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THE OBJECTIVE OF THE DAY

▶ To present the usefulness of Markov chains
(
via the birthday paradox

)
▶ To give you an introduction to the theory of Markov chains

▶ Ultimately to show you how quantum computing can increase the “efficiency” of Markov

chains
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COURSE OUTLINE

1. Usefulness of Random Walks

2. Markov Chains

3. Random Walks on Graphs

4. Quantum Random Walks

5. Application: Finding Collisions
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YOU SAID RANDOM WALKS?



COMPLEX NETWORK ANALYSIS

Complex Networks:
▶ Web network:

• ≥ 1010 pages

• average number 38 hyperlinks per page

▶ Bluesky:

• ≈ 107 users

• a user follows about 100 other users

−→ These networks involve a complex analysis:

unknown and changing topology, crawling the entire network is slow

Naive question: how to count the number of nodes in these networks?

(
for instance with sub-linear complexity in the number of nodes

)
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COUNTING THE NUMBER OF NODES

Assumption:

It is possible to efficiently sample uniformly among a set

Claim:

Under the above assumption, we can estimate the size n of the set with only O
(√

n
)
samples!

Idea: birthday paradox

Assume that a list of persons are ready to enter a room one by one. Each person is let in and

declares her birthday. How many people have to enter before two of them have the same

birthday? A birthday collision is likely to happen at time t ≈
√
365 ≈ 24

−→ By sampling elements uniformly at random in a set of size n we expect
√
n drawing for a

collision to happen: a collision happen at time t, we deduce that the set has size
√
t
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BIRTHDAY PARADOX: RIGOROUS ANALYSIS

Estimating the size of a set:

Pick elements uniformly at random in the set of size n and mark them. Stop at the moment you

fin a marked elements, i.e., you found a collision

Let T be the time of the first collision and Xi be the picked element during the drawing. We have

T = inf
i≥1

{
Xi ∈ {X1, . . . , Xi−1}

}
Notice that,

P (T > i) =
n(n− 1) . . . (n− i + 1)

ni
=

i!
n!

di

dzi
[1 + z]n (0) = i!

di

dzi

[
1 +

z
n

]n
(0)

Now we have,
E (T) =

+∞∑
i=0

P (T > i) = 1 +
+∞∑
i=1

i! ·
di

dzi

[
1 +

z
n

]n
(0)

Using now that i! =
∫ +∞
0 tie−tdt

(
Gamma function

)
and

(
1 + z

n
)n =

∑
i≥0

di
dzi

[
1 + z

n
]n (0) · zi ,

E (T) = 1 +
∫ +∞

0

(
1 +

t
n

)n
e−tdt =

√
πn
2

+
2
3
+ O

( 1
√
n

)
Our estimator n̂ of the size is therefore given by

n̂ =
2 · (T− 2/3)2

π
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UNIFORM SAMPLING?

But how to efficiently sample uniformly at random an element in a set?

(
remember that we don’t even know the size of the set

)
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FUNDAMENTAL IDEA: RANDOM WALKS

Fundamental idea: random walks

Start from a point in the set and walk a certain amount of time to a “neighbour” with some

probability

−→ According to the “structure” of the walk
(
how are distributed neighbours and how we walk

from one to the other
)
we can efficiently, e.g. with sub-linear walks, sample a uniform point!

x

y

z

8



MARKOV CHAINS



STOCHASTIC MATRIX

Stochastic matrix:

Given a finite set X , a matrix P = (p(x, y))x,y∈X is said to be stochastic if

• p(x, y) ≥ 0 for all x, y ∈ X

•
∑

y∈X p(x, y) = 1

Fundamental fact

If x = (q(x))x∈X is a distributiona and P is a stochastic matrix. Then, x⊤P is a distribution

a for all x ∈ X , q(x) ≥ 0 and
∑

x∈X q(x) = 1

▶ Let (r(y))y∈X be the distribution defined as x⊤P. We have,

r(y) =
∑
x∈X

q(x)p(x, y)

▶ r defines the distribution: pick x according to q and then pick y with probability p(x, y)
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MARKOV CHAINS

Markov chains give a rule to walk from one point to the other independently of the path we

followed in the past

Markov chain:

Let X be a finite set, (q(x))x∈X be a distribution and P = (p(x, y))x,y∈X be a stochastic matrix.

A
(
homogenous

)
Markov chain with state space X , initial distribution q and transition matrix P

is a sequence of random variables X0, . . . , Xt, . . . such that

P (X0 = x0) = q(x0) and P (Xt+1 = xt+1 | Xt = xt, . . . , X0 = x0) = p(xt, xt+1)

for all t ∈ N and x0, . . . , xt+1 ∈ X such that P (X0 = x0, . . . , Xt = xt) > 0

Remark:

The homogenous term refers to the fact that for each t the transition matrix is the same
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WALK ACCORDING TO THE MARKOV CHAIN

Proposition:

Given a Markov chain (Xt)t with initial distribution (q(x))x∈X , transition matrix P = (p(x, y))x,y∈X ,

P (Xt = x) = q(t)(x) where
(
q(t)(x)

)
x∈X

def
=

(
q(x)

)⊤

x∈X
Pt

and, P (Xt+1 = xt+1 | Xt = xt) = p(xt, xt+1)

(
p(x, y): rule for moving from x to y, we read from left to right

)
Proof:

Exercise!

Notation:

Given P =
(
p(x, y)

)
x,y∈X

, we denote Pt =
(
p(t)(x, y)

)
x,y∈X
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STATIONARY DISTRIBUTION

Starting from the distribution x = (q(x))x∈X and after t walks we are distributed as x⊤Pt

Stationary distribution:

Let P be a stochastic matrix. A stationary distribution for P is a distribution π such that

π
⊤ = π

⊤P

−→ Starting from the stationary distribution and applying the walk keeps invariant the

distribution!
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ERGODICITY AND CONVERGENCE TO EQUILIBRIUM

(
given P =

(
p(x, y)

)
x,y∈X

, we denote Pt =
(
p(t)(x, y)

)
x,y∈X

)

Ergodicity:

A stochastic matrix P is said ergodic if there exists t0 ∈ N such that

∀x, y ∈ X , p(t0)(x, y) > 0

Theorem:

A stochastic matrix P is ergodic if and only if there exists a strict probability distributiona π on X

such that
∀x, y ∈ X , p(t)(x, y) −−−−→

t→+∞
π(y)

Furthermore, when P is ergodic, the above distribution π is the unique stationary distribution for P

a π(x) > 0 for any x ∈ X
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PROOF(I)

Proof:

Suppose that P is ergodic and ε def
= min

x,y∈X
p(t0)(x, y) ∈ (0, 1),

M(t)(y) def
= max

x∈X
p(t)(x, y) m(t)(y) def

= min
x∈X

p(t)(x, y)
We have,

m(t)(x, y) ≤
∑
z
p(x, z)m(t)(x, y) ≤

∑
z
p(x, z)p(t)(z, y) = p(t+1)(x, y) ≤

∑
z
p(x, z)M(t)(y) = M(t)(y)

We deduce that t 7→ M(t)(x, y) and t 7→ m(t)(x, y) are decreasing and increasing. Therefore they

convergence as belonging to (0, 1). Call π1(y) and π2(y) their limits. For any r ≥ 0 we have:

p(t0+r)(x, y) =
∑
z
p(t0)(x, z)p(r)(z, y)

=
∑
z

(
p(t0)(x, z) − εp(r)(y, z)

)
p(r)(z, y) + ε ·

∑
z
pr(y, z)p(r)(z, y)

≥ m(r)(y)
∑
z

(
p(t0)(x, z) − εp(r)(y, z)

)
+ ε · p(2r)(y, y)

= (1− ε) · m(r)(y) + ε · p(2r)(y, y)≥(1− ε)m(r)(y) + ε · m(2r)(y, y)

where the inequality follows from the fact that
(
as ε ≥ p(t0)(x, z)

)
,

p(t0)(x, z) − εp(r)(y, z) ≥ p(t0)(x, z)
(
1− p(r)(y, z)

)
≥ 0
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PROOF(II)

Proof:

Similarly M(n0+r)(y) ≤ (1− ε)M(r)(y) + ε · M(2r)(y, y). We deduce that for any k,

M(kn0+r)(y) − m(kn0+r)(y) ≤ (1− ε)k
(
M(r)(y) − m(r)(y)

)
−−−−−→
k→+∞

0

Therefore π(y) def
= π1(y) = π2(y) and from above with the fact that M(t) and m(t) are decreasing

and increasing, for t = kn0 + r where 0 ≤ r ≤ n0 ,∣∣∣p(t)(x, y) − π(y)
∣∣∣ ≤ M(t)(y) − m(t)(y) ≤ (1− ε)n/n0

and therefore p(t)(x, y) −−−−→
t→+∞

π(y). Furthermore,

p(t+1)(x, y)
∑
z
p(t)(x, z)p(z, y)

we get with t → +∞,
π(y) =

∑
z
π(z)p(z, y)

which shows that π is a stationary distribution
(
it is a distribution as

∑
z p

(t)(x, z) = 1 and

p(t)(x, z) ≥ 0
)
. It is strict as m(t)(y) ≥ ε > 0

Conversely, suppose that p(t)(x, y) −−−−→
t→+∞

π(y) > 0. We deduce easily that P is ergodic
(
a finite

number of y
)
. To prove uniqueness let π′ be another stationary distribution,

π
′(y) =

∑
x
π
′(x)p(t)(x, y) −−−−→

t→+∞

∑
x
π
′(x)π(y) = π(y)
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COUNTING WITH MARKOV CHAINS

How to enumerate the size of a set X with Markov chains?

▶ Choose a transition matrix P
(
walking rules over X

)
ergodic such that its stationary

distribution πunif is the uniform distribution
(
no reason to be true

)
▶ Choose any initial distribution q, e.g. start on a fix point x0 by choosing q(x) =

{
1 if x = x0
0 if x 6= x0

Start from any point according to the initial distribution q and apply t
(
large enough

)
walks

according to P

As p(t)(x, y) −−−−→
t→+∞

πunif(y): we will sample a point on X according to πunif and then we apply the

reasoning of the beginning of the lecture

But how to measure the efficiency of Markov chain to sample uniformly?
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SPEED OF CONVERGENCE

How many walks are necessary to be close enough to the stationary distribution?

−→ We want to estimate the smallest t such that p(t)(x, y) ≈ π(y)

Issue:

Recall that p(t)(x, y) is defined as Pt =
(
p(t)(x, y)

)
x,y∈X

−→ Coefficients p(t)(x, y) involve a convoluted analysis

How could we reasonably overcome this issue?

−→ Spectral analysis: diagonalize the transition matrix P
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SPEED OF CONVERGENCE AND SPECTRAL ANALYSIS (I)

First of all we need to interpret transition matrices as linear operators

Let L(X ) = {f : X → C} and define a linear operator A = (a(x, y))x,y∈X : L(X ) → L(X ) as,

∀f ∈ L(X ), (Af) : x ∈ X 7−→
∑
y∈X

f(y)a(x, y)

(
Af is nothing else than A (f(x))x∈X , i.e., columns space instead of the rows space

)

Proposition:

Given a transition matrix, 1 is always an eigenvalue of P. Furthermore, if λ is another eigenvalue

we have |λ| ≤ 1

Proof:

We clearly have P1 = 1 as P is stochastic. Furthermore, let f 6= 0 such that Pf = λf. Let x0 ∈ X

such that |f(y)| ≤ |f(x0)| for all y ∈ X . Then,

|λf(x0)| =

∣∣∣∣∣∣
∑
y∈X

f(y)p(x0, y)

∣∣∣∣∣∣ ≤
∑
y∈X

|f(y)|p(x0, y) ≤ |f(x0)|

as
∑

y∈X p(x0, y) = 1 and |f(y)| ≤ |f(x0)|
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SPEED OF CONVERGENCE AND SPECTRAL ANALYSIS (II)

Suppose that P is diagonalizable. Therefore P⊤ is diagonalizable with the same eigenvalues

x def
= initial distribution

π
def
= eigenvector of P⊤ corresponding to eigenvalue 1 with norm 1

ui
def
= eigenvector of P⊤ corresponding to eigenvalue λi with norm 1

We have x = α · π +
∑

i αi · ui and

x⊤Pt = α · π +
∑
i

λtiαiui

Suppose now that |λi| < 1 for all i
(
otherwise we only have that |λi| ≤ 1

)

We deduce that x⊤Pt −−−−→
t→+∞

α · π as |λi0 |
t where |λi0 | = maxi (|λi|)

Conclusion:

Suppose (i) P is diagonalizable, (ii) 1 is eigenvalue with multiplicity one and (iii) −1 is not an

eigenvalue, then x⊤Pt converges to equilibrium exponential fast as |λi0 |
t where |λi0 | be the

second greatest absolute values of eigenvalues
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A PARTICULAR CASE: SYMMETRIC TRANSITION MATRICES

Suppose that P is symmetric

−→ Eigenvectors of P and P⊤ are the same. Furthermore P is diagonalizable

In particular:

π = 1
♯X (1, . . . , 1)

(
uniform distribution

)
is the eigenvector of norm 1 with eigenvalue 1 of P and

P⊤ . We deduce that if 1 has multiplicity one and −1 is not an eigenvalue, then x⊤P converges to

the uniform distribution

It would be a pity to only consider Markov chains with symmetric transition matrices for the

spectral analysis. . .
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REVERSIBLE MARKOV CHAINS

A natural extension of symmetric transition matrices. . .

Reversible Markov chain:

Given a stochastic matrix P = (p(x, y))x,y∈X , we say that P is reversible if there exists a strict

probability measure π on X such that

∀x, y ∈ X , π(x)p(x, y) = π(y)p(y, x)

We say that P and π are in detailed balance

−→ Starting from x with probability π(x) and walking to y is the same than starting from y with

probability π(y) and walking to x

Fact:

If (P, π) are in detailed balance, then π is a stationary distribution
(
π⊤P = π⊤

)
, i.e.,∑

x∈X
p(x, y)π(x) =

∑
x∈X

p(y, x)π(y) = π(y)

−→ Very useful to define a Markov chain with prescribed stationary distribution π
22



REVERSIBLE MARKOV CHAINS AND SPECTRAL ANALYSIS

Given f1, f2 ∈ L(X ),
〈f1, f2〉π

def
=

∑
x∈X

f1(x)f2(x)π(x)
(
scalar product

)

Proposition:

(P, π) detailed balance if and only if P is self-adjoint with respect to the scalar product 〈·, ·〉π

Consequence:

If (P, π) are in detailed balance, then P is diagonalizable over the reals: it exists

{λx : x ∈ X} ⊆ R and U ∈ R♯X×♯X such that{
PU = U∆
U⊤DU = Id

where ∆ = Diag(λx)x∈X and D = Dia(π(x))x∈X

−→ The columns of U are eigenvectors of P and U is unitary with respect to π
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PROOF

Proof:
▶ Suppose that P is self-adjoint with respect to 〈·, ·〉π . Let δx be the Kronecker symbol. We

have,
π(x)p(x, y)〈Pδy, δx〉π = 〈δy, Pδx〉π = π(y)p(y, x)

▶ Suppose that (P, π) are in detailed balance. Let f1, f2 ∈ L(X ), we have

〈Pf1, f2〉π =
∑
x∈X

∑
y∈X

p(x, y)f1(y)

 f2(x)π(x)

=
∑
x∈X

∑
y∈X

π(x)p(x, y)f1(y)f2(x)

=
∑
x∈X

∑
y∈X

π(y)p(y, x)f1(y)f2(x)

= 〈f1, Pf2〉π
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DIAGONALIZABLE DECOMPOSITION

Consequence:

If (P, π) are in detailed balance, then P is diagonalizable over the reals: it exists

{λx : x ∈ X} ⊆ R and U ∈ R♯X×♯X such that{
PU = U∆
U⊤DU = Id

where ∆ = Diag(λx)x∈X and D = Dia(π(x))x∈X

−→ The above decomposition is powerful to determine p(t)(x, y) as function of eigenvalues of P

Proposition:

Using above notation, Pt = U∆tU⊤D, i.e., p(t)(x, y) = π(y) ·
∑

z∈X λtz · u(x, z) · u(y, z)

Proof:

We just need to notice that U⊤D is the inverse of U
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SPECTRAL GAP AND CONVERGENCE TO EQUILIBRIUM

Spectral gap:

Given a Markov chain with transition matrix P admitting (λi)i as eigenvalues, its spectral gap is

defined as
δ
def
= 1− max

i

(
|λi| : 0 < |λi| < 1

)
Theorem:

Suppose that (P, π) are in detailed balance, 1 is eigenvalue of P with multiplicity 1 and −1 is not

an eigenvalue. Let q(t) be the distribution after t walks x⊤Pt where x be the initial distribution

starting at any fixed point. Then,

‖q(t) − π‖1/π =

√√√√∑
y∈X

(
q(t)(y) − π(y)

)2 · 1
π(y)

≤ (1− δ)t ·
∑
z
u(x, z)2 −−−−→

t→+∞
0

where δ ∈ (0, 1) is the spectral gap of P

In particular, the Markov chain with transition matrix P is ergodic and π is its stationary

distribution

Fundamental consequence:

If anyone wants ‖x⊤Pt − π‖ ≤ ε, then t = ln(ε)/ ln(1− δ) ≈ 1/δ is enough: sub-exponential

number of walks is enough to reach equilibrium
(
but be careful on the spectral gap

)
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PROOF

Proof:

Let λz be the eigenvalues of P with associate eigenvectors uz . By assumption it exists a unique z0
such that |λz| < 1 for z 6= z0 and λz0 = 1. Therefore,

p(t)(x, y) = π(y)
∑
z∈X

λ
t
z · u(x, z) · u(y, z) = π(y) · u(x, z0) · u(y, z0) + π(y)

∑
z̸=z0

λ
t
z · u(x, z) · u(y, z)

Furthermore, u(α, z0) = 1 for all α as 1 is the eigenvector of P associated to eigenvalue 1.

Therefore,(
p(t)(x, y) − π(y)

)2
= π(y)2

∑
z1,z2 ̸=z0

λ
t
z1
· λtz2 · u(x, z1) · u(x, z2) · u(y, z1) · u(y, z2)

Notice now that x⊤Pt is distributed as
(
p(t)(x0, y)

)
y∈X

. We deduce,

‖x⊤Pt − π‖21/π =
∑
y

(
p(t)(x0, y) − π(y)

)2 1
π(y)

=
∑

z1,z2 ̸=z0

λ
t
z1
· λtz2 · u(x, z1) · u(x, z2) ·

∑
y
u(y, z1) · u(y, z2)π(y)

=
∑
z ̸=z0

u(x, z)2 · λ2tz

where in the last equality we used that U⊤DU = Id. It concludes the proof
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A PARTICULAR CASE: SYMMETRIC TRANSITION MATRICES

Suppose that P is symmetric

−→ (P, πunif) are in detailed balance where πunif is the uniform distribution

1
n · p(x, y) = 1

n · p(y, x)

▶ If the spectral gap δ is < 1
(
1 eigenvalue with multiplicity one and −1 is not an eigenvalue

)
,

applying t walks is converging with t to πunif which is the unique stationary distribution

▶ With our notation
√
♯X · U are unity matrices and

‖q(t) − π‖2 ≤ (1− δ)t

where ‖ · ‖2 is the Euclidean norm over L(X )
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TO TAKE AWAY

▶ Markov chain: set of rules for walking from x to y

−→ Rules are given by a transition matrix P = (p(x, y))x,y∈X

▶ Invariant distribution: initial distribution such that applying walking rules does not change

the distribution

▶ Rules for t walks are given by P . . . P︸ ︷︷ ︸
t times

=
(
p(t)(x, y)

)
x,y∈X

▶ Ergodic Markov chain: ∃t > 0 such that p(t)(x, y) > 0

▶ Ergodic Markov chain and convergence to the equilibrium: applying
(
whatever is the starting

distribution
)
t walks for t → +∞ amounts to sample according to the unique invariant

distribution

▶ To determine the speed of convergence: we restrict ourself to spectral analysis

−→ P is usually “symmetric” with respect to some distribution π: π(x)p(x, y) = π(y)p(y, x)

▶ The spectral gap δ
(
under the good hypothesis with 1 and −1 as eigenvalues

)
determines

the speed of convergence as ≈ 1
δ
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RANDOM WALKS ON GRAPHS



VISUALISATION OF MARKOV CHAINS

Some of you will no doubt be complaining that Markov chains are not very “visual”

−→ But they are! Transition rules define a graph, and reciprocally graphs define Markov chains. . .

x

y

z
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GRAPHS

We will restrict ourself to the following kind of graphs, in particular undirected

(Undirected) Graph:

A graph is a couple G = (V, E) where V is a set of vertices and E is a set of edges which are

undirected pairs {x, y} of V possibly collapsing to a singleton

Notation x ∼ y denotes any edge {x, y} ∈ E

x

y

z

−→ V = {x, y, z} and E = {{x, y}, {y, z}, {z}}
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GRAPHS AND MARKOV CHAINS

Any Markov chain defines a graph structure

V = {0, 1}, E = {{0}, {1}}

0 1 11

P =

(
1 0
0 1

)

V = {0, 1}, E = {{0}, {0, 1}, {1}}

0

q

1

p

1− q1− p

P =

(
1− p p
q 1− q

)
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WEIGHTED GRAPHS

Weighted graph:

Let (V, E) be a graph. A weight on this graph is w : V× V −→ R≥0 such that w(x, y) = w(y, x)
(
symmetry

)
w(x, y) > 0 if and only if x ∼ y, i.e., {x, y} ∈ E

From weighted graphs to Markov chains:

With a weight w on (V, E) we associate a stochastic matrix P = (p(x, y))x,y∈V by setting,

p(x, y) =
w(x, y)
W(x)

where W(x) def
=

∑
z∈V

w(x, z)

The corresponding Markov chain is called a random walk on (V, E)

This Markov chain is in detailed balance with the distribution

π(x) =
W(x)
W

where W =
∑
z∈V

W(z)

−→ Weighted graphs are reversible Markov chains. Reciprocally reversible Markov chains define

weighted graphs by setting w(x, y) = π(x)p(x, y) and x ∼ y when w(x, y) > 0
34



AN IMPORTANT EXAMPLE: SIMPLE RANDOM WALKS

Given (V, E) and x ∈ V, we define deg x = ♯{y ∈ V : x ∼ y}
(
number of neighbours of x

)
and

w(x, y) = 1 if and only if x ∼ y

−→ It defines the simple random walk: from x, we walk to a neighbor y with probability 1
deg x

▶ If (V, E) is d-regular, i.e., deg x = d for all x ∈ V. Then the associate transition matrix is

symmetric. In particular, the equilibrium is given by the uniform distribution
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CONNECTED GRAPHS

Connected graph:

A graph (V, E) is said to be connected is for any x, y ∈ V it exists a path between them, i.e.,

∀x, y ∈ V, ∃z1, . . . , zt ∈ V : x ∼ z1 ∼ z2 · · · ∼ zt ∼ y

36



CONNECTED GRAPHS AND SPECTRAL ANALYSIS

Proposition
(
admitted

)
:

Let (V, E,w) be a weighted graph. Let P be the transition matrix of its associated random walk. The

multiplicity of the eigenvalue 1 of P is one if and only if (V, E) is a connected graph

Note that connectedness is a structural property and therefore the multiplicity of 1 does not

depend on the weight w
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BIPARTITE GRAPHS

Bipartite graph:

A graph (V, E) is said bipartite if it exists a non-trivial partition of vertices V = V1
⊔
V2 such that

E ⊆
{
{x1, x2} : x1 ∈ V1 and x2 ∈ V2

}

V = {x, y, z, u, v} and E =
{
{x, y}, {x, z}, {u, z}, {u, v}

}
y

x

z

u

v
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BIPARTITE GRAPHS AND SPECTRAL ANALYSIS

Proposition
(
admitted

)
:

Let (V, E,w) be a connected weighted graph. Let P be the transition matrix of its associated

random walk. Then the following are equivalent:

(i) (V, E) is bipartite

(ii) The spectrum σ(P) of P is symmetric, i.e., λ ∈ σ(P) ⇐⇒ −λ ∈ σ(P)

(iii) −1 is an eigenvalue, i.e., −1 ∈ σ(P)

Another example of a structural
(
geometrical

)
property that reflects on the spectral theory of the

graph independently on the weight function.
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CONNECTED AND BIPARTITE GRAPHS VERSUS ERGODICITY

Theorem:

Let (V, E,w) be a connected not bipartite weighted graph. Let q(t) be the distribution of the

associated random walk detailed balance with π starting from a fixed point after t walks. Then,

‖q(t) − π‖1/π = O
(
(1− δ)t

)
−−−−→
t→+∞

0

where δ ∈ (0, 1) is the spectral gap of P and π is its unique stationary distribution defined as

π(x) = W(x)/W where W(x) =
∑

y∈V w(x, y) and W =
∑

x∈V W(x)

Proof:

We just combine Propositions on Slides 39 and 37 with Theorem on Slide 26

−→ t = ln(ε)/ ln(1− δ) ≈ 1/δ steps of the random walk are enough to pick an element with

distribution π
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APPLICATION: FINDING A MARKED VERTEX (I)

Problem: find a marked vertex

• Input: A connected non-bipartite graph (V, E) and f : V → {0, 1} with f(v) = 1 if and only if v

is “marked”

• Output: A marked vertex, i.e., v ∈ V such that f(v) = 1

Suppose that the proportion of marked vertices is ε, i.e., ε = ♯{v∈V: f(v)=1}
♯V and

we can define a random walk with the uniform distribution as stationary distribution

▶ An algorithm to solve this problem: iterate

(i) Perform 1/δ steps
(
where δ spectral gap

)
of the random walk

(ii) Output the current vertex if it is marked otherwise return to Step (i)
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APPLICATION: FINDING A MARKED VERTEX (II)

Cost of this approach:

• S setup cost: the cost to set up the initial probability distribution

• U update cost: the cost to perform one step of the random walk

• C check cost: the cost to check if a vertex is marked, i.e., to compute f(v)

• ε proportion of marked vertices and δ spectral gap

Complexity for finding a marked vertex = S +
1
ε
·
(
C +

1
δ
· U

)
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QUANTUM RANDOM WALKS



OBJECTIVE

To decrease the cost of the random walk by in particular “decreasing the number of walks”

Classical approach Quantum approach

S + 1
ε ·

(
C + 1

δ · U
)

S + 1√
ε
·
(
C + 1√

δ
· U

)
Table 1: Cost of classical and quantum approaches

Quantum computing enables surprisingly to increase the speed of convergence from 1/δ to 1/
√
δ

 
(
the factor 1/

√
ε was expected via a Grover like approach

)
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ASSUMPTION

Assumption:

We will only consider graphs which are d-regular, i.e., each vertex x ∈ V has exactly d neighbours

−→ The 4-regular graph:

a

b

c

d

e

e

Consequence:

By using the weight w(x, y) = 1/d, it defines a random walk with symmetric transition matrix and

the uniform as stationary distribution.

−→ From one vertex we walk to one of its d neighbours with probability 1
d
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FIRST (QUANTUM) TRY

As in the classical case: walk from one vertex to one of its d neighbours with probability 1
d ,

i.e., uniform choice over the neighbours

|j〉 U?−→
∣∣δj〉 =

1
√
d

∑
k∈V: (j,k)∈E

|k〉

Issue:∣∣δj〉 and |δk〉 may not be orthogonal while the |j〉 for j ∈ V are

−→ It can be fixed by moving to a larger Hilbert space
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QUANTUM APPROACH

Quantum random walk framework:

We will not only keep track of the current vertex but also of the neighbours
(
or predecessors

)

▶ Quantum states: superposition of elements |x〉 |y〉 where x ∈ V is the current vertex and

y ∼ x a neighbour of x
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NOTATION

▶ State space: Span
{
|x〉 |y〉 : x, y ∈ V

}
where the |x〉 are orthonormal for x ∈ V

▶ Quantum states: M = marked vertices
M = ♯M number of marked vertices
N = ♯V number of vertices∣∣ψj〉 =

1
√
d

∑
k:(j,k)∈E

|k〉

Starting idea:

Build in the state space the superposition of |j〉
∣∣ψj〉 for the marked vertices, i.e., j ∈ M

▶ Good and bad state:
|G〉 =

1
√
M

∑
j∈M

|j〉
∣∣ψj〉

|B〉 =
1

√
N− M

∑
j/∈M

|j〉
∣∣ψj〉

|U〉 =
1

√
N

∑
j∈V

|j〉
∣∣ψj〉
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NOTATION

M = marked vertices
M = ♯M number of marked vertices
N = ♯V number of vertices∣∣ψj〉 =

1
√
d

∑
k:(j,k)∈E

|k〉

|G〉 =
1

√
M

∑
j∈M

|j〉
∣∣ψj〉

|B〉 =
1

√
N− M

∑
j/∈M

|j〉
∣∣ψj〉

|U〉 =
1

√
N

∑
j∈V

|j〉
∣∣ψj〉

Fact:

|U〉 =
√
ε |G〉 +

√
1− ε |B〉

(
we used that ε = M/N proportion of marked vertices

)

−→ Our goal is to make |U〉 close to |G〉
(
then by measuring we obtain a solution

)

Does it remind you something?
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GROVER APPROACH

|U〉 = sin θ |G〉 + cos θ |B〉 where sin θ =
√
ε

−→ θ ≈
√
ε
(
we suppose ε small

)

Grover’s algorithm:

1. Build |U〉

2. Repeat O
(

1√
ε

)
times:

(i) Reflection trough |B〉

(ii) Reflection trough |U〉

3. Measure the first register and check that j ∈ V is marked, i.e., f(j) = 1

−→ For the justification that it succeeds with probability ≈ 1: see the following lecture
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PICTURING THE ALGORITHM

Supposing that we can make reflections over a quantum state

We start by building |U〉

|B〉

|G〉

|U〉
θ
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PICTURING THE ALGORITHM

Supposing that we can make reflections over a quantum state

Reflection over |B〉

|B〉

|G〉

|U〉
θ
θ
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PICTURING THE ALGORITHM

Supposing that we can make reflections over a quantum state

Reflection over |U〉

|B〉

|G〉

|U〉
θ
θ

2θ
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PICTURING THE ALGORITHM

Supposing that we can make reflections over a quantum state

Reflection over |B〉

|B〉

|G〉

|U〉
θ

2θ

3θ
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PICTURING THE ALGORITHM

Supposing that we can make reflections over a quantum state

Reflection over |U〉

|B〉

|G〉

|U〉
θ

3θ

4θ
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PICTURING THE ALGORITHM

Supposing that we can make reflections over a quantum state

and so on up to π/2 . . .

|B〉

|G〉

|U〉
θ

3θ

4θ

Number k of iterations to reach |G〉: θ −→ (2k + 1)θ

Choose the number k of iterations
(
reflections over |B〉 and |U〉

)
such that

(2k + 1)θ =
π

2
⇐⇒ k =

π

4θ
−

1
2
≈

π

4
√
ε

 
51



YOU SAID REFLECTIONS?

But how to build both reflections?

Reflection over |B〉:

|B〉 = sin θ
∑

j: f(j) = 0
|j〉

∣∣ψj〉 = sin θ
∑

j: f(j) = 0

∑
k: (j,k)∈E

|j〉 |k〉

▶ The reflection R|B⟩ over |B〉 is nothing else than:

R|B⟩ : |j〉 |k〉 7−→ (−1)f(j) |j〉 |k〉

It can be performed in quantum time O
(
Cost(f)

)
where Cost(f) is the classical running time

to run f
(
see the followiong Exercise Session

)
which will be C

(
check cost

)

Reflection over |U〉: first approach

We can run the reflection R|U⟩ in quantum time O (Cost(f) + Cost(|U〉)) where Cost(|U〉) is the

quantum cost to build |U〉, i.e., to run the unitary U |0〉 = |U〉
(
see the following Exercise Session

)

−→ Using this approach is nothing else than Grover’s algorithm. . .

The interest of quant. random walks is to take advantage of structure to run R|U⟩ more efficiently!
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REFLECTION OVER |u⟩

|U〉 =
1

√
N

∑
j∈V

|j〉
∣∣ψj〉 =

1
√
Nd

∑
j∈V

∑
k: (j,k)∈E

|j〉 |k〉 =
1

√
Nd

∑
k∈V

∑
j: (j,k)∈E

|j〉 |k〉 =
1

√
N

∑
j∈V

∣∣ψj〉 |j〉
A = Span

{
|j〉

∣∣ψj〉}
B = Span

{ ∣∣ψj〉 |j〉}
P = transition matrix of the underlying random walk

Fundamental idea:

Given the reflection RA and RB over A and B,

W(P) def
= RBRA

−→ By the above decomposition W(P) |U〉 = |U〉 as |U〉 ∈ A ∩ B:

|U〉 eigenvector of W(P) with eigenvalue 1

Remark:

One may wonder why we added the dependence in P by writing W(P). It turns out that W(P) can

be interpreted as four steps of the underlying classical random walk
(
see later

)
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EIGENVALUES AND EIGENVECTORS OF THE QUANTUM WALK

|U〉 eigenvector of W(P) with eigenvalue 1: W(P) |U〉 = |U〉

What are the others eigenvalues of W(P)?

−→ They are basically eigenvalues of P

Theorem
(
admitted

)
:

The eigenvalues of P are the e2iπθj where cosπθj = λj with the λj being eigenvalues of P

(
remember, all eigenvalues λ of P verify |λ| ≤ 1

)

Fundamental consequence:

πθj mod π/2 ≥
√
2δ as |λi| ≤ 1− δ where δ is the spectral gap!
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PHASE GAP

Phase gap:

The phase gap ∆(P) of P is the value of θ where πθ is the smallest angle in (0, 2π) such that

cosπθ is an eigenvalue 6= 1 of P

Proposition:

∆(P) ≥
1
π

·
√
2δ where δ spectral gap of P

Proof:

Let θ achieving the maximum of cos 2πθ for ∆(P), we have 1− cos 2πθ = δ. But,

1− δ = cosπθ ≥ 1− (πθ)2 /2
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FUNDAMENTAL REMARK: PHASE ESTIMATION PROBLEM

Phase estimation:

• Input: n ∈ N, a unitary U and an eigenstate |u〉:

U |u〉 = e2iπφ |u〉

• Output: φ̃ ∈ [0, 1) such that |φ− φ̃| < 2−n , i.e., the knowledge of the eigenvalue with

precision n

−→ There is a quantum algorithm UPE solving this problem

Proposition:

The phase estimation UPE
(
before the last step measuring in the computational basis

)
computes,∣∣0t〉 |u〉 7→ |ψu〉 |u〉

such that |ψu〉 is an approximation of φ, i.e., when measuring the first register we obtain

φ̃ ∈ {0, 1}t admitting the same first n bits than φ with probability ≥ 1− ε if t is chosen as

t = n +

⌈
log

(
2 +

1
2ε

)⌉
Furthermore, the algorithm uses O(t2) elementary gates and t calls to controlled-U2j for 0 ≤ j < t

which has a cost O
(
2t · Cost(U)

)
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REFLECTION OVER |u⟩ (
given x = (x1, . . . , xt) ∈ {0, 1}t , |x| =

∑t
i=0 xi2

i
)

Reflection over |U〉:

Given a quantum state
∣∣0t〉 |ψ〉 where |ψ〉 is an eigenvector of W(P) with eigenvalue e2iπθj

1. Apply UPE for W(P) with precision n = − log2
1
2π ·

√
δ

2. Apply on the first n registers Zδ : |x〉 =

{
|x〉 if |x| < 1

2π ·
√
δ

− |x〉 if |x| > 1
2π ·

√
δ

3. Apply U−1
PE

−→ Claim: this algorithm with n = − log2
1
2π ·

√
δ performs R|U⟩

Analysis:

Suppose that UPE
∣∣0t〉 |ψ〉 = |x〉 |u〉 where x ∈ {0, 1}t and its first n bits are those of θj

▶ Given the eigenvector |ψ〉 with eigenvalue e2iπθj where θj 6= 0: we have θj ≥ 1
π ·

√
2δ and

|x− θj| ≤ 2−n =
√
πδ therefore |x| ≥ 1

π ·
√
2δ− 1

2π ·
√
δ > 1

2π ·
√
δ. The algorithm returns

−
∣∣∣0t〉 |ψ〉

▶ Given the eigenvector |U〉 with eigenvalue 1: we have |x| < 2n =
√
πδ. The algorithm returns∣∣∣0t〉 |ψ〉

Therefore, as eigenvectors of U for an orthonormal basis and |U〉, our algorithm computes R|U⟩
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REFLECTION OVER |u⟩: COST

Reflection over |U〉:

Given a quantum state
∣∣0t〉 |ψ〉 where |ψ〉 is an eigenvector of W(P) with eigenvalue e2iπθj

1. Apply UPE for W(P) with precision n = − log2
1
2π ·

√
δ

2. Apply on the first n registers Zδ : |x〉 =

{
|x〉 if |x| < 1

2π ·
√
δ

− |x〉 if |x| > 1
2π ·

√
δ

3. Apply U−1
PE

The cost of UPE is O
(
2t · Cost (W(P))

)
with

t = n +

⌈
log

(
2 +

1
2ε

)⌉
where n = − log2

1
2π

·
√
δ

Here 1− ε is the probability after measuring that UPE computes an approximation over the first n

bits. We choose ε as a constant small enough. The whole cost of this algorithm is

O
( 1

√
δ
· Cost (W(P))

)

Be careful:

In our analysis we supposed that UPE
∣∣0t〉 |ψ〉 = |x〉 |u〉 where x ∈ {0, 1}t gives the first n bits

of θj . It is not true but we can show that we have a sufficiently well approximation of R|U⟩
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RUNNING TIME OF THE QUANTUM WALK

We need to provide an implementation of W(P)

A = Span
{
|j〉

∣∣ψj〉}
B = Span

{ ∣∣ψj〉 |j〉}
W(P) def

= RBRA where RB, RA are reflections over A and B

(1) |j〉 |0〉 7→ |j〉
∣∣ψj〉 , (2) |0〉 |j〉 7→

∣∣ψj〉 |j〉
Both operations are the quantum versions of the classical operation “starting from j ∈ V walks

uniformly to one of its neighbours” which is run with our notation in time U
(
see Slide 42

)

−→ Operations (1) and (2) can be implemented in quantum time O(U)

▶ Implementing RA
(
resp. RB

)
: use the inverse of (1)

(
resp. (2)

)
put a − in front if the

second
(
resp. first

)
register and apply (1)

(
resp. (2)

)

W(P) can be run in quantum time O(U)
(
via the quantization of four steps of random walks

)
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QUANTUM WALK: RECAP

▶ Setup cost S: we need to build |U〉 to feed him to the phase estimation. Notice that during

the phase estimation UPE we do not modify |U〉. Therefore we can build it once even if we

apply many times UPE . It basically costs to classically setup on vertex and to call this

procedure quantumly in superposition

▶ We repeat O
(

1√
ε

)
times reflections R|B⟩ and R|U⟩

▶ Check-up cost C: we run R|B⟩ in time O(C) where C is the running time of f(x) = 0 or 1
(
time

to classically check if a solution is marked
)

▶ Update cost U: we run R|U⟩ in time O
(

1√
δ
· U

)
where U is the running time to classically

update the Markov chain
(
walking uniformly from one vertex to one of its neighbours

)

Quantum walk running time:

S +
1

√
ε

(
C +

1
√
δ
· U

)
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COMPARISON OF ALL STRATEGIES

▶ Setup cost S

▶ Check-up cost C

▶ Update cost U

Standard Search Random Walk Grover Algorithm Quantum Random Walk

1
ε · (S + C) S + 1

ε ·
(
C + 1

δ · U
)

1√
ε
· (C + S) S + 1√

ε
·
(
C + 1√

δ
· U

)
Table 2: Cost of classical and quantum approaches

Remark:

In Grover’s algorithm we run R|U⟩ by using the standard technique, i.e., the one in which we need

to build |U〉 which has a cost S
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APPLICATION: FINDING COLLISION



OUR COLLISION PROBLEM

Golden collision finding:

• Input: a function f : {0, 1}n −→ {0, 1}n with the promise that it exists a unique pair (x0, x1)

such that f(x0) = f(x1) and x0 6= x1

• Output: (x0, x1)

Our goal:

We want to solve this problem by minimizing the number of queries to Uf : |x〉 |y〉 7→ |x〉 |y + f(x)〉

−→ We can solve this problem via Grover’s algorithm over pairs with O
(√

22n
)

= O
(
2n
)
queries

to Uf

Can we do with less queries?

−→ Yes with O
(
22n/3

)
queries! By using the quantum random walk approach. . .
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OUR APPROACH: FINDING A MARKED VERTEX IN A PARTICULAR GRAPH

We first index {0, 1}n as {y1, . . . , y2n}

Our considered graph: for some parameter r
▶ Vertices V: given R ⊆ {0, . . . , 2n} we define

vR
def
=

(
vR(in), vR(out

)
where vR(in)

def
= (yi)i∈R and vR(out)

def
= (f(yi))i∈R

Then,
V def
=

{
vR : ♯R = r

}
▶ Edges E: we have vR ∼ vR′ if R and R′ only differs by one element, i.e., vR(in) and vR(in) differ

by one element

▶ Marked vertices: vR is marked if two elements in vR(out) are equal, i.e., vR(in) contains (x0, x1)

−→ This graph is known as the Johnson graph J(2n, r)!

Remark:

If R is too large
(
think 2n

)
then just the cost to build one vertex is prohibitive
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JOHNSON GRAPH

{1, 2}

{1, 3}

{2, 3} {3, 4}

{2, 4}

{1, 4}

Table 3: Johnson graph J(4, 2)

Johnson graph property:

J(2n, r) has
(2n
r
)
vertices, it is r

(
2n − r

)
regular and its spectral gap is given by

δ =
2n

r(2n − r)

−→ In particular, δ ≈ 1
r when r � 2n
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QUANTUM RANDOM WALK TO FIND COLLISIONS

Our considered graph: for some parameter r
▶ Vertices V: given R ⊆ {0, . . . , 2n} we define

vS
def
=

(
vR(in), vR(out

)
where vR(in)

def
= (yi)i∈R and vR(out)

def
= (f(yi))i∈R

Then,
V def
=

{
vR : ♯R = r

}
▶ Edges E: we have vR ∼ vR′ if R and R′ only differs by one element, i.e., vR(in) and vR(in) differ

by one element

▶ Marked vertices: vR is marked if two elements in vR(out) are equal, i.e., vR(in) contains (x0, x1)

−→ It is the graph J(2n, r)

▶ Setup S: to setup a vertex requires r queries to f and to build a superposition r queries to Uf

▶ Update U: two queries to f, therefore two queries to Uf

▶ Check-up C: zero query to f as all information is in vS(out)

▶ The proportion of marked vertices is ε = r(r−1)
2n(2n−1)

≈ r2
22n
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QUANTUM QUERY COST TO SOLVE GOLDEN COLLISION PROBLEM

▶ Setup S: to setup a vertex requires r queries to f and to build a superposition r queries to Uf

▶ Update U: two queries to f, therefore two queries to Uf

▶ Check-up C: zero query to f as all information is in vS(out)

▶ The proportion of marked vertices is ε = r(r−1)
2n(2n−1)

≈ r2
22n

Final cost to find the collision in terms of queries to f:

S +
1

√
ε
·
(
C +

1
√
δ
· U

)
= r +

√
2n

r
·
√
r = r +

2n
√
r

−→ It is minimized to r = 22n/3 and is equal to 22n/3
(
claiming query complexity

)
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EXERCISE SESSION


	You Said Random Walks?
	Markov Chains
	Random Walks on Graphs
	Quantum Random Walks
	Application: finding collision
	Exercise Session

