
LECTURE 3
AN INTRODUCTION TO QUANTUM INFORMATION
THEORY
Advanced Quantum Information and Computing

Thomas Debris-Alazard

Inria, École Polytechnique



INFORMATION THEORY GOAL

▶ Source coding
(
compression

)
: remove redundancy/compress as much as possible

An example: compress the language

In French, E is frequent, Z is not

−→ E is compressed with fewer “symbols” than Z

▶ Channel coding: add redundancy to recover messages in the presence of noise

An example: spell your name over the phone, send first names!

M like Mike, O like Oscar, R like Romeo, A like Alpha, I like India and N like November

M: message ; Mike: encoding

Source and Channel coding are “dual”
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INFORMATION THEORY: A COMMON DENOMINATOR

Information Theory answers the following two
(
fundamental

)
questions:

▶ Ultimate data compression? Entropy

▶ Ultimate transmission rate of communication? Channel capacity

−→ Information Theory is much more!

A common denominator: typical sequences/realisations!

Anecdote:

At the police station, is it easier to answer the following questions: what were you doing

three Monday ago? or what were you doing a typical Monday?

−→ Typical realisations: simple mean to answer hard questions!
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THE OBJECTIVE OF THE DAY

To generalize information theory to the quantum case!

−→ Typical sequences were at the core of classical information theory

▶ But how are defined typical sequences in the classical case and how can we use them to

reach the ultimate compression rate?

▶ Does this concept admit a quantum analogue? Could we also use it to “compress” quantum

states?
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COURSE OUTLINE

1. Typical Sequences

2. Shannon’s Compression Theorem

3. Von Neumann Entropy

4. Quantum Typical Subspace Theorem

5. Schumacher’s Compression Theorem
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TYPICAL SEQUENCES



DISCRETE RANDOM VARIABLES

▶ An alphabet: X discrete

▶ An event: E ⊆ X

▶ Random variable: X : Ω → X

▶ Probability law / Associated distribution:
(
P(X = x)

)
x∈X

Abuse of notation:

P(X = x) = p(x)

Remark: the probability law uniquely determines the random variable

Whatever is the event E ,
P(X ∈ E) =

∑
x∈E

p(x)
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AN IMPORTANT CLASS OF PROCESSES: I.I.D. RANDOM VARIABLES

Important notation: i.i.d.

X1, . . . , Xn are said Independent and Identically Distributed
(
i.d.d.

)
when they are

1. independent, ∀I ⊆ {1, . . . , n}, ∀(xi)i∈I , P(Xi = xi, i ∈ I) =
∏
i∈I

P(Xi = xi)

2. identically distributed: ∀i, j, x, P(Xi = x) = P(Xj = x)

When X1, . . . , Xn is i.i.d. and the Xi ’s are distributed according to X

−→ We use the notation X⊗n to denote (X1, . . . , Xn)

Weak law of large number:

Given i.i.d. random variables X⊗n = (X1, . . . , Xn) and ε > 0,

P
(∣∣∣∣∣ 1n

n∑
i=1

Xi − E(X)
∣∣∣∣∣ ≤ ε

)
−−−−−→
n→+∞

1
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OUR GOAL

Source of information:

We will be given X1, . . . , Xn : Ω −→ X , i.e., n random variables over the same space X

▶ Most of the times we will consider X1, . . . , Xn as i.i.d
(
to simplify our presentation

)
but our

results stand for more general sources

▶ n is a parameter, larger it is, more accurate will be our results but (X1, . . . , Xn) can be think

as one random variable Y : Ω −→ X n

Our goal:

To understand how (X1, . . . , Xn) ∈ X n behaves

Most of the time (X1, . . . , Xn) has a “deterministic behaviour”

−→ It “always gives” a typical sequence!

8



TYPICAL OR MOST PROBABLE

(X1, . . . , Xn) ∈ {0, 1}n be i.i.d. with P(Xi = 1) = p < 1/2

What is the most probable sequence/realisation?

0 . . . 0 appears with probability: (1− p)n

−→ Most probable event!

But do you expect this realisation? No!

Hamming weight:

Given x = (x1 . . . xn) ∈ {0, 1}n , its Hamming weight is defined as

|x| def= ♯ {i : xi 6= 0}

Chernoff’s bound:

∀ε > 0, P
(∣∣∣∣∣

n∑
i=1

Xi − np
∣∣∣∣∣ ≤ εn

)
≥ 1− 2e−2ε2n

Typical sequence/realisation: x such that |x| ≈ np, which happens with probability ≈ 1

−→ Our random vector (X1, . . . , Xn) “always” gives a vector with Hamming weight ≈ np
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ENTROPY AND TYPICAL SEQUENCES

Given a classical source of information (X1, . . . , Xn) ∈ X n

Your new motto: focus on typical sequences!

X n

T

T def
= typical sequences

P ((X1, . . . , Xn) ∈ T) ≈ 1

Crucial question:

How many typical sequences are there?

Entropy (informal definition):

Entropy (X1, . . . , Xn) def
= log2 ♯T ⇐⇒ ♯T = 2Entropy(X1,...,Xn)
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WHERE THE ENTROPY IS COMING FROM

Given a classical source of information (X1, . . . , Xn) ∈ X n

log2 P
(
(X1, . . . , Xn)

)
≈ E

(
log2 P

(
(X1, . . . , Xn)

)
=

∑
(x1,...,xn)∈Xn

p(x1, . . . , xn) log2 p(x1, . . . , xn)
(
transfer formula

)
def
= −H (X1, . . . , Xn)

(
H entropy function

)

Conclusion (informal):

P
(
(X1, . . . , Xn) = (x1, . . . , xn)

)
is ≈ equal to 2−H(x1,...,xn)

(
for typical sequences

)
or it is ≈ equal to 0

(
for non-typical sequences

)
−→ There are 2H(x1,...,xn) “typical sequences”

(
by using that

∑
x1,...,xn

p(x1, . . . , xn) = 1
)
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ENTROPY FORMAL DEFINITION

Entropy:

Given Y : Ω → Y , its entropy is defined as

H(Y) def
=
∑
y∈Y

p(y) log2
1

p(y)

(
= E (− log2 P(Y))

)
with the convention that 0× log2

1
0 = 0

Some example:

Given Y being uniform over Y ,
H(Y) =

∑
y∈Y

1
♯Y

log2 ♯Y = log2 ♯Y

Is this computation consistent with our discussion so far?

−→ Yes! The above computation shows that we expect 2log2 ♯Y = ♯Y typical sequences when

being uniform over Y

For a uniform random variable Y all sequences are typical, no subset is preferred to another(
given Z ⊆ Y , P (Y ∈ Z) = ♯Z

♯Y � 1
)
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ENTROPY OF INDEPENDENT IDENTICALLY DISTRIBUTED SOURCES

Given an i.i.d source (X1, . . . , Xn) where the Xi ’s are distributed according to X

H (X1, . . . , Xn) = −
∑

(x1,...,xn)
p(x1, . . . , xn) log2 p(x1, . . . , xn)

= −
∑

(x1,...,xn)
p(x1) · · · p(xn) log2 p(x1) · · · p(xn)

(
By indep. assumption

)
= −

∑
(x1,...,xn)

p(x1) · · · p(xn)
(
log2 (p(x1)) + · · · + log2 (p(xn))

)

= −
n∑
i=1

∑
xi

p(xi) log2 p(xi)
∑

(x1,...,xi−1,xi+1,...,xn)
p(x1) · · · p(xi−1) · p(xi+1) · · · p(xn)

= −
n∑
i=1

p(xi) log2 p(xi)
(
Probabilities sum to 1

)

=
n∑
i=1

H(Xi)

= nH(X)
(
The Xi ’s are equi-distributed as X

)
Conclusion:

Given an i.i.d source X⊗n = (X1, . . . , Xn):

H(X1, . . . , Xn) = nH(X) 13



I.I.D SOURCES AND TYPICAL SEQUENCES

We expect P (X1 = x1, . . . , Xn = xn) to be equal to 2−H(X1,...,Xn) or 0

−→ Typical sequences (x1, . . . , xn) are those for which P (X1 = x1, . . . , Xn = xn) ≈ 2−H(X1,...,Xn)

Typical set of i.i.d sources

Given ε > 0, n and an i.i.d. source X⊗n = (X1, . . . , Xn), its typical set is defined as:

T(n)ε
def
=

{
x ∈ X n :

∣∣∣∣ 1n log2
1

P (X⊗n = x)
− H(X)

∣∣∣∣ < ε

}
=
{
x ∈ X n : 2−n(H(X)+ε)

< P
(
X⊗n = x

)
< 2−n(H(X)−ε)

}
 

(
in the above definition we implicitly used that H

(
X⊗n) = nH(X)

)
Theorem:

Given an i.i.d. source X⊗n = (X1, . . . , Xn):

1. P
(
(Xi)1≤i≤n ∈ T(n)ε

)
≥ 1− ε for n being sufficiently large

2. ♯T(n)ε ≤ 2n(H(X)+ε)

3. ♯T(n)ε ≥ (1− ε)2n(H(X)−ε) for n being sufficiently large
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PROOF

Proof:

1. First, by independence assumption and the fact that log maps products into sums,

− log2 P (X1, . . . , Xn) = −
n∑
i=1

log2 P (Xi)

Notice now by i.i.d. assumption, the − log2 P (Xi) are i.i.d. with expectation H(X)
(
transfer

formula
)
. Therefore, by the weak law of large number,

P
(− log2 P(X1, . . . , Xn)

n
∈ [H(X) − ε,H(X) + ε]

)
−−−−−→
n→+∞

1

But, by definition,

P
(− log2 P(X1, . . . , Xn)

n
∈ [H(X) − ε,H(X) + ε]

)
= P
(
(Xi)1≤i≤n ∈ T(n)ε

)

2. We have the following computation,

1 =
∑
x
p(x) ≥

∑
x∈T(n)ε

p(x) ≥
∑
x∈T(n)ε

2−n(H(X)+ε)

where we used the definition of typical sequences. It concludes the proof

3. Same reasoning but starting from 1− ε ≤ P
(
(Xi)1≤i≤n ∈ T(n)ε

)
instead of 1 =

∑
x p(x)
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TYPICAL SEQUENCES AND MORE GENERAL RANDOM VARIABLES

Above we defined the typical set T(n)ε and we have shown that P
(
(Xi)1≤i≤n ∈ T(n)ε

)
≈ 1

(
for n large enough

)
−→ We crucially rely on the independence and equi-distributed assumption!

Do the concept of typical set also hold for more general random variables?

−→ Yes and it is an extremely general concept(
not an easy task to find random variables for which there are no typical sets

)

16



IF YOU ARE INTERESTED

▶ See the information theory course

▶ The “bible” of information theory: Elements of Information Theory, T.M. Cover, J. A. Thomas

▶ A very nice book with a computer scientist approach: Information Theory, Inference, and

Learning Algorithms, D. J. C. MacKay.
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SHANNON’S COMPRESSION THEOREM



OUR GOAL

Given a classical source of information (X1, . . . , Xn) ∈ X n

What is the minimum number of bits required to represent outputs of this source of information?(
optimal compression

)

−→ It asks a priori n · log2 ♯X bits. . .
(
♯X n = 2n log2 ♯X

)

We can do much better by allowing ourselves an exponentially small probability of failure!

(
some outputs (x1, . . . , xn) are not compressed

)

19



SHANNON’S IDEA

Given an i.i.d. source X⊗n = (X1, . . . , Xn)

X n

T(n)ε typical sequences

P
(
X⊗n ∈ T(n)ε

)
≈ 1

Shannon’s compression algorithm

1. Describe elements of T(n)ε with bits: it requires ≈ nH(X) bits as ♯T(n)ε ≈ 2nH(X)

2. Given a realisation x: if x ∈ T(n)ε describe it with bits, otherwise output fail ⊥

The compression works with probability ≈ 1 and to decompress we just inverse the bit description

of elements in T(n)ε

Conclusion:

We can compress X⊗n with n · H(X) � n · log2 ♯X bits with a success probability ≈ 1

Furthermore, if we compress with < nH(X) bits, then our failure probability will tend to 1 20



SHANNON’S COMPRESSION THEOREM

A non-ambiguous coding is a mapping φ : X n −→ {0, 1}+

Given a source of information (X1, . . . , Xn), the average length of φ is defined as

L(φ) def
= 1

n
∑

(x1,...,xn)∈Xn
p(x1, . . . , xn)ℓ (φ(x1, . . . , xn)) where ℓ(·) length in number of bits

Shannon’s compression theorem:

Given an i.i.d. source X⊗n = (X1, . . . , Xn):

1. For all ε and n large enough, It exists a non-ambiguous coding φ such that L(φ) ≤ H(X) + ε

2. All non-ambiguous coding verifies L(φ) ≥ H(X)

Exercise:

Given X⊗n ∈ X n , show that H
(
X⊗n) cannot be larger than n · log2 ♯X
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BE CAREFUL

Entropy is a fundamental concept coming from the size of the typical set

−→ Entropy quantifies how many bits are required to write non-ambiguously realisations of

random variables
(
Shannon’s compression theorem

)

Entropy is not some vague concept linked to some property of “Nature”. . .
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OUR GOAL

We want to generalize this discussion to the case of a quantum source

 

−→ A classical source outputs j ∈ X
(
discrete set

)
with some probability pj ,

a quantum source will output some quantum state
∣∣ψj〉 ∈ H

(
Hilbert space

)
with probability pj

Our approach to led the foundations of quantum information theory:

To investigate the question of compressing a quantum source to highlight what would be

a “good” definition of the quantum entropy
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VON NEUMANN ENTROPY



I.I.D QUANTUM SOURCE

An i.i.d. quantum source is is simply repeating n times independently the drawing of a quantum

state according to some fixed probability distribution

i.i.d quantum source:

It is defined as ρ⊗n where ρ is a density operator over some Hilbert spaceH

−→ Given an i.i.d. quantum source, the underlying description of ρ is known,

i.e., the knowledge of quantum states
∣∣ψj〉 ∈ H with associated probabilities pj(

ρ =
∑

j pj
∣∣ψj〉〈ψj∣∣ )
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OUR GOAL: COMPRESSION

In order to introduce a meaningful description of a “quantum entropy” we need to understand the

minimum number of qubits to represent ρ⊗n

Trivial approach:

For a density operator ρ⊗n living in
(
C2)⊗n which has dimension 2n

−→ it requires n qubits

Could we use less qubits?
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COMPRESSION: FIRST EXAMPLE (I)

Q. Source:
|0〉 with probability 1− p

|1〉 with probability p

Given a quantum i.i.d source ρ⊗n def
=
(
(1− p) |0〉〈0| + p |1〉〈1|

)⊗n

Can we use less than n qubits to represent this quantum source?

Fundamental remark: Given x ∈ {0, 1}n , and X⊗n where
{
P(X = 0) = 1− p
P(X = 1) = p

,

tr
(
|x〉〈x| ρ⊗n

)
= 〈x| ρ⊗n |x〉 = P

(
X⊗n = x

)
= p|x|(1− p)n−|x|

But X⊗n concentrates over words of Hamming weight ≈ np
(
see Chernoff’s bound

)
ρ
⊗n ≈

∑
x∈{0,1}n
|x|≈np

p|x|(1− p)n−|x| |x〉〈x|

Conclusion:

ρ⊗n concentrates over the span of |x〉 where x ∈ {0, 1}n are typical sequences for X⊗n!

There are nH(X) typical sequences: we can approximate
(
very well

)
ρ⊗n with n · H(X) � n qubits
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COMPRESSION: FIRST EXAMPLE (II)

Given the quantum i.i.d source ρ⊗n def
=
(
(1− p) |0〉〈0| + p |1〉〈1|

)⊗n

−→ We can use n · H(X) qubits to represent this quantum source!

This is not surprising: this quantum source can be seen as the classical source “1” with

probability p and “0” with probability 1− p

We can perfectly distinguish outputs by the source using measurement P0 = |0〉〈0| and P1 = |1〉〈1|

But what happens if the quantum states of the source are not orthogonal?
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COMPRESSION: SECOND EXAMPLE (I)

Given a quantum i.i.d source ρ⊗n def
=
(
(1− p) |0〉〈0| + p |+〉〈+|

)⊗n

Fundamental remark: ρ⊗n will consist of ≈ n(1− p) copies of |0〉 and np copies of |+〉
(
by using

law of large numbers
)
,

|0〉⊗n(1−p) |+〉⊗np = |0〉⊗n(1−p)
( |0〉 + |1〉

√
2

)⊗n(1−p)

But
(

|0⟩+|1⟩√
2

)⊗n(1−p)
is itself≈ |0〉

n(1−p)
2 |1〉

n(1−p)
2

(
law of large number once again

)
. Therefore,

|0〉⊗n(1−p) |+〉⊗np ≈ |0〉⊗
n(1+p)

2 |1〉⊗
n(1−p)

2

Conclusion:

ρ⊗n concentrates over the span of the |x〉’s with x ∈ {0, 1}n and |x| ≈ n(1−p)
2
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COMPRESSION: SECOND EXAMPLE (II)

For p ≥ 1
3 we can compress more efficiently the source

(
(1− p) |0〉〈0| + p |+〉〈+|

)⊗n

than the “classical source”
(
(1− p) |0〉〈0| + p |1〉〈1|

)⊗n

0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0
 

H(p)
H((1− p)/2)

Intuitively, we reach a better compression rate with |0〉 and |+〉 as they share a component in |0〉(
the condition p ≤ 1/3 is an artefact of our reasoning

)
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WHAT WE IMPLICITLY USED

Fundamental remark:

In the case of the compression of
(
(1− p) |0〉〈0|+ p |1〉〈1|

)⊗n
to a number of qubits given by the

classical entropy we used the fact that |0〉 and |1〉 are orthogonal quantum states

Each output of the source can be interpreted as “0” or ”1” appearing with probability 1− p and p(
via a non-destructive measurement

)

−→ If we could reach a smaller compression rate for these kind of source it will contradict

Shannon’s theorem stating that we cannot
(
reliably

)
compress with fewer bits than the entropy!

Problem
(
as highlighted by the second example

)
:

It would be far too restrictive to assume that the i.i.d. quantum source only outputs orthogonal

quantum states
(
we would reduce to the classical case

)
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OUR PROBLEM

Problem
(
as highlighted by the second example

)
:

It would be far too restrictive to assume that the i.i.d. quantum source only outputs orthogonal

quantum states
(
we would reduce to the classical case

)

Our diabolic remark:

Any density operator ρ is Hermitian. By the spectral decomposition theorem, it exists an

orthonormal basis
∣∣ψj〉 such that

ρ =
∑
j

pj
∣∣ψj〉〈ψj∣∣

But ρ is also positive and has trace one! Therefore the pj form a probability distribution

−→ We can define the quantum entropy of ρ as the entropy of the “classical source”
∣∣ψj〉

with probability pj
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VON NEUMANN ENTROPY

It seems that our definition of quantum entropy is basis dependent. . . but notice:

1. Our definition is nothing else than the trace of −ρ log2 ρ when decomposing ρ

in a spectral basis

2. But the trace is basis independent!

Von Neumann entropy:

Given a density operator ρ, its Von Neumann entropy is defined as:

S(ρ) def
= − tr (ρ log2 ρ)

33



SOME PROPERTIES

Proposition: basis properties of von Neumann entropy

1. The entropy is non-negative. The entropy is zero if and only if the state is pure

2. In a d-dimensional Hilbert space the entropy is at most log2 d. The entropy is equal to log2 d

if and only if the system is in the completely mixed state Id/d

3. S
(
ρ⊗n) = nS(ρ)

4. Suppose a composite system AB is in a pure state. Then S(A) = S(B)

5. Suppose that pi are probabilities, and the states ρi have support on orthogonal subspaces.

Then,
S
(∑

i

piρi

)
= H ((pi)i) +

∑
i

piS(ρi)

6. Joint entropy: suppose pi are probabilities, |i〉 are orthogonal states for a system A, and ρi is

any set of density operators for another system, B. Then

S
(∑

i

pi |i〉〈i| ⊗ ρi

)
= H ((pi)i) +

∑
i

piS(ρi)

Proof:

See Exercise Session
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BE CAREFUL

Some properties of the Shannon entropy fail to hold for the von Neumann entropy

▶ We always have H(X) ≤ H (X, Y) as we always need more bits to compress (X, Y) than X

▶ For instance given ρ = |00⟩+|11⟩√
2

, its von Neumann entropy is 0, while its von Neumann

entropy over its first and second qubits is 1
(
tr1 ρ = tr2 ρ = Id/2

)

35



QUANTUM TYPICAL SUBSPACE



OUR GOAL

To compress X⊗n ∈ X⊗n in the classical case: we use two facts

▶ X⊗n “always” lives in a smaller set than X n : the typical set which has size 2H(X
⊗n)

▶ There is no smaller S than the typical set such that P(X⊗n ∈ S) ≈ 1

Quantum case:

We will use the same reasoning instead that this times ρ⊗n concentrates all its mass in a

subspace, i.e., projecting ρ⊗n over some subspace
(
typical subspace

)
does not change it at much
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PROOF IDEA

Given a quantum i.i.d. source ρ⊗n over the Hilbert space
(
C2)⊗n

(
C2)⊗n

QT(n)ε quantum typical subspace

Π
QT(n)ε

ρ
⊗n ≈ ρ

⊗n where Π
QT(n)ε

orthogonal projector onto QT(n)ε

−→ We can then write ≈ non-ambiguously ρ⊗n with dimQT(n)ε ≈ S
(
ρ⊗n)� n qubits!

But how to define the quantum typical subspace QT(n)ε ?

38



QUANTUM TYPICAL SUBSPACE

The quantum typical subspace is defined relatively to the spectral decomposition of the density

operator

Quantum typical subspace of quantum i.i.d sources:

Let n and a quantum i.i.d. source ρ⊗n . We write ρ as

ρ =
∑
j∈J

p
(∣∣ψj〉) ∣∣ψj〉〈ψj∣∣

where the
{∣∣ψj〉 : j ∈ J

}
are orthogonal quantum states and p(·) a distribution

Given ε > 0, the quantum typical subspace associated to ρ is defined as:

QT(n)ε
def
= Span

( ∣∣∣φ(1)
〉
⊗ · · · ⊗

∣∣∣φ(n)
〉

∈
{ ∣∣ψj〉 : j ∈ J

}⊗n
:∣∣∣∣∣ 1n log2
1

p
(∣∣φ(1)

〉)
· · · p

(∣∣φ(n)
〉) − S(ρ)

∣∣∣∣∣ < ε
)

 

Remark:

In the above definition, p
(∣∣∣φ(1)

〉)
· · · p

(∣∣∣φ(n)
〉)

is nothing else than the probability that the

quantum source outputs
∣∣∣φ(1)

〉
, . . . ,

∣∣∣φ(n)
〉
after n uses
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PROJECTOR ONTO THE QUANTUM TYPICAL SUBSET

▶ Quantum source ρ⊗n where,

ρ =
∑

j∈J p
(∣∣ψj〉) ∣∣ψj〉〈ψj∣∣ where {∣∣ψj〉 : j ∈ J

}
is a set of orthogonal quant. states

▶ Associated typical subspace QT(n)ε where,

QT(n)ε = Span
( ∣∣∣φ(1)

〉
⊗ · · · ⊗

∣∣∣φ(n)
〉

∈
{ ∣∣ψj〉 : j ∈ J

}⊗n
:∣∣∣∣∣ 1n log2

1
p
(∣∣φ(1)

〉)
· · · p

(∣∣φ(n)
〉) − S(ρ)

∣∣∣∣∣ < ε
)

Orthogonal projector onto QT(n)ε :

Π
QT(n)ε

=
∑

∣∣∣φ(1)〉,...,∣∣∣φ(n)〉∈{∣∣∣ψj〉}∣∣∣φ(1)〉⊗···⊗
∣∣∣φ(n)〉∈QT(n)ε

∣∣∣φ(1)
〉〈
φ

(1)
∣∣∣⊗ · · · ⊗

∣∣∣φ(n)
〉〈
φ

(n)
∣∣∣
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TYPICAL SUBSPACE THEOREM

Theorem:

Given a quantum i.i.d. source ρ⊗n , for n being sufficiently large,

1. tr

(
Π
QT(n)ε

ρ⊗n
)

≥ 1− ε

2. (1− ε)2n(S(ρ)−ε) ≤ dimQT(n)ε = tr

(
Π
QT(n)ε

)
≤ 2n(S(ρ)+ε)

3. Let Π be a projector onto any subspace ofH⊗n with dimension ≤ 2nR where R < S(ρ) − 2ε

is fixed. Then,
tr
(
Πρ⊗n

)
≤ ε + 2−εn

(
Item 3 is a negative result, it will enable to show that we cannot write ρ⊗n with < nS(ρ) qubits

)

Exercise:

Show that tr
(
ΠFρ

⊗n) ≥ 1− ε when F is a subspace containing QT(n)ε

41



LEMMA 1

Lemma 1:

Let Π be a projector over some space of dimension N and A be an Hermitian operator with

eigenvalues ≤ λ. Then,
tr (ΠA) ≤ N · λ

Proof:

Let (|xi〉)i be a spectral basis of A. We have,

tr (ΠA) =
∑
i

〈xi|ΠA |xi〉 =
∑
i

λi 〈xi|Π |xi〉 ≤ λ ·
∑
i

〈xi|Π |xi〉 = λ · tr (Π)

where in the first inequality we used our assumption over A and the fact that Π is a positive

operator. To conclude the proof, all we have to do is use the fact that the trace of a projective

operator is nothing other than the dimension of the space onto which the projection is made

42



LEMMA 2

Lemma 2:

Let Π be a projector and A be a positive operator. We have

tr (ΠA) ≤ tr (A)

Proof:

Let U
⊥
⊕ V be the space decomposition according to the projector Π. Let (|ui〉)i and (|vi〉)i

be an orthonormal basis according to this decomposition. We have

tr (ΠA) =
∑
i

〈ui|ΠA |ui〉 =
∑
i

〈ui| A |ui〉

where we used that Π is Hermitian and Π |ui〉 = |ui〉 while Π |vi〉 = 0. Notice now that〈
vj
∣∣ A ∣∣vj〉 ≥ 0 as A is supposed to be positive. We deduce that,

tr (ΠA) ≤
∑
i

〈ui| A |ui〉 +
∑
j

〈
vj
∣∣ A ∣∣vj〉 = tr (A)

where in the last equality we used that (|ui〉)i , (
∣∣vj〉)j is an orthonormal basis
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PROOF OF TYPICAL SUBSPACE THEOREM(I)

Proof:

1,2. It directly follows from Theorem about the typical set
(
see Slide 14

)
.

Indeed, by decomposing ρ as
∑

j p(
∣∣ψj〉) ∣∣ψj〉 we interpret this quantum i.i.d. source as

a classical source outputting “j” with probability p(
∣∣ψj〉).

3. By linearity of the trace,

tr
(
Πρ⊗n

)
= tr

(
Πρ⊗nΠ

QT(n)ε

)
+ tr

(
Πρ⊗n

(
Id− Π

QT(n)ε

))

Let us look at each component separately. By definition, eigenvectors of ρ are the
∣∣ψj〉

and therefore, eigenvectors of ρ⊗n are given by the
∣∣∣ψj1〉⊗ · · · ⊗

∣∣ψjn〉. Notice now that the
only eigenvectors of ρ⊗nΠ

QT(n)ε
belong to QT(n)ε . But this subspace if spanned by eigenvectors

of ρ⊗ with by definition eigenvalues ≤ 2−n(S(ρ)−ε) . Furthermore, ρ⊗nΠ
QT(n)ε

is Hermitian

as both operators are Hermitian and commute. Therefore, by the using previous Lemma 1:

tr

(
Πρ⊗nΠ

QT(n)ε

)
≤ 2nR · 2−n(S(ρ)−ε) ≤ 2−εn
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PROOF OF TYPICAL SUBSPACE THEOREM(II)

Proof:
3.

tr
(
Πρ⊗n

)
≤ 2−εn + tr

(
Πρ⊗n

(
Id− Π

QT(n)ε

))

Notice that Π is a projective operator. Let us show that ρ⊗n
(
Id− Π

QT(n)ε

)
is a positive

operator. First, it is clearly an Hermitian operator. Let |ui〉 be a basis according to the

decomposition as space onto which Π
QT(n)ε

projects. We have Π
QT(n)ε

|ui〉 = |ui〉 or 0. We

deduce that 〈ui|
(
ρ⊗n

(
Id− Π

QT(n)ε

))
|ui〉 is either 0 or 〈ui| ρ⊗ |ui〉 ≥ 0.

We deduce according to previous Lemma 2 that,

tr

(
Πρ⊗n

(
Id− Π

QT(n)ε

))
≤ tr

(
ρ
⊗n
(
Id− Π

QT(n)ε

))
= tr

(
ρ
⊗n
)
− tr

(
ρ
⊗nΠ

(n)
QTε

)
= 1− tr

(
ρ
⊗nΠ

(n)
QTε

)
≤ 1− (1− ε)

= ε

which concludes the proof
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COMPRESSION: BE CAREFUL

We are now almost ready to show that von Neumann entropy is the ultimate quantum data

compression rate!

Proof idea:

Project ρ⊗n onto the quantum typical subspace

−→ If the source emits eigenstates of ρ, i.e., orthogonal quantum states, then the projection

almost does not change ρ and we can decompress
(
just do nothing

)

Be careful:

Eigenstates of ρ are not necessarily states emitted by the source, and we have no guarantee that

any of them actually will be projected within orthogonal QT(n)ε and the projection can distort it. We

need to compute carefully how much it is distorted
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SCHUMACHER’S COMPRESSION THEOREM



OUR GOALS

In all this section we suppose that our i.i.d. quantum source ρ⊗n is

ρ =
d∑
j=1

qj
∣∣xj〉〈xj∣∣ (the source emits ∣∣xj〉 with probability qj)

where the
∣∣xj〉 are not necessarily orthogonal and belong toH with d def

= dimH(
dimH⊗n = dn = 2n log2 d

)

Our goals:
▶ To describe some process enabling to store ρ with nS(ρ) � n log2 d qubits such that, after

the storing phase we can reliably recover the quantum state emitted by the source

▶ Showing that we cannot reliably recover the quantum state emitted by the source if we use

< nS(ρ) qubits during the storing phase 

Remark:

Don’t confuse this decomposition of ρ with its spectral decomposition involving its spectral

decomposition, i.e., orthogonal quantum states
∣∣ψj〉 with associated distribution p (∣∣ψj〉)

48



IMPORTANT NOTATION

The quantum i.i.d source emits
∣∣xj〉 ∈ H with probability qj , where d

def
= dimH, i.e.,

ρ =
d∑
j=1

qj
∣∣xj〉〈xj∣∣

Notation:

If after n uses the source emits
∣∣∣xj1〉⊗ · · · ⊗

∣∣xjn〉, then for j = (j1, . . . , jn) ∈ [1, d]n ,

|j〉 def
=
∣∣∣xj1〉⊗ · · · ⊗

∣∣xjn〉
Furthermore, as the source is i.i.d. it emits |j〉 with probability

qj
def
= qj1 · · · qjn
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COMPRESSION SCHEME

Given our quantum i.i.d. source ρ⊗n living in the Hilbert spaceH⊗n with d def
= dimH

(
dimH⊗n = dn = 2n log2 d

)

Compression scheme:

A compression scheme with rate R ∈ (0, 1) is defined as follows where U is some unitary,

ρ⊗n

H⊗n

U
ρU(

C2)⊗nR ⊗
(
C2)⊗(n(log2(d)−R))

discard 2nd comp.
ρCp(
C2)nR

adding a 2nd comp.
ρCp ⊗ σ(

C2)⊗nR ⊗
(
C2)⊗(n(log2(d)−R))

U†
ρ′

▶ Compression phase: from ρ to ρCp which uses only nR qubits

▶ Decompression phase: from ρCp to ρ′

But how to measure the reliability of our compression scheme?
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RELIABILITY OF THE SCHEME

Notation:

wj denotes the quantum state at the end of the process when |j〉 is emitted

At the end of the process we measure according to the
{
|j〉〈j| : j ∈ [1, d]n

}
, Id−

∑
j |j〉〈j|

−→ Supposing that |j〉 was emitted, we recover it with probability

tr
(
|j〉〈j|wj

)

psucc =
∑

j∈[1,d]n
qj tr

(
|j〉〈j|wj

)

−→ Probability of being successful
(
via the law of total numbers

)

51



RELIABLE COMPRESSION SCHEME

Reliable compression scheme:

A compression scheme with rate R and with unitary U is said to be reliable if

psucc −−−−−→n→+∞
1
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SOME LEMMA

ρ⊗n

H⊗n

U
ρU(

C2)⊗nR ⊗
(
C2)⊗(n(log2(d)−R))

discard 2nd comp.
ρCp(
C2)nR

adding a 2nd comp.
ρCp ⊗ σ(

C2)⊗nR ⊗
(
C2)⊗(n(log2(d)−R))

U†
ρ′

▶ Notice that discarding the second component E amounts to tracing out ρU according to the

last n (log2(d) − R) qubits, i.e., ρCp = trE
(
ρU
)

Lemma:

Suppose that we add a fixed pure quantum state |0〉〈0| to ρCp before applying U† . Let wj be the

quantum state just before applying U† if |j〉 was emitted. Let ρj be the state ρU if |j〉 was emitted.

We have,
psucc =

∑
j
qj tr

(
ρjwj

)
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PROOF

Proof:

Suppose that |j〉 was emitted by the source. We have ρj = U |j〉〈j|U† . Furthermore, wj is equal to

trE
(
ρj

)
⊗ |0〉〈0|

(
where E denotes the span of the last n (log2(d) − R) qubits

)
. The final

quantum state is w′
j = U†wjU and we have,

psucc =
∑
j
qj tr

(
|j〉〈j|w′

j

)
=
∑
j
qj tr

(
U†
ρjUU†wjU

)
=
∑
j
qj tr

(
ρjwj

)

54



SCHUMACHER’S NOISELESS CHANNEL CODING THEOREM

Theorem:

Let ρ⊗n be a quantum i.i.d. source.

1.
(
positive part

)
If R > S(ρ) then there exists a reliable compression scheme of rate R for the

quantum source

2.
(
negative part

)
If R < S(ρ) then any compression scheme of rate R is not reliable
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PROOF: INTUITION

ρ⊗n

H⊗n

U
ρU(

C2)⊗nR ⊗
(
C2)⊗(n(log2(d)−R))

discard 2nd comp.
ρCp(
C2)nR

adding a 2nd comp.
ρCp ⊗ σ(

C2)⊗nR ⊗
(
C2)⊗(n(log2(d)−R))

U†
ρ′

The operation from ρ to ρ′ is a projection fromH⊗n to a subspace with dimension nR

−→ We can use the quantum typical subspace theorem!
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PROOF OF NEGATIVE PART (I)

Proof:

First, remark that ρCp ⊗ σ lives in a space of dimension nR as we always add the same component

to ρCp . Therefore, if the source emits |j〉, then wj
(
the state at the end of the process, before

measuring
)
belongs to a space of dimension nR which is independent of the emitted quantum

state.

Let |γk〉 be an orthonormal basis of this space which diagonalizes wj . Let Π be the projection on

this space. We have,
Π =

nR∑
k=1

|γk〉〈γk| and wj =
nR∑
k=1

λk |γk〉〈γk|

Notice that λk ∈ [0, 1]. We have the following computation,

tr
(
|j〉〈j|wj

)
=

nR∑
k=1

λk tr
(
|j〉〈j| |γk〉〈γk|

)

≤
nR∑
k=1

tr
(
|j〉〈j| |γk〉〈γk|

)
= tr

(
|j〉〈j|Π

)
But,

psucc =
∑

j∈[1,d]n
qj tr

(
|j〉〈j|wj

)
≤

∑
j∈[1,d]n

qj tr
(
|j〉〈j|Π

)
= tr

(
ρ
⊗nΠ

)
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PROOF OF NEGATIVE PART (II)

Proof:

We have shown that it exists a projection Π on a space of dimension nR such that

psucc ≤ tr
(
ρ
⊗nΠ

)
But R < S(ρ). Let ε > 0 such that R < S(ρ) − 2ε. Therefore, according to the quantum typical

subspace theorem
(
see Slide 41

)
, we have for n large enough,

psucc ≤ ε + 2−εn

showing that with rate R < S(ρ) we cannot reliably compress
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PROOF OF POSITIVE PART (I)

Proof:

Suppose R > S(ρ) and let ε > 0 such that R > S(ρ) + ε.

The idea of the proof is to choose U such that ρ′ always lives in the quantum typical

subspace QT(n)ε . We have
(
see Slide 41

)
,

dimQT(n)ε = tr
(
Π
QT(n)ε

)
≤ 2n(S(ρ)+ε) ≤ 2nR

Let us choose an orthonormal basis
(
|a〉
)
1≤a≤2n log2 d

ofH such that C be the span of its≤ 2nR

first elements contains QT(n)ε .

Given 1 ≤ a ≤ 2n log2 d , let (xa|ya) be the encoding of a as bits where xa consists of the first nR

bits. Notice that,
ya = 0 if a ≤ 2nR and ya 6= 0 if a > 2nR

Our unitary is as follows:

U : |a〉 7→
{
|xa, 0〉 if a ≤ 2nR

|xa, ya〉 otherwise

Notice that given |xa, ya〉, we have |xa〉 ∈
(
C2)⊗nR while |ya〉 ∈

(
C2)⊗n(log2(d)−R)
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PROOF OF POSITIVE PART (II)

Proof:

Suppose that |j〉 is emitted by the source. We write in the decomposition given by C,

|j〉 = αj |α(j)〉︸ ︷︷ ︸
∈C

+βj |β(j)〉︸ ︷︷ ︸
∈C⊥

where |αj|
2 = tr

(
ΠC |j〉〈j|

)
with ΠC orthogonal projection onto C

Therefore, according to our notation,

|j〉 = αj

 2nR∑
a=1

〈α (j)|a〉 |a〉

 + βj

2n log2 d∑
a=2nR+1

〈µ(j)|a〉 |a〉


After applying U we obtain,

U |j〉 = αj

 ∑
xa∈{0,1}2nR

〈α(j)|a〉 |xa, 0〉

 + βj

 ∑
(xa,ya)∈{0,1}n log2 d

ya ̸=0

〈µ(j)|a〉 |xa, ya〉


= αj |λ(j)〉 |0〉 + βj

∑
ya≠0

|γ(j, ya)〉 |ya〉

This pure state ρj
def
= U |j〉〈j|U†

(
ρU when |j〉 is emitted

)
is given by:

ρj = |αj|
2 |λ(j), 0〉 〈λ(j), 0| + αjβj

∑
ya ̸=0

|λ(j), 0〉 〈γ(j, ya), ya| + αjβj
∑
ya ̸=0

|γ(j, ya), ya〉 〈λ(j), 0|

|βj|
2 ∑
ya ̸=0

〈γ(j, ya), ya|γ(j, ya), ya〉
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PROOF OF POSITIVE PART (III)

Proof:

ρj = |αj|
2 |λ(j), 0〉 〈λ(j), 0| + αjβj

∑
ya ̸=0

|λ(j), 0〉 〈γ(j, ya), ya| + αjβj
∑
ya ̸=0

|γ(j, ya), ya〉 〈λ(j), 0|

|βj|
2 ∑
ya ̸=0

〈γ(j, ya), ya|γ(j, ya), ya〉

But after applying the unitary U, we remove the second component over the last n(log2(d) − R)

qubits, i.e., we apply the partial trace trE
(
where E denotes the space of the last n(log2(d) − R)

qubits
)
. Therefore, as all the ya 6= 0, we have

trE ρj = |αj|
2 |λ(j)〉 〈λ(j)| + |βj|

2 ∑
ya ̸=0

|γ(j, ya)〉〈γ(j, ya)|

Suppose now that during the decompression we add |0〉 as a second component
(
we wrote σ in

our definition
)
. It gives before applying U† ,

|αj|
2 |λ(j), 0〉 〈λ(j), 0| + |βj|

2 ∑
ya ̸=0

|γ(j, ya), 0〉〈γ(j, ya), 0|
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PROOF OF POSITIVE PART (IV)

Proof:

We have before applying U† ,

wj = |αj|
2 |λ(j), 0〉 〈λ(j), 0| + |βj|

2 ∑
ya ̸=0

|γ(j, ya), 0〉〈γ(j, ya), 0|

Therefore according to the lemma given in Slide 53, psucc =
∑

j qj tr
(
ρjwj

)
,

tr
(
ρjwj

)
= |αj|

4 + |αj|
2|βj|

2 ∑
ya ̸=0

| 〈γ(j, ya)|γ(j, ya), 0〉 |2

≥ |αj|
4

=
(
1− |βj|

2
)2

≥ 1− 2|βj|
2

= 2|αj|
2 − 1

Therefore,
psucc ≥ 2

∑
j
qj|αj|

2 − 1 = 2
∑
j

tr
(
πCqj |j〉〈j|

)
− 1 = 2 tr

(
πCρ

⊗n
)
− 1

But according to the typical quantum subspace theorem
(
see Slide 41

)
tr
(
πCρ

⊗n
)
which

concludes the proof
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TO GO FURTHER

Conclusion:

We have proved the quantum analogue of Shannon’s noiseless coding theorem which involves

von Neumann entropy

But we have not investigated the second important topic of information theory:

capacity of noisy channels

−→ The study of the quantum analogue classical noisy channels and their capacity is a hard task

If you interested by investigating the question of quantum channels:

▶ Achieving the Holevo Capacity of a Pure State Classical-Quantum Channel via Unambiguous

State Discrimination, M. Takeoka, H. Krovi and S. Guha
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