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NOISE: A BIG ISSUE FOR CLASSICAL COMPUTATIONS

▶ Suppose that you store bits on your device and your memory is altered:

001011⇝ 001111

▶ Suppose that you perform your computations with non-perfect elementary gates, for instance:

1 NOT−−→ 0 but sometimes 1 NOT−−→ 1

How can we protect bits against the noise?
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ADDING REDUNDANCY TO BE PROTECTED

Do what you do in your everyday life:

Add redundancy!

An example: spell your name over the phone, send first names!

M like Mike, O like Oscar, R like Romeo, A like Alpha, I like India and N like November

▶ We perform an encoding
(
i.e., adding redundancy

)
,

M 7→ Mike, O 7→ Oscar, R 7→ Romeo, A 7→ Alpha, etc. . .

▶ If the information is altered
(
for instance when having a bad communication over the

phone
)
,

Mike noise−−−→ “ ike”, Oscar noise−−−→ “scar”, Romeo noise−−−→ “meo”, Alpha noise−−−→ “ alph”

▶ The receiver can perform a decoding: recovering the first names and then the letters,

“ ike”→ Mike→ M, “sca”→ Oscar→ O, “meo”→ Romeo→ R, “alph”→ Alpha→ A
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A FIRST EXAMPLE: REPETITION CODES

The first example of error-correcting codes:

3-repetition code:

• Encoding: b ∈ {0, 1} 7−→ bbb ∈ {0, 1}3

• Noisy Channel: bbb 7−→ c1c2c3

• Decoding Strategy: given c1c2c3 ∈ {0, 1}3 , choose the majority bit

001 7−→ 0, 011 7−→ 1, 101 7−→ 1, etc. . .

−→ This decoding strategy is successful if there are < 2 bits which are changed!

Exercise:

Why haven’t we introduced the 2-repetition code?
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IMPORTANCE OF CODES IN PRACTICE

Without efficient error correcting codes

▶ Storing reliably data would be impossible

▶ Computations on our computers would be most of the time false

▶ We couldn’t send and download information on Internet

False intuition: we only need to improve our devices

No! Think that devices are subject to external constraints. Furthermore, in the case of

telecommunications, do you hope to be able to receive all the bits from a photo taken by a

satellite around Mars? Would you be happy with only half of the bits of the photo?

−→ Error correcting codes were the cornerstone of the development of computers and

telecommunications!
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BUILDING AN EFFICIENT QUANTUM COMPUTER

Building an efficient quantum computer?

Let’s go
(
good luck. . .

)
! But it is impossible to build architectures that are completely isolated

from the environment: decoherence
(
pure states 7→ mixed states

)

Decoherence (←→ Quantum Noise):

There will be “noise” during computations that will modify the results. . .

▶ What does the “noise” mean in the quantum case?

▶ How to be “protected” against the “noise”? Can we also add redundancy as in the classical

case?
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QUANTUM WORLD, THOUGH ISSUES?

Protect against errors in the quantum world: a much harder problem!

• Problem 1: Not enough to protect |0〉 and |1〉, every linear combinations α |0〉 + β |1〉 must

be protected as well

• Problem 2: Much richer error model than for classical bits
(
not only “flip”. . .

)
• Problem 3: Impossibility to copy qubits before working on it

(
no cloning theorem

)
• Problem 4: Measurements modify the qubits. . .

To overcome these issues: we will be inspired by the classical case!
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THE OBJECTIVE OF THE DAY

Presentation of quantum error correcting codes!

 
Quantum error correcting code are

(
roughly

)
:

▶ a clever use of classical codes and
(
syndrome

)
projective measurements
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COURSE OUTLINE

1. A First Quantum Error Correcting Code: Shor’s Code

2. Calderbank-Shor-Steane
(
CSS
)
Codes

3. Stabilizer Codes

4. Threshold Theorem
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SHOR’S QUANTUM CODE



BE INSPIRED BY THE CLASSICAL CASE

Inspired by the classical case: repetition code?

α |0〉 + β |1〉 7−→ (α |0〉 + β |1〉)⊗3

But is it possible?

No! No-cloning theorem. . .

Instead consider the following encoding to “mimic the repetition code”:

(α |0〉 + β |1〉)⊗ |00〉 7−→ α |000〉 + β |111〉

−→ It is not a repetition code!

To perform encoding, following quantum circuit:

α |0〉 + β |1〉

|0〉

|0〉
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ERRORS OF TYPE X (FLIPPING)

Inspired by the classical case: flip the qubits, i.e. apply X

Error X on the second qubit:

α |000〉 + β |111〉⇝ α |010〉 + β |101〉

But how to correct this error?

Use a parity-check matrix!

H def
=

(
0 1 1
1 1 0

)
parity-check matrix of the 3-repetition code

{
(000), (111)

}
−→ applying to either (010) or (101) gives

(
1
1

)
showing an error occurred to the second bit

Quantumly: implement |x〉 ⊗ |00〉 7→ |x〉 ⊗
∣∣xH⊺〉 and apply it to

(α |010〉 + β |101〉)⊗ |00〉 7−→ (α |010〉 + β |101〉)⊗ |11〉

Measure the last two registers and deduce where the X error occurred

−→ apply X on the qubit where there is an error leading to the original quantum state
(
X2 = I2

)

This method enables to correct any X on one qubit

But is it necessary to introduce two ancillary qubits?
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DECODING WITHOUT PARITY-CHECK MATRIX

Using two auxiliary qubits and H was an artefact to mimic the classical case!

α |000〉 + β |111〉⇝ error?

(i) No error,
α |000〉 + β |111〉 ∈ C0

def
= Vect (|000〉 , |111〉)

If an error X occurs we will be in one of the following situations:

(ii) First qubit,
α |100〉 + β |011〉 ∈ C1

def
= Vect (|100〉 , |011〉)

(iii) Second qubit,
α |010〉 + β |101〉 ∈ C2

def
= Vect (|010〉 , |101〉)

(iv) Third qubit,
α |001〉 + β |110〉 ∈ C3

def
= Vect (|001〉 , |110〉)

The Cx ’s are the cosets and are orthogonal!

−→ It defines a measurement: we can decide in which space we live and removing the error
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DECODING WITH SYNDROME MEASUREMENT

(I) Fundamental idea: decompose the three qubits space as
(
coset decomposition

)
(
C2
)⊗3

= C0
⊥
⊕C1

⊥
⊕C2

⊥
⊕C3 (1)

where,

C0
def
= Vect (|000〉 , |111〉) , C1

def
= Vect (|100〉 , |011〉) , C2

def
= Vect (|010〉 , |101〉)

C3
def
= Vect (|001〉 , |110〉)

−→ The Cx ’s are orthogonal: it defines a projective measurement!

(II) Fundamental idea: syndrome measurement

Measure according to Eq. (1). Then apply X on a qubit according to the result x. For instance:

0 7→ do nothing, 1 7→ apply X on the first qubit, 2 7→ apply X on the second qubit, etc

But why does it work?

If one error X occurred, the quantum state will belong with certainty to some Cx and X2 = I2
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AN EXAMPLE: X-ERROR ON THE 2ND QUBIT

Error X on the second qubit:

α |000〉 + β |111〉⇝ α |010〉 + β |101〉

▶ Measure according to the orthogonal projections over

C0 = Vect (|000〉 , |111〉) , C1 = Vect (|100〉 , |011〉) , C2 = Vect (|010〉 , |101〉)

C3 = Vect (|001〉 , |110〉)

▶ With probability one we measure 2
(
“we are in C2”

)
and the quantum state does not change

α |010〉 + β |101〉

▶ Apply X on the second qubit

α |010〉 + β |101〉 7−→ α |000〉 + β |111〉

Remarkable fact:

Measurement does not change the quantum state!
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MORE GENERAL X ERRORS

Error of type-X on some “random qubit”:

α |000〉 + β |111〉⇝ a (α |100〉 + β |011〉) + b (α |010〉 + β |101〉) + c (α |001〉 + β |110〉)

Same decoding algorithm: measure according to C0
⊥
⊕C1

⊥
⊕C2

⊥
⊕C3 but this times the quantum

states changes

• With probability |a|2 observe “error on the first qubit”, the quantum state collapses to

α |100〉 + β |011〉
and apply X on the first qubit,

• With probability |b|2 observe “error on the second qubit”, the quantum state collapses to

α |010〉 + β |101〉
and apply X on the second qubit,

• etc. . .
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OTHER KIND OF ERRORS?

What is the most important sentence of MDC_51002_EP
(
first semester course

)
?

Quantum computation offers you a huge power with the “-1”

It is the same for errors, errors have a huge power, phase-flip can happen Z :

{
|0〉 7→ |0〉
|1〉 7→ − |1〉

But is our previous quantum code with its decoding algorithm useful against errors of type-Z?

−→ No!

Applying Z on some qubit:

α |000〉 − β |111〉
▶ Decoding: measuring leads to we are in C0 : “no error” and we do nothing. . .
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HOW TO PROTECT AGAINST ERROR OF TYPE-Z?

Fundamental remark:

errors of type Z ≡ errors of type X in the Fourier basis |+〉 , |−〉

Z :

{
|+〉 7→ |−〉
|−〉 7→ |+〉 and X :

{
|+〉 7→ |+〉
|−〉 7→ − |−〉

Natural idea: apply H⊗3 to α |000〉 + β |111〉:

α |+ + +〉 + β |− − −〉

As above we can correct any error of type Z on one qubit with this encoding!

−→ But we are stuck, we cannot correct errors of type-X anymore. . .
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CORRECTING BOTH TYPES OF ERRORS: SHOR’S CODE

Idea: concatenation trick

Encode to protect against Z-errors and then encode this to protect against X-errors!

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

Protection against Z-errors Protection against X-errors 18



ENCODING

|0〉 1st−−→ |+ + +〉 =
1

2
√
2
(|0〉 + |1〉)⊗3 2nd−−−→

1
2
√
2
(|000〉 + |111〉)⊗3

|1〉 1st−−→ |− − −〉 =
1

2
√
2
(|0〉 − |1〉)⊗3 2nd−−−→

1
2
√
2
(|000〉 − |111〉)⊗3

▶ 1st step: protecting against errors of type-Z

▶ 2nd step: protecting against errors of type-X

Encoding:(
α |0〉 + β |1〉

)
⊗
∣∣∣08〉 7−→ α

2
√
2
(|000〉 + |111〉)⊗3 +

β

2
√
2
(|000〉 − |111〉)⊗3
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DECODING (I)

α

2
√
2
(|000〉 + |111〉)⊗3 +

β

2
√
2
(|000〉 − |111〉)⊗3

−→ The encoding belongs to the linear code C of dimension 3 generated by

(111000000), (000111000), (000000111)

As previously, one can define the syndrome measurement according to the cosets:

C0
def
= Vect (|x〉 : x ∈ C) , C1 def= Vect (|x + (1, 0, 0, 0, 0, 0, 0, 0, 0)〉 x ∈ C) , etc . . .

−→ 9 subspaces of dimension 3 in orthogonal sum! It defines a
(
syndrome

)
measurement

enabling, as previously, to correct any one X-error

Remark:

This syndrome measurement: any interference with any possible Z-error(
change signs not switch vectors of the computational basis

)
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DECODING (II)

Once we have removed a possible X-error we are left to deal with

α

2
√
2
(|000〉 + |111〉)⊗3 +

β

2
√
2
(|000〉 − |111〉)⊗3 = α |+3 +3 +3〉 + β |−3 −3 −3〉

|+3〉
def
=
|000〉 + |111〉
√
2

and |−3〉
def
=
|000〉 − |111〉
√
2

−→ One Z-error on any qubit of |+3〉 leads to |−3〉!

Z-error on either 1st, 2nd or 3rd
(
resp. 4th, 5th or 6th

)
qubit yields:

α |−3 +3 +3〉 + β |+3 −3 −3〉 (resp. α |+3 −3 +3〉 + β |−3 +3 −3〉)

▶  We can define the syndrome measurement:
(
C2)⊗9

= E0
⊥
⊕E1

⊥
⊕E2

⊥
⊕E3

⊥
⊕ F where: 

E0
def
= Vect (|+3 +3 +3〉 , |−3 −3 −3〉) , E1

def
= Vect (|−3 +3 +3〉 , |+3 −3 −3〉) , . . . , F

def
=

(∑
i

Ei

)⊥

Decoding:

Measure
(
it does not change the quantum state

)
and then apply Z on the either the 1st, 2nd

or 3rd qubit if the answer is 1, etc. . . 
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TO SUMMARIZE

Shor’s quantum error correcting code:

It can correct one error of type-X and one error of type-Z!

Exercise:

Find an error on two qubits which cannot be corrected by Shor’s code

▶ Are the errors of type-X and Z be the only possible errors?

▶ Can Shor’s quantum code correct these other potential errors?

−→ As in classical world: many reasonable models of errors

But there is a moral:

Errors on qubits: apply Pauli matrices
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PAULI MATRICES

Single qubit Pauli group P1:

{±I2,±X,±Y,±Z,±iI2,±iX,±iY,±iZ}

−→ This set forms a group for the multiplication!

• X2 = Y2 = Z2 = I2

• The 6= Pauli matrices anti-commute: XZ = −ZX = −iY etc. . .

Exercise Session:

Any 2× 2 matrix M on one qubit can be written as:

M = e0I2 + e1X + e2Z + e3XZ
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FUNDAMENTAL CONSEQUENCES

One reasonable model of error: on each qubit we independently apply a linear operator

Any linear operator M on one qubit can be written as:

M = e0I2 + e1X + e2Z + e3XZ

−→ We reduce a continuous set of errors to a discrete set of errors given by X, Z and XZ

Correcting a discrete set of errors by syndrome measurement: X and Z

−→ We can automatically correct a much larger
(
continuous!

)
class of errors

Intuitively: if the syndrome measurement is correct with certainty, performing this measurement

after applying M will collapse the quantum state into no error, error of type-X and Z

Shor’s code can correct all errors of type X and Z!
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QUANTUM CHANNEL?

Depolarizing channel:

Each qubit independently undergoes an error X, Z or Y = iXZ with probability p/3 and is not

modified with probability p

On a single qubit, in terms of density operator:

ρ 7−→ E(ρ) def
= (1− p)ρ +

p
3
XρX +

p
3
YρY +

p
3
ZρZ

−→ Somehow the quantum analogue of the Binary Symmetric channel

Exercise:

Show that when p = 3
4 , then E(ρ) =

I2
2 . How do you interpret this result? What would be the

“classical” equivalent with the Binary Symmetric Channel?

Quantum channels:

It belongs to a more general theory: quantum measurements, Krauss operators
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CONCLUSION

Errors against which we need to be protected:

X and Z

Decoding Shor’s quantum code:

Shor’s quantum code can correct any
(
continuous

)
error provided they only affect a single qubit

−→ But to protect one qubit we need nine qubits. . .

Can we do better?

−→ Yes, let’s go! But before break. . .
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CSS CODES



AIM

We study now Calderbank-Shor-Steane
(
CSS
)
codes

Aim:

A more systematic way of encoding quantum states using
(
classical

)
linear codes

CSS construction is based on two classical codes:

▶ the first one corrects errors of type-X

▶ the second one corrects errors of type-Z
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NOTATION

For any v = (v1, v2, . . . , vn) ∈ Fn2 ,

Xv def
= Xv1 ⊗ Xv2 ⊗ · · · ⊗ Xvn and Zv def

= Zv1 ⊗ Zv2 ⊗ · · · ⊗ Zvn

 

Lemma:

(i) XuZv = (−1)⟨u,v⟩ZvXu

(ii) H⊗nXu = ZuH⊗n and H⊗nZu = XuH⊗n

(iii) Zu |x〉 = (−1)⟨u,x⟩ |x〉

Proof:

Consequence of the fact that XZ = −ZX and XH = HZ
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A CRUCIAL LEMMA

Lemma:

For any linear code C,

H⊗n |C〉 =
∣∣∣C⊥〉 where |C〉 def=

1
√
♯C

∑
c∈C
|c〉 and

∣∣∣C⊥〉 def
=

1√
♯C⊥

∑
c⊥∈C⊥

∣∣∣c⊥〉

Proof:

See Exercise Session

But from which result this lemma comes from?

−→ Poisson summation formula
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ENCODING IN CSS CODES

▶ Defined from two linear codes
(
CX, CZ

)
of length n such that CZ ⊆ CX ⊆ Fn2

k def
= dim CX/CZ = dim CX − dim CZ

−→ CX =
⊔

1≤i≤2k
(xi + CZ) for 2k vectors xi ∈ CX being coset representatives of CX/CZ

There are efficient one-to-one mappings:

i ∈ {0, 1}k 7−→ xi ∈ {0, 1}n and xi ∈ {0, 1}n 7−→ i ∈ {0, 1}k

CSS quantum codes:

CSS codes encodes k qubits as∑
i∈{0,1}k

αi |i〉︸︷︷︸
k qubits

⊗
∣∣∣0n−k

〉
7−→

∑
xi

αi |xi + CZ〉︸ ︷︷ ︸
n qubits

where, |x + CZ〉
def
=

1
√
♯CZ

∑
y∈CZ

|x + y〉

Exercise session:

How to efficiently build CSS encodings?
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DECODING CSS CODES

−→ As for Shor’s code, use: syndrome measurement

Syndrome measurement:

Let C be a linear code of length n, dimension k and with parity-check matrix H.

We associate to C and H the following measurement(
C2
)⊗n

=
⊥⊕

s∈Fn−k
2

ECs

where,

ECs
def
= Vect

 |z〉︸︷︷︸
n qubits

: Hz⊺ = s⊺
 = Vect

(
|z〉 : z ∈ x + C where Hx⊺ = s⊺

)

−→ The ECs ’s are generated by the vectors of different cosets

But as the cosets are disjoint, the ECs ’s are orthogonal!

A crucial remark:

If |ψ〉 ∈ EC0 , then Xe |ψ〉 ∈ ECs where He⊺ = s⊺

−→ If the He⊺i ’s are distinct and we can recover ei from He⊺i : when measuring X
ei |ψ〉 ∈ ECHe⊺i

we

recover He⊺i , then ei and we can remove X
ei
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CORRECTING x-ERROR

(
|x + C〉 =

1
√
♯C

∑
c∈C
|x + c〉

)

Starting from the encoding and applying the noise XeZf:

|ψ〉 =
∑

x∈CX/CZ

αx |x + CZ〉 ∈ E
CX
0 ⇝ XeZf |ψ〉 =

∑
x∈CX/CZ

αxXeZf |x + CZ〉

−→ Zf only modifies signs! Therefore:

∑
x∈CX/CZ

αxXeZf |x + CZ〉 ∈ E
CX
HXe

⊺ where HX be a parity-check matrix of CX ⊇ CZ

(
because: ∀x ∈ CX, cZ ∈ CZ , HX(x + cZ)⊺ = 0 as x ∈ CX and cZ ∈ CZ ⊆ CX

)

Syndrome measurement:

It does not modify the quantum state, supposing that we can recover e from HXe⊺ : remove Xe
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CORRECTING z-ERROR

|ψ〉 =
∑

x∈CX/CZ

αx |x + CZ〉 ∈ E
CX
0 ⇝XeZf |ψ〉 1st decoding−−−−−−→ Zf |ψ〉 =

∑
x∈CX/CZ

αxZf |x + CZ〉

Fundamental remark:

We have the following identities:

Zf |ψ〉 =
∑

x∈CX/CZ

αxZf |x + CZ〉 =
∑

x∈CX/CZ

αxZfXx |CZ〉

By applying H⊗n:

H⊗nZf |ψ〉 =
∑

x∈CX/CZ

αxH⊗nZfXx |CZ〉

=
∑

x∈CX/CZ

αxXfZxH⊗n |CZ〉

= Xf
∑

x∈CX/CZ

αxZx
∣∣∣C⊥Z 〉 ∈ in the coset given by HZf⊤ with HZ parity-check of C⊥Z

Syndrome measurement with C⊥Z :

Measuring: we can recover f, then we apply H⊗n leading to Zf |ψ〉 and we remove Zf
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ABILITY TO CORRECT CLASSICAL ERRORS?

Up to now we used the fact that we can “decode” CX and C⊥Z

Let, HX and HZ be a parity-check matrix of CX and C⊥Z

▶ To remove errors Xe1 , or Xe2 , . . . , or Xeℓ :

the HXe⊺i ’s have to be distinct and we can efficiently recover ej from HXe⊺j

▶ To remove errors Zf1 , or Zf2 , . . . , or Zfℓ :

the HZf⊺i ’s have to be distinct and we can efficiently recover fj from HZf⊺j

But, can we find classical codes offering such “properties”?

−→ Yes! To understand why it is theoretically possible: minimum distance
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MINIMUM DISTANCE OF LINEAR CODES

Hamming weight:

∀x = (x1, · · · , xn) ∈ Fn2 , |x|
def
= ♯ {i ∈ J1, nK, xi 6= 0}

Minimum distance:

Let C ⊆ Fn2
(
linear code

)
, its minimum distance is defined as

dmin(C)
def
= min {|c| : c ∈ C and c 6= 0}

−→ The minimum distance quantifies how “good” is a code in terms of decoding ability!

Lemma
(
see previous exercise session

)
:

Let H be any parity-check matrix of C, then

the He⊺ ’s are distinct when |e| < dmin(C)

2

−→ C can theoretically be decoded if there are < dmin(C)

2 errors

Be careful: it does not show the existence of an efficient decoding algorithm, which is far from

being guaranteed
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MINIMUM DISTANCE OF LINEAR CODES

▶ What is the best minimum distance can we expect?

−→ It is typically large ≈ n/10 when C has dimension n/2
(
see previous exercise session

)
▶ Do we know linear codes with a large minimum distance and for which we can remove a large

number of errors?

−→ Hard question. . . Yes we can
(
hopefully for telecommunication

)
but to understand

how deserves at least other lectures. . .

To take away:

It exists codes with a large minimum distance d and we can hope to be able to decode up to d/2

But: hard to find codes with a large d and for which we can efficiently decode many errors(
even� d/2

)
−→ Active research topic with a lot a consequences, event recent

(
for instance the 5G . . .

)
To build CSS codes: choose C such that (i) can correct many errors and (ii) C⊥ ⊆ C(

weekly auto-dual
)
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CONCLUSION

Theorem: decoding CSS codes

Let CX and CZ be linear codes such that CZ ⊆ CX

If e
(
resp. f

)
can be recovered from its syndrome by the code CX

(
resp. C⊥Z

)
, then the quantum

error pattern XeZf can be corrected by the CSS quantum code associated to the pair
(
CX, CZ

)
In particular, we can hope to decode up to dmin(CX)/2 errors-X and dmin(C⊥Z )/2 errors-Z

(
even

combined
)

See Exercise Session:

• Shor’s code
(
9 qubits to protect 1 qubit

)
is a CSS code

• Steane’s code
(
7 qubits to protect 1 qubit

)
is a CSS code using Hamming codes
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STABILIZER CODES



STABILIZER CODES

▶ A class of codes containing CSS codes

▶ Many similarities with classical linear codes

▶ Powerful framework for defining/manipulating/constructing/understanding quantum codes
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THE PAULI ERROR GROUP

XZ = −ZX = −iY
XY = −YX = iZ
YZ = −ZY = iX

−→ The elements of G1 = {±1,±i} × {X, Z, Y} commute or anti-commute

Gn-group:

The set of operators of the form ±XeZf or ±iXeZf , where e, f ∈ Fn2 , form a multiplicative group
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ADMISSIBLE GROUP

Admissible subgroup:

A subgroup S of Gn is said to be admissible if: −I⊗n /∈ S

−→ We will only consider admissible subgroups!

Lemma:

Any admissible subgroup S is Abelian
(
its elements commute

)

Proof:

Let E, F ∈ S ⊆ Gn , then
E2 = ±I, F2 = ±I and EF = ±FE

But E2, F2 ∈ S and −I /∈ S. Therefore:
E2 = F2 = I

Suppose by contradiction that EF = −FE, then

EFEF = −EF2E = −I ∈ S: contradiction
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STABILIZER CODES: DEFINITION

Stabilizer code:

S be an admissible subgroup of Gn

The stabilizer code C associated to S is defined as

C def
=
{
|ψ〉 : ∀M ∈ S, M |ψ〉 = |ψ〉

}

An example:

Vect (|000〉 , |111〉) is a stabilizer code associated to{
I⊗ I⊗ I, Z⊗ Z⊗ I, Z⊗ I⊗ Z, I⊗ Z⊗ Z

}
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INDEPENDENT GENERATORS: MINIMAL SET OF GENERATORS

Given S an admissible subgroup of Gn :

▶ Generators set: M1, . . . ,Mℓ such that

∀M ∈ S, M = Me1
1 · · ·M

eℓ
ℓ for e1, . . . , eℓ ∈ {0, 1}

Notation:

〈M1, . . . ,Mℓ〉
def
=
{
Me1
1 · · ·M

eℓ
ℓ for e1, . . . , eℓ ∈ {0, 1}

}

▶ Minimal generators set
(
independent generators in the literature

)
: M1, . . . ,Mℓ such that

∀i, 〈M1, . . . ,Mi−1,Mi+1, . . . ,Mℓ〉 ⊊ 〈M1, . . . ,Mℓ〉

Proposition
(
admitted

)
:

S admits a minimal generator set M1, . . . ,Mr for some r and
♯S = 2r
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SYNDROME FUNCTION

S ⊆ Gn admissible subgroup

♯S = 2r and M1, . . . ,Mr minimal set of generators

The syndrome function:

σ : Gn −→ {0, 1}r

E 7−→


s1
s2
...
sr

 with si
def
=

{
0 if EMi = MiE
1 if EMi = −MiE

Remark:

For any M ∈ S: σ(M) = 0

45



SYNDROME AND MEASUREMENT

Syndrome: σ(E) =


s1
s2
...
sr

 with si
def
=

{
0 if EMi = MiE
1 if EMi = −MiE

C(s) def
=
{
|ψ〉 , ∀i, Mi |ψ〉 = (−1)si |ψ〉

}

−→ C(0) = C

Proposition
(
admitted

)
: a quantum measurement that extracts the syndrome

1. For any E ∈ Gn and any |ψ〉 ∈ C: E |ψ〉 ∈ C(σ(E))

2.
(
C2)⊗n decomposes into the orthogonal direct sum:(

C2
)⊗n

=
⊥⊕

s∈Fr2

C(s)

−→ The C(s)’s define a measurement!

Proposition
(
admitted

)
:

For any s ∈ Fr2 , there exists E ∈ Gn such that s = σ(E)

We have dimC(C) = 2n−r
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ANALOGIES

Linear codes Stabilizer codes

k bits encoded in n bits k qubits encoded in n qubits
subspace of dimension k subspace of dimension 2k

parity-check matrix H minimal generators set of S
r = n− k rows, n columns r = n− k generators
syndrome ∈ {0, 1}n−k syndrome ∈ {0, 1}n−k
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DECODING: MEASUREMENT, WHAT ELSE?

Error: E ∈ Gn

|ψ〉 ∈ C ⇝ E |ψ〉 ∈ C(σ(E)) measurement−−−−−−−→ E |ψ〉 with the knowledge of σ(E)

▶ But how to extract E?
−→ classically

▶ What are the errors that can be corrected?
−→ Subtle question!
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DECODING PROCESS

Suppose: |ψ〉⇝ E |ψ〉 where E ∈ Gn

−→ We want to remove E, i.e., to apply E−1

Decoding process:

We compute E′ ∈ Gn such that E′E |ψ〉 ∈ C = C(0). In other words,
σ(EE′) = 0

Is E′ = E−1? Is it necessary?

−→ We don’t need E = E−1 , we only need E′E |ψ〉 = |ψ〉

49



CORRECTABLE ERRORS?

Suppose: |ψ〉⇝E |ψ〉 ∈ C(0) = C measurement−−−−−−−→ syndrome 0, no error. . .

Is it a problem? It depends of E . . . Is E |ψ〉 = |ψ〉 or not?

We can distinguish two types of error E with syndrome 0:

• Harmless error
(
type-G like “Good”

)
: E ∈ S, in that case

∀ |ψ〉 ∈ C, E |ψ〉 = |ψ〉

• Harmful error
(
type-B like “Bad”

)
: E /∈ S, in that case

(
proof: use the “minimality” of

generators
)

∃ |ψ〉 ∈ C, E |ψ〉 6= |ψ〉

Type-B errors: cannot be detected and thus cannot be corrected while it may happen E |ψ〉 6= |ψ〉

To overcome this issue: introduce the minimum distance

Remark:

An harmful error E verifies by definition σ(E) = 0
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MINIMUM DISTANCE

Recall: if E ∈ Gn , then E = XeZf
(
up to ×{±1,±i}

)
for some e, f ∈ Fn2 ,

Weight Pauli group elements:

For any E ∈ Gn , we define its weight as,

|E| def= ♯
{
i : ei 6= fi or ei = fi = 1

}
= ♯
{
X, Y, Z that appear in E

}

For instance: ∣∣∣X(1,0,1,0)Z(0,0,1,1)∣∣∣ = |X⊗ I⊗ XZ⊗ Z| = |X⊗ I⊗ (−iY)⊗ Z| = 3

Admissible subgroup minimum distance:

Given an admissible subgroup S of Gn , we define its minimum distance as,

d def
= min

(
|E| : E error of type B

)
= min

(
|E| : E /∈ S

)

Exercise:

What is the minimum distance of Vect(|000〉 , |111〉)? Don’t forget to exhibit the associated

admissible subgroup
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DECODING

Theorem:

C stabilizer code of minimum distance d, and |ψ〉 ∈ C be corrupted by an error E ∈ Gn of weight

t < d/2, then |ψ〉 can be recovered

Proof:

1. E |ψ〉 measurement−−−−−−−→ E |ψ〉 giving the classical information σ(E)

2. Find classically minimum weight E′ ∈ Gn such that σ(E′) = σ(E), in particular |E′| ≤ |E| = t

−→ We need: efficient classical algorithm coming with the stabiliser group for this task

3. Apply E′ . But why does it work?

σ(E′E) = σ(E′) + σ(E) = 0 and |E′E| ≤ |E′| + |E| ≤ 2t < d

Therefore, by definition of the minimum distance: E′E ∈ S and E′E |ψ〉 = |ψ〉
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CONCLUSION

▶ Decoding stabilizer codes:

• Computing the syndrome by a projective measurement : quantum step

• Determining the most likely error: classical step

• Inverting the error: quantum step

▶ Decoding with certainty up to d/2 where d = min
(
|E| : E ∈ Gn\S

) (
minimum distance

)
−→ Be careful: to be efficient, we need to be efficient during the classical step

▶ We have seen quantum codes
(
and their decoding algorithm

)
:

Shor ⊊ CSS ⊊ Stabilizer

See Exercise Session:

• Shor’s code
(
9 qubits to protect 1 qubit

)
is a CSS code

• Steane’s code
(
7 qubits to protect 1 qubit

)
is a CSS code using Hamming codes

• There is a stabilizer code
(
5 qubits to protect 1 qubit

)
which is not CSS
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TO GO FURTHER

If you are interested by quantum error correcting codes:

▶ Kitaev’s toric code in the lecture notes, Section 5, by Gilles Zémor

https://www.math.u-bordeaux.fr/~gzemor/QuantumCodes.pdf
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THRESHOLD THEOREM



BUT. . .

I cheated during all this lecture. . .

Why?

Noisy quantum gates?

To encode qubits: use quantum gates. . .

If quantum gates are noisy, then our encodings are not valid and our analysis is false. . .

Do we conclude that quantum codes are only useful with perfect quantum gates?

−→ No! Hopefully. . .
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THE THRESHOLD THEOREM

Threshold theorem (admitted, see Nielsen & Chuang):

A quantum circuit containing p(n) gates may be simulated with probability of error at most ε using

O
(
poly

(
log

(p(n)
ε

)
p(n)

) )
gates on hardware whose components fail with probability at most p, if p is below some constant

threshold, p < pth , and given reasonable assumptions about the noise in the hardware

If the error to perform each gate is a small enough constant: arbitrarily long

quantum computations to arbitrarily good precision with small overhead in the number of gates

Proof strategy:

Build recursively from noisy quantum gates better
(
and larger

)
gates with the help of codes

−→ The threshold pth depends of the used quantum correcting codes

To take away: Scott Aaronson

“ The entire content of the Threshold Theorem is that you’re correcting errors faster than they’re

created. That’s the whole point, and the whole non-trivial thing that the theorem shows. That’s

the problem it solves”
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