
Post-Quantum Cryptography - Codes

Lecture 3: Information Set Decoding Algorithms
Lecturer: Thomas Debris-Alazard

Introduction

The aim of any code-based cryptosystem is to rely its security on the hardness of the decoding problem
when the input code is random. It is therefore crucial to study the best algorithms, usually called
generic decoding algorithms, for solving this problem. Despite many efforts on this issue the best ones
[BJMM12, MO15, BM17] are exponential in the number of errors that have to be corrected and all can
be viewed as a refinement of the original Prange’s algorithm [Pra62]. They are actually referred to as
Information Set Decoding (ISD). The aim of these lecture notes is to describe the “first” ISD algorithms.
Our description will be mainly algorithmic with the use of parity-check matrices. However in this (too long)
introduction we try to give another point of view, more related to the inherent mathematical structure of
codes: linear subspaces of some Fn

q .

Prange’s approach: use linearity. Given an [n, k]q−code C and one word y ∈ Fn
q , we are looking for

some codeword c ∈ C at distance t from y, namely |y − c| = t. Here C is defined as a linear subspace of Fn
q

of dimension k. Therefore one can check that there exists some set of positions I ⊆ J1, nK of size k, called
an information set, which uniquely determines every codewords, more precisely

∀x ∈ Fk
q : ∃!c ∈ C (that we can easily compute by linear algebra) such that cI = x

where cI denotes the vector whose coordinates are those of c = (ci)1≤i≤n which are indexed by I , i.e.
cI = (ci)i∈I .

Exercise 1. Let C be an [n, k]q-code and I ⊆ J1, nK be of size k. Show that,

I is an information set for C ⇐⇒ ∀G generator matrix of C, GI is invertible
⇐⇒ ∀H parity-check matrix of C, HI is invertible

where given M ∈ Fr×n
q , MI denotes the matrix whose columns are those of M which are indexed by I .

Prange’s idea to recover some solution csol ∈ C, where y = csol + esol and |esol| = t, is as follows. First we
pick some random information set I and we hope that it contains no error positions, namely:

(1) csol
I = yI

(
⇐⇒ esol

I = 0
)
.

If this is true, we are done. It remains to compute the unique codeword c such that cI = yI as by uniqueness
we get c = csol. In other words, Prange’s idea (when looking for a close codeword) simply consists in picking
some information set I , computing the unique codeword c equal to y on those coordinates, and then to
check if the constraint (1) is verified, namely if |y − c| = t. The average number of times we have to pick a
set I in Prange’s algorithm until finding a solution is therefore given by 1/ppr where ppr is the probability
that Equation (1) is verified. As we will see, 1/ppr is

• polynomial for t/n =
(

q−1
q

) (
1− k

n

)
,

• exponential in t when t/n ∈
]
0,
(

q−1
q

) (
1− k

n

)[
1

2

as long as n → +∞ and k/n is some constant. Interestingly, all improvements of Prange’s algorithm, since
sixty years, have the same behaviour with respect to t/n. Even though Prange’s algorithm is quite naive, it
really shows where decoding is easy, where it is not.
Let us now describe how these improvements, in particular ISD algorithms, were obtained as they start
from the same key idea. For this let us back up a bit.

Dumer’s approach: a collision search. The simplest way to find a codeword c at distance t from y

is basically enumerating all the errors e of weight t until finding one that reaches y − e ∈ C. This naive
approach will obviously cost

(
n
t

)
(q−1)t. However, taking advantage of the birthday paradox, this exhaustive

enumeration can be improved as Dumer showed [Dum86]. Dumer’s idea was to notice that if one splits
in two parts(1) of the same size some parity-check matrix H =

(
H1 H2

)
of C, then solving the decoding

problem boils down to finding e1 and e2 of Hamming weight t/2 such that H1e
⊺
1 +H2e

⊺
2 = Hy⊺. A natural

strategy to compute a solution e = (e1, e2) reduces to compute the following lists of Fn−k
q

L1
def
=

{
H1e

⊺
1 : |e1| =

t

2

}
and L2

def
=

{
−H2e

⊺
2 +Hy

⊺
: |e2| =

t

2

}
and then to compute their “collision”

L1 ▷◁ L2
def
=
{
(e1, e2) ∈ L1 × L2, H1e

⊺
1 = −H2e

⊺
2 +Hy

⊺}
.

This new list trivially leads to solutions of the decoding problem. However, what is the cost of this procedure?
By using classical techniques such as hash tables or sorting lists, computing L1 ▷◁ L2 costs, up to a
polynomial factor, max(♯L1, ♯L2)+ ♯ (L1 ▷◁ L2). Notice now that both lists L1 and L2 have the same size,
namely (

n/2

t/2

)
(q − 1)t/2 = Õ

(√(
n

t

)
(q − 1)t

)
.

To estimate the cost of this procedure it remains to estimate the size of L1 ▷◁ L2. One can check that
Dumer’s approach finds all the solutions of the decoding problem (given by ≈ max

(
1,
(
n
t

)
(q − 1)t/qn−k

)
as

shown in lecture notes 2) but up to some polynomial loss, given by the probability that a solution e is not
split into two equal parts. Then, L1 ▷◁ L2 is the set of solution(s) of the considered decoding problem. To
summarize, Dumer’s approach enables to roughly find (up to polynomial factors)

(2) max

(
1,

(
n
t

)
(q − 1)t

qn−k

)
solutions in time

√(
n

t

)
(q − 1)t +

(
n
t

)
(q − 1)t

qn−k
.

Notice in the case where t is equal to the Gilbert-Varshamov distance, namely when
(
n
t

)
(q − 1)t ≈ qn−k,

Dumer’s algorithm has a quadratic gain compared to the exhaustive search. However, it is even better, as
shown by the following proposition.

Proposition 1. The running time of Prange’s algorithm for solving DP(n, q,R, τ) when τ = h−1
q (1−R)(2)

and R → 1 is given by:
qn (1−R)(1+o(1))

while Dumer’s algorithm will cost:
qn

1−R
2 (1+o(1)).

(1)To simplify the presentation, the cut is explained by taking the first n−k
2

positions for the first part and the other n−k
2

else for the second part, but of course in general these two sets of positions are randomly chosen.
(2)The relative Gilbert-Varshamov distance.

3

Dumer’s algorithm has therefore a quadratic gain over Prange when the code rate tends to one and decoding
at the Gilbert-Varhsamov distance. Though, the primary interest of this approach is not here. First, Dumer’s
algorithm finds (almost) all solutions of the decoding problem even if there are many of them. Furthermore,
the distance t can be chosen such that it finds (almost) all of them in amortized time one.

Definition 1 (Amortized time one). An algorithm that outputs S solutions in time T of some problem is
said to be in amortized time one if S = T

P (n) for some polynomial P . In the sequel we will always neglect
this polynomial factor.

Dumer’s algorithm works in amortized time one when t is beyond the Gilbert-Varshamov bound and verifies:

(3)

√(
n

t

)
(q − 1)t =

(
n
t

)
(q − 1)t

qn−k
⇐⇒

(
n

t

)
(q − 1)t =

(
qn−k

)2
.

As we are going to explain, most of the ideas to improve Prange’s algorithm were based on these two
remarks. The key idea is to reduce the initial decoding problem to a “denser” decoding problem where
there are an exponential number of solutions but which can be found in amortized time one.

A mixed approach: ISD. The key point to improve Prange’s algorithm starts from the following idea.
Given some set of positions J ⊆ J1, nK of size k+ℓ where ℓ > 0, compute first a set S of decoding candidates
which are some vectors at distance p from the target y when their coordinates are restricted to J , namely:

(4) S ⊆
{
cJ : |cJ − yJ | = p and c ∈ C

}
.

Notice that S is a subset of the solutions of a decoding problem at distance p when it is given as input the
target yJ and the code

(5) D
def
=
{
cJ ∈ Fk+ℓ

q : c ∈ C
}
.

It turns out that D is a code known as the punctured code of C at the positions J . Its length is k+ ℓ and its
dimension is k if J is an augmented information set, namely it contains some information set of C, which
will be assumed in what follows. Under this condition, cJ uniquely determines its “lift” c ∈ C which can
be easily computed by linear algebra.

Exercise 2. Let C be an [n, k]q-code and J ⊆ J1, nK be of size k + ℓ. Show that,

J is an augmented information set for C ⇐⇒ D defined in Equation (5) has dimension k.

Now, for the codeword c ∈ C, such that cJ ∈ S , to be a solution of the original decoding problem, it has
necessarily to verify

(6)
∣∣∣cJ − yJ

∣∣∣ = t− p.

This condition is weaker than of Prange algorithm (see Equation (1)): by picking our set J we do not hope
to remove all the errors but only some fraction of it. Furthermore, contrary to Prange’s approach we have
many decoding candidates for each draw of the augmented information set J . However, notice that smaller
is p, harder it will be to compute even one decoding candidate. Therefore we cannot reasonably hope to
choose p too small if we seek to test many decoding candidates at each draw of J . It also turns out that if p
is too small (below the Gilbert-Varshamov bound of the punctured code D) no solutions are expected while
on the other hand, if p is just above the Gilbert-Varshamov distance, we expect an exponential number of
solutions.
So all in all, we have reduced our problem to decode a code of length n and dimension k to the bet made in (6)
and the computation of S (i.e. the decoding candidates) which is nothing else than decoding a “sub”-code

4

of length k+ℓ and dimension k. This whole approach is known as Information Set Decoding (ISD). Note that
we are completely free to choose our favourite algorithm to compute S . Each ISD is then “parametrized”
by the algorithm used as a subroutine for computing this set and, the better the algorithm, the better the
ISD. However one may ask our meaning of a “better” algorithm for computing S . To understand this let
us introduce the probability αp,ℓ that a fixed cJ ∈ S leads to c ∈ C which verifies Equation (6). We will
show that the overall probability (after computing S) to get a solution is given by ≈ min (1, ♯S αp,ℓ). It
will lead to the following proposition that gives the running time of the whole algorithm to solve DP(3).

Proposition 2. Assume that, given a random code D of length k + ℓ, dimension k and a target z ∈ Fk+ℓ
q ,

we can compute in time T a set of size S of codewords d ∈ D at distance p from z. Then, we can solve
DP(n, q,R, τ) in average time (up to a polynomial factor in n)

(7) T max

(
1,

1

S αp,ℓ

)
.

The overall cost for solving DP is therefore crucially parametrized by the cost for decoding a code D of rate
k/(k + ℓ) at distance p, but notice that we need to find S solutions in time T and a priori not only one. If
we want to design algorithms achieving this task such that the ISD improves original Prange’s algorithm we
have first to understand how parameters p, ℓ and quantities T , S interact.
Let us admit that p 7→ αp,ℓ is a decreasing function. Notice now that, the larger p, the larger the number of
solutions and the easier the decoding of D at distance p. Therefore we can reasonably suppose that p 7→ T

is also a decreasing function. These two facts lead to a contradictory situation to minimize the ISD cost, we
need to choose p as small as possible for minimizing 1/αp,ℓ while at the same time we need to choose a large
p to decrease T . Notice now, as T ≥ S, that we have

T max

(
1,

1

S αp,ℓ

)
≥ 1

αp,ℓ

Therefore we do not really have the choice, to minimize the cost of the ISD we have in the best case to design a
sub-routine such that for parameters p and ℓ we have above an equality instead of an inequality. In particular
it shows that our decoding algorithm at distance p (as small as possible) needs to find solutions in amortized
time one, i.e. S = T . If this can be done we would get an improvement over Prange. Indeed, we have
to remember that αp,ℓ, the probability that our decoding candidate verifies Equation (6), is exponentially
larger than the probability to verify Equation 1 as in Prange’s algorithm (our bet is weaker).
Our discussion has just shown that it is theoretically possible to improve Prange’s algorithm if we succeed,
given a code D of length k + ℓ, dimension k and any target z, to compute in amortized time one many
codewords d ∈ D at distance p (as small as possible) from z. The fundamental remark here is that D has
a rate given by k/(k + ℓ) ≈ 1 when ℓ is not too large. It corresponds exactly to the range of parameters
where Dumer’s algorithm (that we have described earlier) can decode in amortized time one and can also
have a quadratic gain over the original Prange algorithm. However parameters p and ℓ have to be carefully
chosen as in Equation (3) (where replace t by p and n by k+ ℓ). In particular p cannot be chosen too small.
Even though this choice of parameters is extremely constrained, the ISD using Dumer’s algorithm improves
Prange algorithm. But the better was yet to come. More sophisticated algorithms were designed, enabling
to change the balance of parameters between p and ℓ by still decoding in amortized time one (in particular
decreasing p/(k + ℓ) but also increasing ℓ to move away the rate k/(k + ℓ) from one). In these lecture notes
we will restrict our study to the improvement given by the generalized birthday algorithm [Wag02]. But
nowadays there exists far better techniques, such as “representations technique” (originally used for solving
subset-sum problems) [BJMM12] or nearest neighbours search [MO15, BM17] but this is out of scope of

(3)The following proposition is the equivalent of Proposition 8 with the “noisy codeword” point of view.

5

these lecture notes.

Basic notation. Given H ∈ Fr×n
q and I ⊆ J1, nK we will denote by HI the matrix whose columns are

those of H which are indexed by I .
During all these lecture notes both R ∈ (0, 1) and the field size q will be supposed to be constants.

Described algorithms to solve DP. We will describe three ISD algorithms to solve DP(n, q,R, τ) (Problem
5 in lecture notes 1). In each case we will show that their running time (over the input distribution) is of
the form 2n α(n,q,R,τ)(1+o(1)). For all of them (and all known algorithms), their exponent α(n, q,R, τ) is > 0

as long as τ does not belong to
[
q−1
q (1−R), R+ q−1

q (1−R)
]

as roughly described in Figure 1. Our aim
during this lecture will be to compute the exponents of the three described algorithms. We draw them in
Figures 2, 3 and 4 as function of τ for some rates R and field sizes q.

α(n, q,R, τ) > 0 α(n, q,R, τ) > 0

α(n, q,R, τ) = 0

τ

0 (1−R) q−1
q R+ (1−R) q−1

q

τ+τ−

1

exponentially many solutions

one solution one solution

Figure 1. Exponents of the best generic decoding algorithms and expected number of
solutions of DP(n, q,R, τ) as function of τ .

0.2 0.4 0.6 0.8 1
τ

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R= 0.2
R= 0.4
R= 0.6
R= 0.8

Figure 2. Exponent of Prange’s algorithm (in base 2) to solve DP(n, q,R, τ) for q = 3 and
different rates R as function of τ .

6

0.2 0.4 0.6 0.8 1
τ

0.05

0.1

0.15

0.2

0.25

q= 7
q= 5
q= 3
q= 2

Figure 3. Exponent of Prange’s algorithm (in base 2) to solve DP(n, q,R, τ) for R = 0.5

and different field sizes q as function of τ .

0.2 0.4 0.6 0.8 1
τ

0.05

0.1

0.15

0.2

0.25

Prange
Dumer ISD
Wagner ISD

Figure 4. Exponents of Prange’s algorithm and ISD with Dumer and Wagner’ algorithms
(in base 2) to solve DP(n, q,R, τ) for R = 0.5 and q = 3 as function of τ .

1. Prange Algorithm

From now on, let us fix some instance (H, s) ∈ F(n−k)×n
q × Fn−k

q of the decoding problem DP(n, q,R, τ)

where recall that k = bRnc. Our aim is to find e ∈ Fn
q of Hamming weight t = bτnc such that eH⊺ = s and

we know that by definition there is at least one solution.

7

It corresponds to solving a linear system with n − k equations and n unknowns with a constraint on the
Hamming weight of the solution. Prange’s idea simply consists in “fixing” k unknowns and then solving a
square linear system of size (n−k)× (n−k) hoping that the solution will have the correct Hamming weight;
if not, we just repeat by fixing k other unknowns(4). More precisely, Prange’s algorithm is as follows. Let us
first introduce the following distribution Dt over vectors of Fk

q , for reasons that will be clear in the sequel.

The distribution Dt.

• If t < q−1
q (n− k), Dt only outputs 0 ∈ Fk

q ,
• if t ∈ J q−1

q (n− k), k + q−1
q (n− k)K, Dt outputs uniform vectors of weight t− q−1

q (n− k),
• if t > k + q−1

q (n− k), Dt outputs uniform vectors of weight k.

The algorithm.

1. Picking the information set. Let I ⊆ J1, nK be a random set of size k. If HI ∈ F(n−k)×(n−k)
q is not

of full-rank, pick another set I .
2. Linear algebra. Perform a Gaussian elimination to compute a non-singular matrix S ∈ F(n−k)×(n−k)

q

such that SHI = 1n−k.
3. Test Step. Pick x ∈ Fk

q according to the distribution Dt and let e ∈ Fn
q be such that

(8) eI =
(
s− xH

⊺
I

)
S
⊺ ; eI = x.

If |e| 6= t go back to Step 1, otherwise it is a solution.

Correction of the algorithm. It easily follows from the following computation,

SHe
⊺
= SHI e

⊺
I

+ SHI e
⊺
I

= e
⊺
I

+ SHI e
⊺
I (by definition SHI = 1n−k)

= S
(
s
⊺ −HI x

⊺)
+ SHI x

⊺ (by Equation (8))

= Ss
⊺

which corresponds to He⊺ = s⊺ as S is non-singular. Furthermore the end of Step 3 is here to ensure that e

will have the correct Hamming weight once the algorithm terminates.

Remark 1. Let y ∈ Fn
q be such that yH⊺ = s. Notice that y − e = c ∈ C and by definition of e output by

Prange’s algorithm we have cI = yI when x = 0. In other words, when x = 0, we recover the interpretation
given in introduction to find a close codeword.

Exercise 3. Describe Prange’s algorithm with the generator matrix formalism in the same fashion as above
(with also three steps and the distribution Dt).

Far or close codeword? One may ask why did we pick some vector x in Step 3 of the algorithm? Notice
that it corresponds to fixing k unknowns to the value that we want. Suppose now that we would like to
find a solution e of small Hamming weight. Obviously fixing x to be a non-zero vector is both needless and
counterproductive as it would increase the weight of the decoding candidate. It is therefore better to choose
x as 0 if we seek a solution of small Hamming weight. But now what happens if someone is looking for
an error e of large Hamming weight, let us say close to n? The exact opposite: we need to choose x as a
non-zero Hamming weight vector to increase the weight of the potential solution and therefore improving
our success probability.

(4)Another interpretation of Prange’s algorithm.

8

In summary, the vector x that we pick relies on what we want to do, finding a “short” or a “large” solution.
The distribution Dt, upon which x is picked, is precisely chosen according to the aforementioned aim.
Equivalently, if one takes the generator matrix point of view, the distribution Dt enables to find a close or
a far away codeword from a given target.

Rough analysis of the algorithm. Before giving a precise analysis of the running time of Prange’s
algorithm let us start by a rough analysis about what we “expect”. First, let us assume that s is uniformly
distributed over Fn−k

q . Notice that it is, according to Proposition 6 in lecture notes 2, equivalent to assuming
that t/n belongs to [τ−, τ+]. Therefore, according to Equation (8) the expected Hamming weight of the
decoding candidate e is given by (S is non-singular hence it keeps invariant the uniform distribution of s)

E (|e|) = |x|+ q − 1

q
(n− k).

By choosing x = 0 we expect e to have a Hamming weight equals to q−1
q (n−k). In other words, if one seeks

a solution of DP with the aforementioned weight, its probability of success (in Step 3) is roughly ppr ≈ 1

and the number of repetitions of the whole algorithm will be given by 1/ppr ≈ 1. On the other hand, if one
wants a weight smaller than (1− ε) q−1

q (n− k) or larger than (1 + ε) q−1
q (n− k), its probability of success

will be exponentially small in ε (n− k) since s is uniformly distributed. In that case we will need to repeat
the three steps an exponential number of times before succeeding. However we can turn the above strategy
into a stronger one: by carefully choosing |x| ∈ J0, kK (recall that x is a vector of length k, the co-dimension
of our “constrained” linear system to solve), we can easily reach any weight ins

q − 1

q
(n− k), k +

q − 1

q
(n− k)

{
.

It explains why there is a whole interval in which DP is claimed to be easy to solve (as drawn in Figure 1).
Let us stress once again that no algorithm is known to solve DP in polynomial time outside this range of
parameters (up to an additive logarithmic factors in the above interval).

Precise analysis of the algorithm. All the challenge in the analysis of Prange’s algorithm running time
relies on the computation of the success probability in Step 3. From now on we will we make the following
assumption concerning Step 1 of the algorithm

Assumption 1. The success probability of Prange’s algorithm is equal (up to a polynomial factor) to the
probability of success when I is supposed to be uniformly distributed in Step 1.

It is an usual assumption (or heuristic) to make when studying the complexity of Prange’s algorithm. Notice
that we did not suppose that I is uniformly distributed, but that our probabilities will be well approximated
by making this assumption. It would be obviously false to suppose directly that I is uniformly distributed
as HI will be non-singular for some sets I (at the exception of very particular cases). However, when H

is random, HI is typically non-singular.
In the following lemma we give the success probability of Prange’s algorithm. Our proof is written with
a lot of details. We will not repeat this and we will process in a simpler way. The idea is that we study
algorithms to solve DP in average and from a cryptographic point of view we are on the cryptanalysis side.
Our aim is to show that solving the decoding problem requires at least some number of operations. It is why
we can suppose to live in the best world for a cryptanalyst. For instance, an event that is expected or that
occurs with a probability given by the inverse of a polynomial, always happens and we are not concerned
with approximation factors (although some heuristics may be hidden). The rationale behind the following
proof is to show that what follows during these lecture notes could be stated and proved very precisely but

9

at the price of significantly increasing the complexity of statements and their proofs while at the same time
without changing conclusions.

Proposition 3. Let ppr be the success probability in Step 3 of the above algorithm. Under Assumption 1,
we have

ppr = Θ

((
n−k
t−j

)
(q − 1)t−j

min
(
qn−k,

(
n
t

)
(q − 1)t

))
for a density 1− 2−Ω(n) of matrices H ∈ F(n−k)×n

q , where

j
def
=


0 if t < q−1

q (n− k)

t− q−1
q (n− k) if t ∈ J q−1

q (n− k), k + q−1
q (n− k)K

k otherwise.

Proof. Notice that input (H, s) is fixed, the randomness of the algorithm comes from x picked according
to Dt and the drawing of the information set I . Under Assumption 1, our probability computations over
I are up to a polynomial factor given by the case where I is uniformly distributed (we will not write the
polynomial during the computations).
Let us fix e(1) to be a solution of our decoding problem (we know that there is at least one). To compute the
success probability of Prange’s algorithm let us first notice that an iteration will succeed if x = e

(1)
I , namely

(9) P
(
an iteration of Prange finds e(1)

)
= PI ,x

(
x = e

(1)
I

)
It comes from the fact that e(1) is uniquely determined by e

(1)
I as necessarily e

(1)

I
=
(
s− e

(1)
I H⊺

I

)
S⊺.

Furthermore, Dt only outputs vectors x of Hamming weight j. To find e(1) it is necessary that during an
iteration we have

∣∣∣e(1)
I

∣∣∣ = t − j as |e(1)| = t and |x| = j. Therefore, using the law of total probability, we
obtain the following computation

PI ,x

(
x = e

(1)
I

)
= PI ,x

(
x = e

(1)
J |

∣∣∣e(1)J

∣∣∣ = t− j
)
PI ,x

(∣∣∣e(1)J

∣∣∣ = t− j
)

(10)

The probability to find e(1) in one iteration is given by the probability that

(i) I is such that
∣∣∣e(1)

I

∣∣∣ = t− j

(ii) x = e
(1)
J supposing (i).

Under Assumption 1, the probability of (i) is (tj)(
n−t
k−j)

(nk)
while the probability of (ii) is given by 1

(kj)(q−1)j
as

x ∈ Fk
q picked according to Dt is uniformly distributed among words of Hamming weight j. Plugging this in

Equation (9) and using Equation (10) we obtain the following computation

P
(
an iteration of Prange finds e(1)

)
= PI ,x

(
x = e

(1)
I | |eI | = t− j

)
PI (|eI | = t− j)

=
1(

k
j

)
(q − 1)j

(
t
j

)(
n−t
k−j

)(
n
k

)
=

(
n−k
t−j

)
(q − 1)t−j(

n
t

)
(q − 1)t

where the last equality follows from a simple computation.

10

Recall now that we are sure that there is at least one solution of the decoding problem. However, depending
on t, it may happen that there are more. Let us denote by N the number of solutions. According to the
above equation, the probability to find none of these in one iteration of the algorithm is given by(

1−
(
n−k
t−j

)
(q − 1)t−j(

n
t

)
(q − 1)t

)N

= 1−Θ

(
N

(
n−k
t−j

)
(q − 1)t−j(

n
t

)
(q − 1)t

)
Here we used that the randomness I , x of the algorithm is independent of the solutions. Therefore, the
probability ppr that Prange’s algorithm succeeds is

(11) ppr = Θ

(
N

(
n−k
t−j

)
(q − 1)t−j(

n
t

)
(q − 1)t

(1 + o(1))

)

But now recall from lecture notes 2(5) that for any constant C,

PH

(∣∣∣∣∣N −max

(
1,

(
n
t

)
(q − 1)t

qn−k

)∣∣∣∣∣ > Cmax

(
1,

(
n
t

)
(q − 1)t

qn−k

))
= 2−Ω(n)

Therefore, since H is uniformly distributed in the above probability, we have for a density 1 − 2−Ω(n) of
matrices H,

ppr = Θ

(
max

(
1,

(
n
t

)
(q − 1)t

qn−k

) (
n−k
t−j

)
(q − 1)t−j(

n
t

)
(q − 1)t

)
= Θ

((
n−k
t−j

)
(q − 1)t−j

min
(
qn−k,

(
n
t

)
(q − 1)t

))
where we used Equation (11). It concludes the proof. □

We are now ready to give the running-time of Prange’s algorithm to solve DP. It will be a simple consequence
of the above proposition.

Corollary 1. Under Assumption 1, the complexity CPrange(n, q,R, τ) of Prange’s algorithm to solve
DP(n, q,R, τ) is up to a polynomial factor (in n) given by

min
(
qn−k,

(
n
t

)
(q − 1)t

)(
n−k
t−j

)
(q − 1)t−j

where k
def
= bRnc, t def

= bτnc and

j
def
=


0 if t < q−1

q (1−R)

t− q−1
q (n− k) if t ∈ J q−1

q (n− k), k + q−1
q (n− k)K

k otherwise.

Proof. The cost of an iteration of Prange’s algorithm is dominated by the time to perform a Gaussian
elimination. Let ppr be the probability of success of an iteration which is given in Proposition 3. The
number of iterations is (up to a polynomial in n) 1/ppr with a probability exponentially close to one (in n).
The latter affirmation comes from the fact that the number of iterations is a geometric distribution. □

To conclude this section let us briefly study the asymptotic complexity (in n) of Prange’s algorithm.

(5)Depending on which term achieves the maximum, we use from lecture notes 2, Proposition 2 or 3.

11

Asymptotic complexity: use the entropy function. When studying the asymptotic complexity of ISD
algorithms it will be important to be familiar with the q-ary entropy function and its properties. Recall from
lecture notes 2 that it is defined as (and extended by continuity)

hq : x ∈ [0, 1] 7−→ −x logq

(
x

q − 1

)
− (1− x) logq(1− x).

The q-ary entropy is an increasing function over
[
0, q−1

q

]
and a decreasing function over

[
q−1
q , 1

]
. It reaches

its maximum 1 in q−1
q .

This function has the nice property to describe the asymptotic behaviour of binomials, namely (Lemma 1 in
lecture notes 2)

(12) 1

n
logq

(
n

t

)
(q − 1)t =

n→+∞
hq(τ) +O

(
logq n

n

)

where τ = t/n. From this we easily deduce the exponent of Prange’s algorithm

(13) 1

n
logq CPrange(n, q,R, τ) =

n→+∞
min (1−R, hq(τ))− (1−R) hq

(
τ − γ

1−R

)
+O

(
logq n

n

)

where,

γ
def
=


0 if τ < q−1

q (n− k)

τ − q−1
q (1−R) if τ ∈

[
q−1
q (1−R), R+ q−1

q (1−R)
]

R otherwise.

There are particular ranges of parameters for which Equation (12) simplifies. First, in the case where τ ∈[
q−1
q (1−R), R+ q−1

q (1−R)
]
, this exponent is a O

(
logq n

n

)
(it is easily verified using that hq((q−1)/q) = 1).

It corresponds to what we have expected as we claimed that Prange’s algorithm is polynomial in this range
of parameters.
We used Equation (13) multiplied by a factor log2(q) (exponents are in base 2) to draw Figures 2, 3 and
4. Notice in the case q = 2 that the complexity of Prange’s algorithm is symmetric around 1/2 which is
expected in that case. Considering short or large weight in the binary case is equivalent as you have to show
in the following exercise. In particular, in the sequel we will not compute the exponents of algorithms for
solving DP(n, 2, R, τ) with τ > 1/2.

Exercise 4. Let τ ∈ [0, 1/2]. Show how from an algorithm solving DP(n, 2, R, τ) we can deduce an algorithm
solving DP(n, 2, R, 1− τ) in the same running-time (and reciprocally).

Let us consider now the case τ = o(1) (and therefore γ = 0). It corresponds to parameters of all code-based
public-key encryption schemes (for instance [McE78, Ale03, MTSB13, AAB+17]). Using

(14) hq(x) =
x→0

−x logq

(
x

q − 1

)
+ x+ o(x)

12

and Equation (13) (with γ = 0) we obtain the following computation,

1

n
logq CPrange(n, q,R, τ) = min (1−R, hq(τ))− (1−R) hq

(
τ

1−R

)
+O

(
logq n

n

)
= hq(τ)− (1−R) hq

(
τ

1−R

)
+O

(
logq n

n

)
= −τ logq

(
τ

q − 1

)
+ τ logq

(
τ

1−R

1

q − 1

)
+ o(τ) +O

(
logq n

n

)
(see Eq. (14))

= −τ logq(1−R) + o(τ) +O

(
logq n

n

)
.

Therefore, when τ = o(1) (t = τn), the complexity of Prange algorithm is given by (for some constant C)

CPrange(n, q,R, τ) = nC q−t logq(1−R).

It is even more remarkable that no algorithm is known to have a complexity qct(1+o(1)) with c < − logq(1−R)

as soon as t = o(n). Furthermore, all known ISD (even the most sophisticated) have the same asymptotic
complexity than Prange’s algorithm for these parameters [CS16]. Despite its extreme simplicity, Prange’s
algorithm is the best known algorithm to solve asymptotically DP(n, q,R, τ) when the decoding distance is
sub-linear, namely τ = o(1).

2. Birthday Paradox Techniques

We present in this section two algorithms for solving DP(n, q,R, τ). Both rely on the following crucial lemma
which is essentially an average version of the birthday paradox

Lemma 1. Let L1,L2 be two lists of L random and independent elements in Fr
q. We have,

E (♯ L1 ∩ L2) =
L2

qr
.

Notice that we expect one element in the intersection of the two lists included in Fr
q when their size verifies

L =
√
qr. Recall that the birthday paradox, asserts that when there are

√
N elements picked uniformly at

random among a set of size N , we will get with a good probability two equal elements. It explains why we
refer to the above lemma as the birthday paradox.

Proof. By definition, L1 = {X1, . . . , XL} and L2 = {Y1, . . . , YL} where the Xi’s and Yj ’s are independent
and uniformly distributed random variables taking their values in Fr

q. We have

♯ L1 ∩ L2 =

L∑
i,j=1

1{Xi=Yj}.

By linearity of the expectation we have the following computation,

E (♯ L1 ∩ L2) =

L∑
i,j=1

E
(
1{Xi=Yj}

)
=

L∑
i,j=1

1

qr
=

L2

qr

which concludes the proof. □

13

2.1. Dumer’s Algorithm. Let us now quickly present Dumer’s algorithm [Dum86] to solve DP(n, q,R, τ).
This short subsection may be skipped as the description of this algorithm has already been given in the
introduction (in the same fashion).

The algorithm.

1. Splitting in two parts. First we randomly select a set S ⊆ J1, nK of n/2 positions.
2. Building lists step. We build,

L1
def
=

{
HS e

⊺
1 : |e1| =

t

2

}
; L2

def
=

{
−HS e

⊺
2 + s

⊺
: |e2| =

t

2

}
.

3. Collisions step. We merge the above lists (with an efficient technique like hashing or sorting)

L1 ▷◁ L2
def
=
{
(e1, e2) ∈ L1 × L2, HS e

⊺
1 = −HS e

⊺
2 + s

⊺}
.

and output this new list. If it is empty we go back to Step 1 and pick another set of n/2 positions.

Proposition 4. The complexity CDumer(n, q,R, τ) of Dumer’s algorithm to solve DP(n, q,R, τ) is up to a
polynomial factor (in n) given by √(

n

t

)
(q − 1)t +

(
n
t

)
(q − 1)t

qn−k

Furthermore, Dumer’s algorithm finds max

(
1,

(nt)(q−1)t

qn−k

)
solutions (up to a polynomial factor in n) where

k
def
= bRnc and t

def
= bτnc.

Proof. Dumer’s algorithm will find a fixed solution of the considered decoding problem with probability(
t

t/2

) (
n−t

n/2−t/2

)(
n

n/2

) = 2th2(1/2)+(n−t)h2(1/2)−nh2(1/2)+O(log2 n) = 2O(log2 n)

which is polynomial. Therefore the number of iterations of Dumer’s algorithm to find a solution will be
polynomial.
The cost of one iteration is given by the time to build lists L1,L2, namely

(
n/2
t/2

)
(q − 1)t/2 plus the time to

merge them. With efficient techniques such as sorting or hashing this can be done in time ♯ L1 ▷◁ L2. But,
according to Lemma 1, the expected size of L1 ▷◁ L2 is in average over H given by

((
n/2
t/2

)
(q − 1)t/2

)2
/qn−k

which is equal to (up to a polynomial factor)
(
n
t

)
(q − 1)t/qn−k as collisions are made on vectors which belong

to Fn−k
q . It concludes the proof. □

Remark 2. We have presented Dumer’s algorithm to find all solutions of DP. But one can also tweak this
algorithm to build less solutions in one iteration.

Exercise 5. We have made the choice when presenting Dumer’s algorithm to build lists of maximum size,
namely

(
n/2
t/2

)
(q− 1)t/2 (why is it the largest possible list size?). Let (H, s) ∈ F(n−k)×n

q ×Fn−k
q be an instance

of a decoding problem that we would like to solve at distance t. Show that a slight variation of Dumer’s
algorithm enables to compute max

(
1, L2

qn−k

)
solutions in time L+max

(
1, L2

qn−k

)
(up to polynomial factors).

How L needs to be chosen for this algorithm to output solutions in amortized time one? Deduce a necessary
condition over t for this to be possible.

14

2.2. Wagner’s Algorithm. We have just seen that Dumer’s algorithm finds all solutions of DP in roughly
one iteration. It is an extremely nice property but that may be an impediment in some contexts. Suppose
that one needs M solutions of DP to achieve some task. The best situation would be to find them in amortized
time one. Suppose now that Dumer’s algorithm is able to compute N solutions of DP in amortized time one,
namely it builds lists of size N which verify

N =
N2

qn−k
⇐⇒ N = qn−k

but unfortunately N � M . In other words, Dumer’s algorithm finds too many solutions. To avoid this
useless situation we may be tempted to decrease the size of the built lists, namely N , to decrease the number
of output solutions. However by doing this we would not produce decoding solutions in amortized time one,
which would be less efficient for our purpose. To improve this situation, the fundamental remark is that
Dumer’s algorithm produces all its solutions with a shape (e1, e2), where |e1| = |e2| = t/2, and by looking
at collisions directly on n− k symbols. The idea to produce less solutions, still in amortized time one, is to
look for solutions with more constraints on their shapes and the way that collisions are built. It is precisely
the idea of Wagner’s algorithm [Wag02] (producing less solutions in amortized time one by decimating the
search space) that we are going to present precisely in the sequel. However, as a picture is better than a
long discourse, let us first describe in Figure 5 a simplified version of this algorithm when we try to find e

of Hamming weight t such that He⊺ = 0.
The output of Wagner’s algorithm described in Figure 5 is (e1, e2, e3, e4). It is a solution as by construction
it reaches the syndrome 0 with respect to H and it has the right Hamming weight since each ei has weight
t/4. Notice that this solution has a particular “shape” when compared to the output of Dumer’s algorithm.
During Steps 2 and 3 we do not perform collisions on all the n−k symbols of the syndromes but on (n−k)/2

symbols. Therefore solutions have the following property: (H1 H2) (e1, e2)
⊺ and (H3 H4) (e3, e4)

⊺ are equal
to 0 on the last (n−k)/2 positions. If one splits an output of Dumer’s algorithm and the parity-check matrix
in four parts, there is no reason that it verifies the above property. It will be true only for an exponentially
small fraction of the solutions. It explains why Wagner’s algorithm “decimates” the solutions. At the same
time this algorithm has the advantage to be able to produce solutions in amortized time one. The idea in
that case is to build the lists Li’s with size L such L2/q(n−k)/2 = L, i.e. L =

√
qn−k. Therefore, each

collision step has the same cost given by the size L of the lists that are output. However it may happen that
the number of solutions is still too large. If so, the next idea of Wagner’s algorithm is to consider more lists
at the beginning, like 8 (and not 4) and then to make collisions on (n − k)/3 symbols. It enables smaller
lists, namely L2/q(n−k)/3 = L, i.e. L = 3

√
qn−k. However, in that case, there will be three steps of collisions.

Then we can extend this by considering a number of lists given by some 2a and making a steps of collisions.
Nonetheless, it is not possible to do this for any a. If one uses Wagner’s algorithm with initially 2a lists, all
of them need to be built from vectors ei of Hamming weight t/2a. If a is too large it will be impossible to
build lists large enough to produce collisions in amortized time one.
Let us emphasize that the above discussion is not only a thought exercise. It turns out that the above
situation happens with ISD algorithms (Dumer’s algorithm produces too many solutions in one iteration).
It explains why the ISD with Wagner’s algorithm outperforms the ISD with Dumer’s algorithm for some
parameters as we can see in Figure 4 (in particular when DP is such that there are a lot ofh solutions).

Proposition 5. Wagner’s algorithm solves DP(n, q,R, τ) by (where k
def
= bRnc)

15

H = (H1 H2 H3 H4) where the Hi ∈ F(n−k)×n/4
q

1st Step: compute the following lists

L2
def
= {H2e

⊺
2 : |e2| = t/4}L1

def
= {H1e

⊺
1 : |e1| = t/4} L3

def
= {H3e

⊺
3 : |e3| = t/4} L4

def
= {H4e

⊺
4 : |e4| = t/4}

2nd Step: compute the following lists obtained by collision

(H1e
⊺
1 ,H2e

⊺
2) ∈ L1 × L2 s.t (H3e

⊺
3 ,H4e

⊺
4) ∈ L3 × L4 s.t

H1e
⊺
1 = H2e

⊺
2 =

-
H3e

⊺
3 = H4e

⊺
4 =

- (n− k)/2

−→ (H1 H2)(e1, e2)
⊺
=

0
−→ (H3 H4)(e3, e4)

⊺
=

0

3rd Step: compute the following lists obtained by collision

(H1 H2)(e1, e2)
⊺ and (H3 H4)(e3, e4)

⊺ in the above lists s.t

(H1 H2)(e1, e2)
⊺
=

0
(H3 H4)(e3, e4)

⊺
=

0

-

−→ (H1 H2 H3 H4)(e1, e2, e3, e4)
⊺
= 0

Figure 5. Simplified version of Wagner’s algorithm with four layers to find e of weight t

such that He = 0. The same colours on vectors means that they are equal (be careful on
the minus signs).

(1) finding one solution in time and space q
n−k
a+1 (up to a polynomial factor in n) for any integer a such

that q
n−k
a+1 ≤

(
n/2a

t/2a

)
(q − 1)t/2

a which asymptotically can be written as,

1−R

hq(τ)
≤ a+ 1

2a
.

(2) finding q
n−k
a solutions in amortized time 1 (up to a polynomial factor in n) for any integer a such

that q n−k
a ≤

(
n/2a

t/2a

)
(q − 1)t/2

a which asymptotically can be written as,

1−R

hq(τ)
≤ a

2a
.

16

During the description of Wagner’s algorithm that follows (which will give the proof of the above proposition)
we will use Lemma 1 to estimate the size of the lists after merging.

Wagner’s algorithm. The first step is to split H in 2a parts of the same size, for a parameter a that is
called depth of the algorithm. For the sake of simplicity let us split H as (we can choose the partition)

H =
(
H1 . . . H2a

)
where for all i we have Hi ∈ F(n−k)× n

2a
q . Then we build the following 2a-lists for some parameter L that will

be fixed later (t = bτnc)

∀i ∈ J1, 2aK, Li ⊆
{
eH

⊺
i : e ∈ Fn/2a

q , |e| = t

2a

}
and ♯ Li = L.

Notice that by construction we have the following constraint,

(15) L ≤
(
n/2a

t/2a

)
(q − 1)t/2

a

.

Let ℓ ∈ J1, n− kK be a parameter that will be chosen later. Then, Wagner’s algorithm performs the collision
of these lists two by two on their last ℓ symbols (6) to build the new lists Li,i+1’s, namely

Li,i+1
def
= {si + si+1 : si ∈ Li and the last ℓ symbols of si + si+1 are 0} ,

where by construction we have access to the errors ei and ei+1 of Hamming weight t/2a that reach si and
si+1 through Hi and Hi+1. The last list L2a−1,2a is built by merging L2a and L2a−1 but this time according
to the last ℓ symbols of s, namely

L2a−1,2a
def
= {s2a−1 + s2a : si ∈ Li and the last ℓ symbols of s2a−1 + s2a are equal to those of s}.

Using Lemma 1, these new lists built after merging on ℓ symbols will be of the same size,
L2

qℓ
.

Furthermore, we produce them at cost L+ L2

qℓ
(up to a polynomial factor). Once this is done, we start again

this process a − 2 times by merging each time on the ℓ next new symbols. Wagner proposed to choose L

such that at each step, the time for merging is the same than the one to build lists, namely

(16) L = qℓ.

This implies under Constraint (15) that the parameter ℓ is such that

(17) qℓ ≤
(
n/2a

t/2a

)
(q − 1)t/2

a

.

Remark 3. One may ask if this strategy of an amortized time one at each merge is optimal. It turns out
that the answer is yes as proved in [MS09].

Up to now we have made a− 1 merges and we still have two lists, that we denote by S1 and S2. They are
such that

S1 = {s1 + · · ·+ s2a−1 : si ∈ Li and the last (a− 1)ℓ symbols of s1 + · · ·+ s2a−1 are equal to 0}

S2 = {s2a−1+1 + · · ·+ s2a : si ∈ Li and the last (a− 1)ℓ symbols of s1 + · · ·+ s2a−1 are equal to those of s}

where, ♯ S1 = ♯ S2 =
L2

qℓ
= L = qℓ.

(6)Given a vector x ∈ Fm
q , it denotes xm−ℓ+1, . . . , xm.

17

Therefore, it remains to merge these two lists on the last (n− k)− (a− 1)ℓ first symbols. It yields in time
qℓ(a+1)

q(n−k) a list of solutions of size

(18) q2ℓ

q(n−k)−(a−1)ℓ
=

qℓ(a+1)

q(n−k)
.

Now the parameter ℓ has to be set whether one wants only one solution or many solutions in amortized
time one.

Wagner to reach one solution. According to Equation (18), it remains to choose parameters such that

ℓ =
n− k

a+ 1
.

All the lists in the a − 1 first steps of the algorithm have the same size, namely L = qℓ (Equation (16)),
therefore the algorithm has a cost given by

q
n−k
a+1 .

However, we have to be careful with the depth a of the algorithm, unfortunately it cannot be chosen too
large. According to Equation (15)

qℓ = q
n−k
a+1 ≤

(
n/2a

t/2a

)
(q − 1)t/2

a

which leads to the following asymptotic constraint,
1−R

a+ 1
≤ 1

2a
hq(τ) ⇐⇒ 1−R

hq(τ)
≤ a+ 1

2a
.

It concludes the proof of (1).

Wagner to compute many solutions in amortized time one. In this case, according to Equation (18),
we just need to choose ℓ such that

qℓ =
qℓ(a+1)

qn−k
⇐⇒ ℓ =

n− k

a

As above we obtain the claimed constraint on a. It concludes the proof. □

We draw in Figure 6 the exponent of Wagner’s algorithm to solve DP(n, q,R, τ) as function of τ ≥ τ− (the
relative Gilbert-Varshamov distance defined in lecture notes 2). We choose parameters of the algorithm to
output one solution and a being the largest integer that satisfies the constraint (1) of Proposition 5 (to
have an optimal complexity). As it can be seen the exponent is a decreasing function of τ . Indeed, when τ

increases, a can be chosen larger. Furthermore, there is a discontinuity in the exponent. It comes from the
fact that a is an integer. It is possible to adapt the algorithm to “smooth” its complexity but this is out of
scope of these lecture notes.

3. Combining Linear Algebra and Birthday Paradox Techniques

We are now ready to present the general framework (introduced in [FS09]) of Information Set Decoding
(ISD) algorithms.

18

0.1 0.2 0.3 0.4 0.5
τ0

0.05

0.1

0.15

τ−

Figure 6. Exponent of Wagner’s algorithm to solve DP(n, q,R, τ) for R = 0.7 as function
of τ .

The algorithm. Let us introduce the following parameters,

ℓ ∈ J0, n− kK and p ∈ J0,min(t, k + ℓ)K
1. Picking the augmented information set. Let J ⊆ J1, nK be a random set of size k + ℓ. If

HJ ∈ F(n−k)×(n−k)
q is not of full-rank, pick another set J .

2. Linear algebra. Perform a Gaussian elimination to compute a non-singular matrix S ∈ F(n−k)×(n−k)
q

such that SHI =

(
1n−k−ℓ

0ℓ×(n−k−ℓ)

)
. Let H′ ∈ F(n−k−ℓ)×(k+ℓ)

q , H′′ ∈ Fℓ×(k+ℓ)
q , s′ ∈ Fn−k−ℓ

q and s′′ ∈ Fℓ
q

be such that

(19) SHJ =

(
H′

H′′

)
and Ss

⊺
= (s′, s′′)

⊺

3. Sub-decoding problem. Compute a set,

(20) S ⊆
{
e′′ ∈ Fk+ℓ

q : e′′H′′⊺ = s′′ and |e′′| = p
}
.

4. Test. Find e′′ ∈ S such that
∣∣∣s′ − e′H′′⊺

∣∣∣ = t− p. If not, return to Step 1; otherwise output e ∈ Fn
q

such that

(21) eJ = s′ − e′′H′⊺ ; eJ = e′′

Correction of the algorithm. It easily follows from the following computation,

SHe
⊺
= SHJ e

⊺
J

+ SHJ e
⊺
J

=

(
1n−k−ℓ

0ℓ×(n−k−ℓ)

)(
s′

⊺
−H′′e′′

⊺)
+

(
H′

H′′

)
e′′

⊺
(By definition of SHJ , SHJ , eJ and eJ)

=

(
s′

⊺ −H′′e′′
⊺

0ℓ×(n−k−ℓ)

)
+

(
H′e′′

⊺

H′′e′′
⊺

)

=

(
s′

⊺

s′′
⊺

)
(By definition of e′′ ∈ S , see Equation (20))

= Ss
⊺ (By Equation (19))

which corresponds to He⊺ = s⊺ since S is non-singular. Furthermore, by definition e′′ has Hamming weight
p and the test ensures that s′−e′′H′′⊺ has weight t− p. Therefore, once the algorithm terminates, e reaches
s with respect to H and has Hamming weight t.

19

Exercise 6. Let
D

def
=
{
c′′ ∈ Fk+ℓ

q : c′′H′′⊺ = 0
}
.

Show that D is a code of length k + ℓ and dimension k.

Remark 4. The code of parity-check matrix H′′ is known as the punctured code (defined by the parity-check
matrix H) at the positions J . Computing S in Equation (20) amounts to solve a decoding problem at
distance p with this input code and the syndrome s′′. Therefore, for each drawn of the augmented information
set J we test many decoding candidates (given by elements of the list S and with associated lift defined in
Equation (21)). We recover the interpretation of ISD algorithms given in the introduction.

Far or close codeword? One may wonder why don’t we use the distribution Dt in ISD algorithms to be
able to produce “short” or “large” solutions? To answer this question let us take a look at the typical weight
of a vector e that will pass the test at the end of an iteration (see Equation (21)). By supposing that s is
uniformly distributed, we have

(22) E (|e|) = p+
q − 1

q
(n− k − ℓ)

The q−1
q (n− k − ℓ) term comes from the fact that s′ is uniformly distributed over Fn−k−ℓ

q while p is here
as by definition e′′ has weight p. If one wants to get a solution of small weight, the best approach is to
decode the punctured code at a small as possible distance p. On the other hand, if one seeks a solution of
large weight, one has to decode this punctured code at the largest as possible distance, namely p = k + ℓ.
Therefore the strategy to reach short or large error relies on how we choose the parameter p.
The above discussion hints us why we can not reasonably hope, with ISD algorithms, to solve DP in poly-
nomial time outside the interval J q−1

q (n − k), k + q−1
q (n − k)K. For instance, if one is looking for an ISD

algorithm solving DP in polynomial time for some t < q−1
q (n − k), one has according to Equation (22) to

find a subroutine decoding in polynomial time a random code of length k+ ℓ and dimension k at distance p

such that

p− q − 1

q
ℓ < 0.

But at the same time, the smaller p for which we known how to decode in polynomial a random [k + ℓ, k]q-
code is precisely q−1

q (k + ℓ− k) = q−1
q ℓ which is the above limit to get an improvement. Therefore, if one

seeks an ISD enlarging the interval of weights in which Prange’s algorithm is polynomial, one has to first
enlarge this interval.

Analyse of the algorithm. As in Prange’s algorithm, all the challenge in the analysis of ISD algorithms
running time relies on the computation of the success probability in Step 4. However, contrary to Prange’s
algorithm it will not be necessary to make an assumption on how the augmented information sets are picked.
We can suppose directly, when ℓ = Θ(n) (which will be the case in our applications), that they are uniformly
distributed as shown by the following proposition.

Proposition 6. Let H ∈ F(n−k)×n
q and J ⊆ J1, nK being uniformly distributed over the sets of size k + ℓ

(where ℓ > 0) such that HJ is non-singular. Let Junif ⊆ J1, nK being uniformly distributed over the sets of
size k + ℓ. We have,

EH (∆ (J ,Junif)) = O

(
1

qℓ

)
where ∆ denotes the statistical distance.

20

Proof. Let us index from 1 to
(

n
k+ℓ

)
the subset of size k+ ℓ of J1, nK and let Xi be the indicator of the event

“the subset Ji of index i is such that HJi
has not a full rank”. Let,

N
def
=
∑
i

Xi

It can be verified that we have

(23) EH (∆ (J ,Junif)) = EH

(
N(
n

k+ℓ

)) =
1(
n

k+ℓ

) (n
k+ℓ)∑
i=1

EH(Ni)

where the last equality follows from the linearity of the expectation.

Notice now that HJ ∈ F(n−k)×(n−k−ℓ)
q has not a full rank with probability (over H) given by a O

(
1
qℓ

)
.

Therefore,

P (Xi = 1) = O

(
1

qℓ

)
Plugging this in Equation (23) concludes the proof. □

However, although the above proposition enables to avoid an assumption, there will be as for Prange, an
assumption to make when studying ISD algorithms.

An important quantity. Let us use notation of the above algorithm. Let αp,ℓ be the probability that

given a fixed x ∈ Fk+ℓ
q be such that

{
xH′′⊺ = s′′

|x| = p
, the vector e′ def

= s′−xH′′⊺ has Hamming weight t−p,

namely
αp,ℓ

def
= P (|e′| = t− p) .

In other words, αp,ℓ denotes the probability that given a solution x of the decoding problem at distance
p with input (H′′, s′′), then its lift gives a solution of weight t of the initial decoding problem with input
(H, s). Notice that we did not suppose that x ∈ S .

Proposition 7. The probability αp,ℓ is up to a polynomial factor (in n) given by,(
n−k−ℓ
t−p

)
(q − 1)t−p

min
(
qn−k−ℓ,

(
n
t

)
(q − 1)tq−ℓ

)
The proof of this proposition is similar to the one of Proposition 3 and here we only provide a sketch of it.

Sketch of proof. One can remark that the only difference between formulas of Propositions 3 and 8 is the
factor q−ℓ in the denominator. The difference comes from the fact that the probability (over H) that an
error (e′, e′′) of weight t verifies e′′H′′⊺ = s′′, where s′′ ∈ Fℓ

q, is q−ℓ. Therefore we have to consider a fraction
q−ℓ of possible solutions in our probability, which roughly explains the factor q−ℓ in the denominator. □

We are now ready to give the running time of ISD algorithms to solve DP. It will use the following assumption

Assumption 2. Let us use notation of ISD algorithm that is described above. Given x(1), . . . ,x(S) be

solution of
{

xH′′⊺ = s′′

|x| = p
Then, the vectors e(i)’s in Fn

q be defined as

e
(i)

J
= s′ − x(i)H′⊺ ; e

(i)
J = x(i)

are independent random variables (where J is a random augmented information set).

21

Proposition 8. Let ℓ ∈ J0, n − kK. Let A be an algorithm that can compute S solutions in time T of the

following problem
{

xH′′⊺ = s′′

|x| = p
where H ∈ Fℓ×(k+ℓ)

q and s′′ ∈ Fℓ
q. Furthermore, we suppose that outputs of

A verify Assumption 2. Then, the ISD algorithm using A in Step 3 solves DP(n, q,R, τ) up to a polynomial
factor (in n) in time

T max

(
1,

1

S αp,ℓ

)
where αp,ℓ is given in Proposition 7.

As in Proposition 7 we only provide a sketch of proof of this proposition.

Sketch of proof. The number of iterations of ISD algorithms is, as for Prange’s algorithm, up to a polynomial
factor (in n) given by 1/pISD where pISD is the probability of success of an iteration. Furthermore, each
iteration has a cost given by the time to computing S in Step 3 (the cost of a Gaussian elimination is
polynomial). Therefore the cost of the ISD using A is given by T 1

pISD
.

Let us compute pISD. Let e′′1 , . . . , e
′′
S be the outputs of A . The probability that any e′′i does not lead to a

solution is given by 1 − αp,ℓ. Using the independence given by Assumption 2, the probability that none of
the e′′i ’s leads to a solution is given by

1− (1− αp,ℓ)
S = 1−Θ(min(1, Sαp,ℓ)) .

Therefore, pISD = Θ(min(1, Sαp,ℓ)) and

T
1

pISD
= T

1

Θ (min(1, Sαp,ℓ))
= Θ

(
T max

(
1,

1

S αp,ℓ

))
which concludes the proof. □

We are now ready to “instantiate” ISD algorithms with Dumer and Wagner algorithms that we have described
in Subsections 2.1 and 2.2.

3.1. ISD with Dumer’s algorithm. A slight variation of Proposition 4 shows that, given an instance
(H′′, s′′) ∈ Fℓ×(k+ℓ)

q × Fℓ
q of a decoding problem at distance p, Dumer’s algorithm find(

k+ℓ
p

)
(q − 1)p

qℓ

solutions in average time √(
k + ℓ

p

)
(q − 1)p +

(
k+ℓ
p

)
(q − 1)p

qℓ
.

Here there is no maximum in the fomula as we are not sure that there is always a solution to our decoding
problem.
Therefore we easily deduce the following proposition which gives the complexity of the ISD using Dumer’s
algorithm.

Proposition 9. The complexity CDumer(n, q,R, τ) of the ISD using Dumer’s algorithm (described in Sub-
section 2.1) to solve DP(n, q,R, τ) is up to a polynomial factor (in n) given by

(24)

(√(
k + ℓ

p

)
(q − 1)p +

(
k+ℓ
p

)
(q − 1)p

qℓ

)
·max

(
1,

min
(
qn−k,

(
n
t

)
(q − 1)t

)(
n−k−ℓ
t−p

)
(q − 1)t−p

(
k+ℓ
p

)
(q − 1)p

)

22

This complexity is parametrized by p and ℓ. According to our wish, finding a short or large solution, the
optimization will not be the same. Let us describe our strategy for both of them but before let us fix the
relative quantities that we will consider

R
def
=

k

n
, τ

def
=

w

n
, λ

def
=

ℓ

n
and π

def
=

p

n
.

These quantities will be useful as we are interested in the asymptotic complexity of the ISD’s.

Strategy to reach short solutions. Our first choice is to force Dumer’s algorithm to produce decoding
solutions in amortized time one. Let us stress that here we give a method to optimize the complexity of
ISD’s, but we do not claim that it will lead to optimal parameters. Anyway, Dumer’s algorithm computes
solutions in amortized time one if√(

k + ℓ

p

)
(q − 1)p =

(
k+ℓ
p

)
qℓ

⇐⇒ qℓ =

√(
k + ℓ

p

)
(q − 1)p

Using Equation (12), it implies asymptotically the following equality

(25) λ =
R+ λ

2
hq

(
π

R+ λ

)
⇐⇒ π = (R+ λ)h−1

q

(
2λ

R+ λ

)
Let π(λ) be the parameter π that reaches the above equality. We can now verify that according to Equations
(12), (24) and (25) that

1

n
logq(CDumer) = f(λ)(1 + o(1))

where

f(λ)
def
= λ+max

(
0,min (1−R, hq(τ))− (1−R− λ)hq

(
τ − π(λ)

1−R− λ

)
− 2λ

)
.

To optimize λ 7→ f(λ), a good approximation (which can be verified for many parameters) is to suppose
that it is an unimodal function. Then its minimization is easy to obtain with for instance the golden
section search (see https://en.wikipedia.org/wiki/Golden-section_search). We used this method to
draw the exponent (for relative weights τ ≤ (q − 1)/q(1 − R)) of the ISD with Dumer’s algorithm given in
Figures 4, 7 and 8 . Furthermore we multiplied the above formula by a term log2(q) to get exponents in base 2.

Strategy to reach large solutions. Let us suppose that q > 2. Otherwise we can symmetrize the
complexity of the algorithm from the short case as shown in Exercise 4. Contrary to the strategy to get
short solutions, if one wants to use an ISD to compute solutions with a large weight, one has to choose p as
k + ℓ (see the discussion in the beginning of this section entitled “Far or close codeword”). Therefore, with
Dumer’s algorithm we will choose parameters such that

λ =
R+ λ

2
hq

(
π

R+ λ

)
and π = R+ λ

which leads to (as hq(1) = logq(q − 1)),

λ =
R+ λ

2
logq(q − 1) ⇐⇒ λ =

R

2

logq(q − 1)

1− 1
2 logq(q − 1)

However if one uses this strategy directly with Dumer’s algorithm it would lead to very high exponent as
build lists of size qλn would be too large. The idea (before using Wagner’s algorithm as we are going to
do) is to change Dumer’s algorithm and to use the variation given in Exercise 5. Suppose that one build

https://en.wikipedia.org/wiki/Golden-section_search

23

lists of size S in Dumer’s algorithm. Then, according to Proposition 8, the complexity of the ISD with this
algorithm is given (up to polynomial factor by) (we fixed p to k + ℓ)(

S +
S2

qℓ

)
·max

(
1,

min
(
qn−k,

(
n
t

)
(q − 1)t

)(
n−k−ℓ
t−k−ℓ

)
(q − 1)t−k−ℓ S2

)

Let σ
def
= 1

n logq S. Using this algorithm leads to the following asymptotic complexity

(26) g(λ, σ)
def
= max (σ, 2σ − λ) + max

(
0,min (1−R, hq(τ))− (1−R− λ)hq

(
τ −R− λ

1−R− λ

)
− 2σ

)
However we do not have to forget that we have a constraint on the size of built lists, namely S ≤

(
(k+ℓ)/2

p/2

)
(q−

1)p/2, therefore σ has necessarily to verify

(27) σ ≤ R+ λ

2
hq

(
π

R+ λ

)
.

To optimize (26) we used the golden section search to first finding σ(λ) “minimizing” (according to the
method) σ 7→ g(λ, σ) for a fixed λ and σ verifying Constraint (27). Then we also used the golden section
search to “minimize” λ 7→ g(λ, σ(λ)). We draw in Figures 7 and 8 the exponent of Prange and the ISD
with Dumer’s algorithm for a fixed rate and as function of τ . As we see Dumer’s algorithm provides an
improvement over Prange’s algorithm. Even if the improvement seems slight, don’t forget that it means an
exponential improvement as we draw exponents.

0.2 0.4 0.6 0.8 1
τ

0.05

0.1

0.15

0.2

0.25

Prange
Dumer ISD

Figure 7. Exponents in base 2 of
Prange’s algorithm and ISD with
Dumer’s algorithm (in base 2) to solve
DP(n, q,R, τ) for q = 3 and R = 1/2

as function of τ ∈ [0, 1].

0.05 0.1 0.15 0.2
τ

0.02

0.04

0.06

0.08

0.1

0.12

Prange
Dumer ISD

Figure 8. Exponents in base 2 of
Prange’s algorithm and ISD with
Dumer’s algorithm (in base 2) to solve
DP(n, q,R, τ) for q = 2 and R = 1/2

as function of τ ∈
[
0, q−1

q (1−R)
]
.

3.2. ISD with Wagner’s algorithm. We are now ready to instantiate an ISD with Wagner’s algorithm
as a subroutine. In this case we choose to parametrize the algorithm to output solutions in amortized time
one. Combining Propositions 8 and 5 (assertion (2)) leads to the following proposition

24

Proposition 10. The complexity CDumer(n, q,R, τ) of the ISD using Wagner’s algorithm (described in Sub-
section 2.2) to solve DP(n, q,R, τ) is up to a polynomial factor (in n) given by

(28) q
ℓ
a max

(
1,

min
(
qn−k−ℓ,

(
n
t

)
(q − 1)tq−ℓ

)(
n−k−ℓ
t−p

)
(q − 1)t−p q

ℓ
a

)
where a is the largest integer such that q ℓ

a ≤
(
(k+ℓ)/2a

p/2a

)
(q − 1)p/2

a .

We used this proposition (with the same kind of strategy that above) to draw the exponent of the ISD with
Wagner’s algorithm. As we can see in Figure 4 the ISD with Wagner’s algorithm has far better exponent
compared to the ISD with Dumer’s algorithm for large weight; otherwise exponents are the same.

References
[AAB+17] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-Christophe Deneuville,

Philippe Gaborit, Edoardo Persichetti, and Gilles Zémor. HQC, November 2017. NIST Round 1 submission for
Post-Quantum Cryptography.

[Ale03] Alekhnovich, Michael. More on Average Case vs Approximation Complexity. In 44th Symposium on Foundations of
Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 298–307. IEEE
Computer Society, 2003.

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random binary linear codes in 2n/20:
How 1+1 = 0 improves information set decoding. In Advances in Cryptology - EUROCRYPT 2012, LNCS. Springer,
2012.

[BM17] Leif Both and Alexander May. Optimizing BJMM with Nearest Neighbors: Full Decoding in 22/21n and McEliece
Security. In WCC Workshop on Coding and Cryptography, September 2017.

[CS16] Rodolfo Canto-Torres and Nicolas Sendrier. Analysis of information set decoding for a sub-linear error weight. In
Post-Quantum Cryptography 2016, LNCS, pages 144–161, Fukuoka, Japan, February 2016.

[Dum86] Ilya Dumer. On syndrome decoding of linear codes. In Proceedings of the 9th All-Union Symp. on Redundancy in
Information Systems, abstracts of papers (in russian), Part 2, pages 157–159, Leningrad, 1986.

[FS09] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-based cryptosystems. In M. Matsui,
editor, Advances in Cryptology - ASIACRYPT 2009, volume 5912 of LNCS, pages 88–105. Springer, 2009.

[McE78] Robert J. McEliece. A Public-Key System Based on Algebraic Coding Theory, pages 114–116. Jet Propulsion Lab,
1978. DSN Progress Report 44.

[MO15] Alexander May and Ilya Ozerov. On computing nearest neighbors with applications to decoding of binary linear
codes. In E. Oswald and M. Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015, volume 9056 of LNCS,
pages 203–228. Springer, 2015.

[MS09] L. Minder and A. Sinclair. The extended k-tree algorithm. In C. Mathieu, editor, Proceedings of SODA 2009, pages
586–595. SIAM, 2009.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto. MDPC-McEliece: New McEliece
variants from moderate density parity-check codes. In Proc. IEEE Int. Symposium Inf. Theory - ISIT, pages 2069–
2073, 2013.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions on Information Theory,
8(5):5–9, 1962.

[Wag02] David Wagner. A generalized birthday problem. In Moti Yung, editor, Advances in Cryptology - CRYPTO 2002,
volume 2442 of LNCS, pages 288–303. Springer, 2002.

	Introduction
	1. Prange Algorithm
	2. Birthday Paradox Techniques
	2.1. Dumer's Algorithm
	2.2. Wagner's Algorithm

	3. Combining Linear Algebra and Birthday Paradox Techniques
	3.1. ISD with Dumer's algorithm
	3.2. ISD with Wagner's algorithm

	Bibliography
	References

