
LECTURE 1
A SHORT INTRODUCTION TO CLASSICAL
ERROR-CORRECTING CODES
Advanced Quantum Information and Computing

Thomas Debris-Alazard

Inria, École Polytechnique

INTRODUCTION

Building an efficient quantum computer?

Let’s go
(
good luck. . .

)
! But it is impossible to build architectures that are completely isolated

from the environment: decoherence
(
pure states 7→ mixed states

)

Decoherence (←→ Quantum Noise):

There will be “noise” during computations that will modify the results. . .

▶ What does the “noise” mean?

▶ How to be “protected” against the “noise”?

−→ Do the classical computation also suffer of errors during computations?

Yes!

How do we proceed to be protected against errors in classical computations?

1

INTRODUCTION

Building an efficient quantum computer?

Let’s go
(
good luck. . .

)
! But it is impossible to build architectures that are completely isolated

from the environment: decoherence
(
pure states 7→ mixed states

)

Decoherence (←→ Quantum Noise):

There will be “noise” during computations that will modify the results. . .

▶ What does the “noise” mean?

▶ How to be “protected” against the “noise”?

−→ Do the classical computation also suffer of errors during computations?

Yes!

How do we proceed to be protected against errors in classical computations?

1

INTRODUCTION: CLASSICAL WORLD

In the early age: errors in computation, big issue!

−→ Read the story of R. Hamming in the Bell labs
(
1947

)
:

https://en.wikipedia.org/wiki/Richard_Hamming

Classically:
▶ Resource that we need to protect: the bits 0 and 1

▶ Errors: for instance bits are flipped
{
0 7→ 1
1 7→ 0

If communications
(
with bits

)
are not efficient, do we only need to improve physical devices?

−→ Information theory and coding theory offer an alternative
(
and much more exciting

)
!

2

https://en.wikipedia.org/wiki/Richard_Hamming

INTRODUCTION: CLASSICAL WORLD

In the early age: errors in computation, big issue!

−→ Read the story of R. Hamming in the Bell labs
(
1947

)
:

https://en.wikipedia.org/wiki/Richard_Hamming

Classically:
▶ Resource that we need to protect: the bits 0 and 1

▶ Errors: for instance bits are flipped
{
0 7→ 1
1 7→ 0

Breakthrough: Shannon
(
1948/1949

)
gave the foundations to protect classical computations

against errors but not only!

Protection against errors in computation ⊊ Information theory

2

https://en.wikipedia.org/wiki/Richard_Hamming

INTRODUCTION: QUANTUM WORLD, THOUGH ISSUES?

Protect against errors in the quantum world: a much harder problem!

• Problem 1: Not enough to protect |0〉 and |1〉, every linear combinations α |0〉 + β |1〉 must
be protected as well

• Problem 2: Much richer error model than for classical bits
(
not only “flip”. . .

)
• Problem 3: Impossibility to copy qubits before working on it

(
no cloning theorem

)
• Problem 4: Measurements modify the qubits. . .

To overcome these issues: take a look on how we proceed in the classical case!

3

THE OBJECTIVE OF THE DAY

A short introduction to classical error-correcting codes!

−→ There is a rich
(
and still extremely active

)
underlying theory!

It also turns out that classical error correcting codes appear almost everywhere

in computer science
(
and mathematics

)

4

COURSE OUTLINE

1. A First Example: The Repetition Code

2. Linear Codes to Detect and Correct Errors

3. Dual Representation of Linear Codes

4. Hamming and Minimum Distances

5

THE REPETITION CODE

OUR PROBLEM

Suppose that we send bits across a noisy channel

001011⇝ 001111

How can the receiver detect that an error occurred and correct it?

But also an issue for the memory:

Suppose that we stored 001011 on a magnetic memory but after some years it has been altered

and we now had 001111. How to recover the initial data?

7

THE SOLUTION: REDUNDANCY

Do what you do in your everyday life:

Add redundancy!

An example: spell your name over the phone, send first names!

M like Mike, O like Oscar, R like Romeo, A like Alpha, I like India and N like November

▶ We perform an encoding
(
i.e., adding redundancy

)
,

M 7→ Mike, O 7→ Oscar, R 7→ Romeo, A 7→ Alpha, etc. . .

▶ We send the names across the noisy channel
(
given by a bad communication over the

phone
)
,

Mike noise−−−→ “ ike”, Oscar noise−−−→ “scar”, Romeo noise−−−→ “meo”, Alpha noise−−−→ “ alph”

▶ The receiver can perform a decoding: recovering the first names and then the letters,

“ ike”→ Mike→ M, “sca”→ Oscar→ O, “meo”→ Romeo→ R, “alph”→ Alpha→ A

8

A SOLUTION WITH BITS

To transmit m ∈ {0, 1}k
(encoding)

c ∈ {0, 1}n
noisy

channel
y = c + e

Aim: recover m from y!

Important remark:

We mapped k to n > k bits
(
redundancy

)
: c encoding of m

The set of encoding c ∈ {0, 1}n for m ∈ {0, 1}k is called a code

Decoding phase:

Recover m from y = c + e where c is the encoding of m

9

A FIRST EXAMPLE: REPETITION CODE

Your first
(
error correcting

)
code: 3-repetition code

Encoding 1 bit into 3 bits,
0 7−→ 000
1 7−→ 111{

(000, 111)
}
is called the three repetition code!

Exercise:

Suppose that errors can only be bit flipping
(
0 7→ 1 and 1 7→ 0

)
. What does it mean to

successfully remove an error with the above encoding? Which errors can you successfully remove?

10

REPETITION CODE(S) TO TRANSMIT INFORMATION

• Encoding: b ∈ {0, 1} 7−→ bbb ∈ {0, 1}3

• Noisy Channel: bbb 7−→ c1c2c3 where p def
= P(ci 6= b)

• Decoding Strategy: given c1c2c3 ∈ {0, 1}3 , choose the majority bit

001 7−→ 0, 011 7−→ 1, 101 7−→ 1, etc. . .

−→ This decoding strategy is successful if there are < 2 errors

Successful Decoding with probability Unsuccessful Decoding with probability

(1− p)3 + 3p(1− p)2 p3 + 3(1− p)p2

Suppose that p = 0.01,

▶ The decoding procedure fails for the 3 repetition code with probability 3× 10−4

▶ The same decoding procedure with the 5 repetition code fails with probability ≈ 10−5

Which code will you use for communication?

11

CODE RATE

prob. successfully decoding 5-repetition code� prob. successfully decoding 3-repetition code

But. . .

Encoding 1 bit necessitates 5 > 3 bits!

−→ Higher communication cost with the 5-repetition code. . .

Code rate:

Given an encoding from k bits to n bits, i.e. m ∈ {0, 1}k 7−→ c ∈ {0, 1}n , its rate is defined as:

R def
= k

n

▶ The 3-repetition code has rate 1/3 = 0.33 · · ·

▶ The 5-repetition code has rate 1/5 = 0.2

12

CODE RATE

prob. successfully decoding 5-repetition code� prob. successfully decoding 3-repetition code

But. . .

Encoding 1 bit necessitates 5 > 3 bits!

−→ Higher communication cost with the 5-repetition code. . .

Code rate:

Given an encoding from k bits to n bits, i.e. m ∈ {0, 1}k 7−→ c ∈ {0, 1}n , its rate is defined as:

R def
= k

n

▶ The 3-repetition code has rate 1/3 = 0.33 · · ·

▶ The 5-repetition code has rate 1/5 = 0.2

12

CODE RATE TENDING TO 0 TO ENSURE RELIABLE COMMUNICATION?

Suppose that p = 0.01 is the probability that a bit is flipped across the noisy channel

• The majority voting fails for the 3 repetition code with probability 3× 10−4

• The majority voting fails for the 5 repetition code with probability ≈ 10−5

But,

▶ The 3-repetition code has rate 1/3 = 0.33 · · ·

▶ The 5-repetition code has rate 1/5 = 0.2

Is the rate necessarily go to 0 in order to fail the decoding phase with probability tending to 0?

No! Second Shannon’s theorem

−→ ∀ Rate ≤ Channel Capacity

It is possible to decode with probability of success tending to 1!

13

(SECOND) SHANNON THEOREM

Shannon’s noisy-channel coding theorem has two parts: one positive and one negative

Shannon’s noisy-channel coding theorem:

1. For every channel Q, the channel capacity C(Q) ∈ (0, 1) has the following property: for all

ε > 0 and R < C(Q), for large enough n, there exists a code⊆ {0, 1}n whose rate is≥ R, and

an associated decoding algorithm such that the probability of error is < ε

2. Reciprocally, for any code ⊆ {0, 1}n with rate R > C(Q), whatever is the decoding algorithm,

its probability of error will tend
(
with n

)
to 1

Informal statement: we did not define properly what is

• A channel

• The capacity of a channel

−→ For more details see CSC_51063_EP content
(
Lectures 6 and 7

)
!

14

BSC CAPACITY

p = 0.01: the 3-repetition code fails to decode with probability 3× 10−4 with a rate 0.33 . . .

But capacity: C(0.01) = 1− h(0.01) = 0.919 where h(x) def
= −x log2 x− (1− x) log2(1− x)

We can do much better! Even with success probability tending to 1

0.01 0.20 0.40 0.60 0.80 1.00
p

0.2

0.4

0.6

0.8

1.0

1− h(p)

15

BE CAREFUL: MODEL FOR THE CHANNEL

Up to now we considered the following noise model:

Binary Symmetric Channel BSC(p):

1 1
1− p

0 0
1− p

p

p

−→ There many other
(
realistic

)
channel models! For instance by scratching a CD-ROM you

remove bits

Exercise: Binary Erasure Channel BEC(p)

1 1
1− p

0 0
1− p

?

p

p

Is it “easier” to decode the 3-repetition repetition when BSC or BEC? What do you conclude?
16

LINEAR CODES

AN ISSUE: HOW TO ADD REDUNDANCY?

m ∈ {0, 1}k
(encoding)

c ∈ {0, 1}n

A first pre-requisite to enable efficient communication over a noisy channel: we want the mappings

m 7→∈ c and c 7→ m

to be efficient

Issue:

There are 2k messages m ∈ {0, 1}k . . .

−→ It seems that we need to store a table of exponential size with all the mappings
(
m, c

)

To overcome this issue: linear codes!

18

THE BINARY FIELD AND ITS ASSOCIATED VECTOR SPACE STRUCTURE

F2 = {0, 1} where

0 + 0 = 0, 1 + 0 = 0 + 1 = 1, 1 + 1 = 0 ; 1× 0 = 0× 1 = 0× 0 = 0, 1× 1 = 1

Fn2 = F2 × · · · × F2︸ ︷︷ ︸
n times

is a F2-vector space

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

∀λ ∈ F2 , λ · (x1, . . . , xn) = (λ× x1, . . . , λ× xn)

Concepts as subspaces, dimensions, etc. . . are defined in Fn2

19

LINEAR CODES

Linear codes:

A linear code C is a subspace of Fn2
When C has dimension k, we say that it is an [n, k]-code: n length, k dimension

Repetition code of length 3: {
(0, 0, 0), (1, 1, 1)

}
is a [3, 1]-code

Exercise:

Show that an [n, k]-code has size 2k

20

A NON TRIVIAL EXAMPLES OF LINEAR CODES

(U, U + V) code:

Given two linear codes U, V ⊆ Fn/22 , (U, U + V) def
=

{
(u, u + v) : u ∈ U and v ∈ V

}
⊆ Fn2

Exercise Session:

What is the dimension of the above linear code?

21

HOW TO REPRESENT A LINEAR CODE?

How to represent an [n, k]-code? It has size 2k , is a table of this size necessary?

No!

Basis/Primal representation:

An [n, k]-code C admits a basis b1, . . . , bk ∈ Fn2

C =
{
mG : m ∈ Fk2

}
where the rows of G ∈ Fk×n

2 are the bi ’s

The matrix G is called a generator matrix of C

22

HOW TO REPRESENT A LINEAR CODE?

How to represent an [n, k]-code? It has size 2k , is a table of this size necessary?

No!

Basis/Primal representation:

An [n, k]-code C admits a basis b1, . . . , bk ∈ Fn2

C =
{
mG : m ∈ Fk2

}
where the rows of G ∈ Fk×n

2 are the bi ’s

The matrix G is called a generator matrix of C

22

AN EFFICIENT ENCODING

Given a generator matrix G ∈ Fk×n
2 of C with dimension k,

▶ We can efficiently encode m ∈ Fk2 as mG
(
multiplication matrix-vector

)
▶ From c = mG ∈ C we can easily recover m. But how?

1. By a Gaussian elimination compute S ∈ Fk×k
2 non-singular such that SG =

(
Ik | A

) (
up to

a permutation of the columns
)

2. Then c = mS−1SG = mS−1(Ik | A), and m = (c1, . . . , ck)S

−→ This is nothing else than the procedure to solve a linear system

Conclusion:

The encoding m 7→ c and c 7→ m are efficient procedures
(
only linear algebra

)

23

AN EFFICIENT ENCODING

Given a generator matrix G ∈ Fk×n
2 of C with dimension k,

▶ We can efficiently encode m ∈ Fk2 as mG
(
multiplication matrix-vector

)
▶ From c = mG ∈ C we can easily recover m. But how?

1. By a Gaussian elimination compute S ∈ Fk×k
2 non-singular such that SG =

(
Ik | A

) (
up to

a permutation of the columns
)

2. Then c = mS−1SG = mS−1(Ik | A), and m = (c1, . . . , ck)S

−→ This is nothing else than the procedure to solve a linear system

Conclusion:

The encoding m 7→ c and c 7→ m are efficient procedures
(
only linear algebra

)

23

THE BIG PICTURE

How to transmit k bits over a noisy channel?

1. Linear code: fix C subspace ⊆ Fn2 of dimension k < n with generator matrix G

2. Encoding: map (m1, . . . ,mk) −→ c = (c1, . . . , cn) ∈ C task adding n− k bits redundancy

−→ as C is linear the encoding is easy
(
only linear algebra

)
, i.e. c = mG

3. Send c across the noisy channel, errors happen and some bits of c are modified

Sender

m

Encoding

c

Noisy Channel

Error e

c + e

Decoding

c? m

Decoding:

−→ from c + e: recover e and then c. Now as G has rank k, we easily recover m

by Gaussian elimination
(
we use the linearity

)
24

DUAL REPRESENTATION

DUAL CODE

Linear codes as subspaces can also be written as the kernel of a matrix

Dual code:

Given an [n, k]q-code C, its dual C⊥ is an [n, n− k]-code defined as

C⊥ =

c⊥ ∈ Fn2 : ∀c ∈ C, 〈c⊥, c〉 def=
n∑
i=1

c⊥i ci︸︷︷︸
∈F2

= 0

Parity-check/Dual Representation:

C⊥ is an [n, n− k]-code. Furthermore, for any generator matrix H ∈ F(n−k)×n
2

(
rows of H

form a basis of C⊥
)
we have,

C =
{
c ∈ Fn2 : Hc⊺ = 0

}
Such matrix H is called a parity-check matrix of C

Exercise: from one representation to the other:

From a parity-check matrix we can efficiently compute a generator matrix and reciprocally(
basically only Gaussian elimination

)
26

PROOF

Proof:

It is clear that C⊥ is a subspace of Fn2 . Let us show that C
⊥ has dimension n− k. First, C can be

written as the right kernel of a matrix H ∈ F(n−k)×n
2 with rank n− k,

C =
{
c ∈ Fn2 : Hc⊺ = 0

}
Therefore, all rows of H are elements in C⊥ showing that dim C⊥ ≥ n− k. On the other hand, if

B ∈ Fm×n
2 is a basis

(
considering its rows

)
of C⊥ . Then by linearity C is included in the

(
right

)
kernel of B. We deduce that k = dim C ≤ n− dim C⊥ concluding the whole proof

27

WHY IS IT USEFUL?

To transmit m ∈ {0, 1}k
(encoding)

c ∈ {0, 1}n
noisy

channel
y = c + e

Aim: recover m from y!

It is equivalent to recover c or e

A fundamental computation:

Given y = c + e where c ∈ C and H parity-check matrix of C:

Hy⊺ = H(c + e)⊺ = Hc⊺ + He⊺ = He⊺

−→ We used the fact that c ∈ C and therefore by definition Hc⊺ = 0

H enables to extract information about e from y = c + e

28

HAMMING CODE

Let CHam be the [7, 4]-code with parity-check matrix:

H def
=

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

Let c + e where
{

c ∈ CHam
only one bit of e is 1 : how to easily recover e?

1. Compute: H(c + e)⊺ = Hc⊺ + He⊺ = He⊺

2. e has only one non-zero bit, He⊺ is a column of H

3. Columns of H are the binary representation of 1, 2, . . . , 7: He⊺ gives
(
in binary

)
the position

where there is an error!

Hamming codes can correct one error!

−→ There are more clever codes than repetition or Hamming codes. . . In particular these codes

don’t seem “good”. We will see later a criteria
(
minimum distance

)
for “good codes”

29

HAMMING CODE

Let CHam be the [7, 4]-code with parity-check matrix:

H def
=

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

Let c + e where
{

c ∈ CHam
only one bit of e is 1 : how to easily recover e?

1. Compute: H(c + e)⊺ = Hc⊺ + He⊺ = He⊺

2. e has only one non-zero bit, He⊺ is a column of H

3. Columns of H are the binary representation of 1, 2, . . . , 7: He⊺ gives
(
in binary

)
the position

where there is an error!

Hamming codes can correct one error!

−→ There are more clever codes than repetition or Hamming codes. . . In particular these codes

don’t seem “good”. We will see later a criteria
(
minimum distance

)
for “good codes”

29

A QUICK REMINDER: QUOTIENT SPACES

Given two finite subspaces: F ⊆ E

Equivalence relation: x ∼ y ⇐⇒ x− y ∈ F

E/F = {x : x ∈ E} where x def
= {y ∈ E : x ∼ y} = x + F

−→ It defines a linear space!

dim E/F = dim E− dim F

Rough analogy:

E/F Z/4Z

{x1, . . . , xN} {0, 1, 2, 3}
xi = xi + F ℓ = ℓ + 4Z

x = y ⇐⇒ x− y ∈ F ℓ = m ⇐⇒ ℓ− m ∈ 4Z
E =

⊔
1≤i≤N

xi Z =
⊔

ℓ∈{0,1,2,3}
ℓ

30

COSETS: MODULO THE CODE

Decoding: given c + e, recover e

−→ Make modulo C to extract the information about e

Coset space: Fn2/C

♯ Fn2/C = 2n−k and Fn2/C =
{
xi : 1 ≤ i ≤ 2n−k

}
=

{
xi + C : 1 ≤ i ≤ 2n−k

}
where the xi ’s are the representatives of Fn2/C. The xi + C’s are disjoint!

A natural set of representatives via a parity-check H: syndromes

Proposition:

We have:

1. xi + C ∈ Fn2/C 7−→ Hx⊺i ∈ Fn−k
2

(
called a syndrome

)
is an isomorphism

2. Fn2 =
⊔

s∈Fn−k
2

{
z ∈ Fn2 : Hz⊺ = s⊺

}

c + e mod C = H(c + e)⊺ = Hc⊺︸︷︷︸
=0

+He⊺ = He⊺ which gives information to recover e
(
decoding

)
−→ c + e mod C is only function of e!

31

PROOF

Proof:

1. Let us first show that xi + C ∈ Fnq/C 7−→ Hx⊺i ∈ Fn−k
2 is a well-defined mapping. If we

choose another class representative yi + C = xi + C. Then by definition

yi − xi ∈ C ⇐⇒ H(yi − xi)
⊺
= 0 ⇐⇒ Hy⊺i = Hx⊺i

It shows that we have a well-defined mapping. But the equivalence also shows that it is a

one-to-one mapping

The above application is surjective as H has rank n− k, therefore for any s ∈ Fn−k
2 it exists

x ∈ Fn2 such that Hx
⊺
= s⊺ and x defines one representative. Furthermore the mapping is

clearly linear, concluding the proof of 1

2. This is a consequence of the equivalence relation but let’s give a direct proof. We have shown

above that ∀z ∈ Fn2 , it exists s ∈ Fn2 such that Hz
⊺
= s⊺

(
H has rank n− k

)
.

To conclude notice that
{
z ∈ Fn2 : Hz⊺ = s⊺

}
are clearly disjoint for s ∈ Fn−k

2

32

TO TAKE AWAY

C be an [n, k]-code with generator and parity-check matrices G and H

▶ Given a noisy codeword, y = c︸︷︷︸
∈C

+e, its syndrome is

Hy⊺ = Hc⊺ + He⊺ = He⊺ where we used C =
{
c ∈ Fn2 : Hc⊺ = 0

}
▶ Given a syndrome, s⊺ = He⊺ , we can easily compute its associated noisy codeword, by a

Gaussian elimination we compute y such that Hy⊺ = s⊺
(
as rank(H) = n− k

)
Hy⊺ = s⊺ ⇐⇒ H(y− e)⊺ = 0⇐⇒ y− e ∈ C ⇐⇒ y = c︸︷︷︸

∈C

+e

33

HAMMING AND MINIMUM DISTANCES

HAMMING WEIGHT AND HAMMING DISTANCE

Hamming weight:

∀x ∈ Fn2 , |x|
def
= ♯

{
i ∈ [1, n], xi 6= 0

}

Hamming Distance:

dH(x, y) def
= ♯

{
i ∈ [1, n] : xi 6= yi

}

−→ dH(x, y) = |x− y|

Remark:

Be careful: | · | is not a norm but dH(·, ·) is a distance

35

MINIMUM DISTANCE

An important parameter for a code: its minimum distance

−→ It measures the quality of a code in terms of “error detection”

Minimum Distance:

Given C ⊆ Fn2 , its minimum distance is defined as

dmin(C)
def
= min

{
|c1 − c2| : c1, c2 ∈ C and c1 6= c2

}

Remark:

For a linear code C,
dmin(C) = min

{
|c| : c ∈ C\{0}

}

36

ERROR DETECTION

Suppose that someone sends us a codeword c ∈ C across a noisy channel

Our goal is to guess if an error occurred

How can we proceed? What is the maximal amount of errors for which we can take the right

decision with certainty?

Error detection strategy:

Given a received y we compute Hy⊤ for H being a parity-check matrix of the code. If we obtain 0

then we say that no error occurred

This strategy gives the right answer with certainty if the Hamming weight of the error is< dmin(C)!

Proof:

If an error occurred then we receive c + e. Therefore H (c + e)⊤ = Hc⊤ + He⊤ = He⊤ . Then if

|e| < dmin(C) we necessarily have e /∈ C and He⊤ 6= 0. However, if |e| ≥ dmin(C) it is possible

that e ∈ C and He⊤ = 0

37

ERROR DETECTION

Suppose that someone sends us a codeword c ∈ C across a noisy channel

Our goal is to guess if an error occurred

How can we proceed? What is the maximal amount of errors for which we can take the right

decision with certainty?

Error detection strategy:

Given a received y we compute Hy⊤ for H being a parity-check matrix of the code. If we obtain 0

then we say that no error occurred

This strategy gives the right answer with certainty if the Hamming weight of the error is< dmin(C)!

Proof:

If an error occurred then we receive c + e. Therefore H (c + e)⊤ = Hc⊤ + He⊤ = He⊤ . Then if

|e| < dmin(C) we necessarily have e /∈ C and He⊤ 6= 0. However, if |e| ≥ dmin(C) it is possible

that e ∈ C and He⊤ = 0

37

FROM ERROR DETECTION TO DECODING

If the Hamming weight of the error is < dmin(C) we can detect it

Is there some kind of such criteria over the error to ensure that we can successfully decode?

−→ Yes!

A decoding strategy:

Given y = c + e where c ∈ C, compute

c0 ∈ C such that |y− c0| = min
(
|y− c1| : c1 ∈ C

)
If |e| < dmin(C)/2, then c0 = c and our decoding is successful!

38

FROM ERROR DETECTION TO DECODING

If the Hamming weight of the error is < dmin(C) we can detect it

Is there some kind of such criteria over the error to ensure that we can successfully decode?

−→ Yes!

A decoding strategy:

Given y = c + e where c ∈ C, compute

c0 ∈ C such that |y− c0| = min
(
|y− c1| : c1 ∈ C

)
If |e| < dmin(C)/2, then c0 = c and our decoding is successful!

38

DECODING: A WORST CASE CONDITION

x ∈ Fn2 , B(x, r)
def
=

{
y ∈ Fn2 : |y− x| ≤ r

}
Proposition:

Given a code C ⊆ Fn2 ,

∀c1, c2 ∈ C, c1 6= c2 : B
(
c1,

⌊
dmin(C)−1

2

⌋)⋂
B
(
c2,

⌊
dmin(C)−1

2

⌋)
= ∅

Proof:

By contradiction, suppose there exists y ∈ B
(
c1,

⌊
dmin(C)−1

2

⌋)⋂
B
(
c2,

⌊
dmin(C)−1

2

⌋)
,

|c1 − c2| = |(c1 − y)− (c2 − y)|
≤ |c1 − y| + |c2 − y| (triangular inequality)

≤
⌊dmin(C)− 1

2

⌋
+

⌊dmin(C)− 1
2

⌋
< dmin(C)

which is a contradiction as c1 6= c2 and they belong to C with minimum distance dmin(C)

When transmitting c ∈ C, if the Hamming weight of the error is < dmin(C)/2, then computing

the closest codeword for the Hamming distance necessarily gives c
39

DECODING: A WORST CASE CONDITION, THE SYNDROME POINT OF VIEW

Proposition:

Given a linear code C with parity-check matrix H, the He⊺ are distinct when |e| < dmin(C)/2

Proof:

See Exercise Session

40

BE CAREFUL

When transmitting c ∈ C, if the Hamming weight of the error is < dmin(C)/2, then computing

the closest codeword for the Hamming distance necessarily gives c

The above statement says that with < dmin(C)/2 errors the decoder computing the closest

codeword for the Hamming distance succeeds with certainty!

−→ There are codes for which computing the closest codeword works with probability 1− e−Cn

as soon as there are ≤ dmin(C) errors, we gain a factor two!(
in particular random codes, for more details see Lecture 8 in CSC_51063_EP

)

41

CONCLUSION

CONCLUSION

▶ Adding redundancy, a process called encoding, enables to be protected against errors

▶ Shannon’s theorem: not too much redundancy needs to be added to be protected against

the noise
(
via the capacity of the noisy channel

)
▶ Linear codes are nice objects to be able to perform efficiently the encoding

▶ In practice: consider the noise as flipping the bits

−→ But it is not the only model of noise

▶ Hamming weight enables to quantify the amount of errors

▶ The minimum distance is a good quantity to quantity the amount of noise which can be

decoded and detected

Conceptual hard part of the lecture:

Familiarize yourself with the coset point of view
(
via syndromes

)
43

BE CAREFUL ABOUT THE DECODING PHASE

About Shannon’s theorem

Given a noisy channel Q, Shannon tells us that it exists a code which can be decoded if and only if

its rates is < C(Q)
(
capacity of the channel

)
−→ It does not explicit a code with an associated efficient decoding algorithm!

About the closest codeword:

Given y = c + e where c ∈ C, computing the closest codeword is a hard task
(
we don’t know how

to efficiently perform this operation
)

It turns out that designing codes with an efficient decoding algorithm is a very hard task! It is still

an active research topic with deep implications in practice

Few families of codes with an efficient decoding algorithm are known. For instance:

▶ Reed-Solomon codes and the family of Algebraic Geometric
(
AG

)
codes

▶ Polar codes derived from (U, U + V)-codes

▶ Convolutional codes 44

IF YOU ARE INTERESTED

▶ See lectures
(
and exercise sessions

)
from CSC_51063_EP

▶ Nice lecture notes by Alain Couvreur
(
with a focus on algebra

)
:

http://www.lix.polytechnique.fr/~alain.couvreur/doc_ens/lecture_notes.pdf

▶ The “bible” of error correcting codes: The theory of error correcting codes, F.J. MacWilliams ,

N.J.A. Sloane
(
1978

)

Error correcting codes have a huge impact in theoretical computer science, cryptography,

communications, quantum key distribution
(
QKD

)
, etc. . .

The approach given in this lecture is at the core of the design of quantum error correcting codes

45

http://www.lix.polytechnique.fr/~alain.couvreur/doc_ens/lecture_notes.pdf

EXERCISE SESSION

	The repetition code
	Linear Codes
	Dual Representation
	Hamming and Minimum Distances
	Conclusion
	Exercise Session

