What do you deduce according to the lecture? (draw a picture with some script)