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Information Theory

Exercise Sheet 1

Recall that a discrete distribution is defined as (pi)i∈I where I ⊆ N, pi ≥ 0 for
any i ∈ I and

∑
i∈I pi = 1.

Exercise 1. Given two discrete random variable X,Y : Ω → X ,

• is
(
P (X = x | Y = y)

)
x∈X

a distribution for y ∈ X such that P(Y = y) > 0?

• is
(
P (X = x | Y = y)

)
y∈X

a distribution for x ∈ X?

The quantity P (X = x | Y = y) is sometimes called the likelihood of y.

Exercise 2. There are eleven urns labelled by u ∈ {0, . . . , 10} each containing ten
balls. Urn u contains u black balls and 10− u white balls.

1. Alice selects an urn u at random and draws N times with replacement from
that urn, obtaining nB blacks and N−nB whites. Alice’s friend, Bob, looks on.
If after N draws nB blacks have been drawn, what is the probability as function
of N , u and nB that the urn Alice is using is urn u, from Bob’s point of view?
(Bob doesn’t know the value of u.)

2. Assuming again that Bob has observed nB blacks in N draws, let Alice draw
another ball from the same urn. What is the probability that the next drawn
ball is a black?

Exercise 3 (The likelihood principle). Urn A contains three balls: one black, and
two white; urn B contains three balls: two black, and one white. One of the urns is
selected at random and one ball is drawn. The ball is black. What is the probability
that the selected urn is urn A?

Exercise 4 (Entropy and conditional entropy). Given two random variables X and
Y, prove that

H(X | Y) +H(Y) = H(X,Y)
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Exercise 5 (Entropy: chain rule). Let Y,X1 . . . ,XL : Ω → X be random variables.
Using definitions of the lecture:

H(X1, . . . ,XL) = −
∑

x1,...,xL

p(x1, . . . , xL) log2 p(x1, . . . , xL)

H (Y | X1, . . . ,XL) = −
∑

y,x1,...,xL

p(y, x1, . . . , xL) log2 p(y | x1, . . . , xL)

1. Independent Case: show that when the Xi’s are independent,

H(X1, . . . ,XL) =
L∑
i=1

H(Xi)

2. General case: show that the following (known as the entropy chain rule
formula),

H(X1, . . . ,XL) =
L∑
i=1

H(Xi | Xi−1, . . . ,X1)

Exercise 6. Let (X,Y,Z) ∈ {0, 1}3 be random variables such that

pXYZ(0, 0, 0) =
1

4
and pXYZ(0, 1, 0) =

1

4

pXYZ(1, 0, 0) =
1

4
and pXYZ(1, 0, 1) =

1

4

Compute H(X), H(Y | X), H(Z|X,Y). Find H(X,Y,Z) with the following
computations: direct application of the definition and chain-rule.

Recall that h(1/4) ≈ 0.811. Compute H(Y). Check that H(Y | X) ≤ H(Y).
What does X bring as information on Y and reciprocally?

Exercise 7. Show that H(Y | X) = 0 if and only if Y is a function of X, i.e., for
any x such that p(x) > 0, then it exists y such that p(y | x) = 1.

To solve the following exercise, we will admit the following result (known as strong
additive theorem), for any random variable X,Y,Z,

H(X,Y,Z)−H(Y,Z) ≤ H(X,Y)−H(Y)
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Exercise 8 (Data processing inequality, once information has been lost, it is gone
forever).

In many applications of interest we perform computations on the information we
have available, but that information si imperfect, it has been subjected to some noise
before it becomes available to us. A basic inequality of information theory, the data
processing inequality, states that information about the output of a source can only
decrease with time: once information has been lost, it is gone forever. Making this
statement more precise is the goal of this exercise.

The intuitive notion of information processing is captured in the idea of a Markov
chain of random variables. A Markov chain (of order 1) is a sequence X1 → X2 →
· · · of random variable such that

∀n ∈ N, P (Xn+1 = xn | Xn = xn, . . . ,X1 = x1) = P(Xn+1 = xn+1 | Xn = xn)

Let X → Y → Z be a Markov Chain.

1. Show that Z → Y → X is a Markov Chain.

2. Show that,
H(X) ≥ I(X,Y) ≥ I(X,Z)

How do you interpret this result?

3. Let g : X → X . Show that,

I(X,Y) ≥ I(X, g(Y))

How do you interpret this result?

Exercise 9 (Gibb’s inequality and first consequences!).

1. Recall that for all x ≥ 0,
ln x ≤ x− 1

with equality if and only if x = 1.
Deduce Gibb’s inequality

DKL(X||Y) ≥ 0

with equality if and only if X = Y.

2. H(X) ≤ log2 ♯X with equality if and only if X is the uniform distribution
over X .
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3. H(X,Y) ≤ H(X)+H(Y) with equality if and only X and Y are independent.

Exercise 10. Show that, (
n

t

)
≤ 2nh(t/n)

You can admit that conditioning decreases the entropy, i.e. H(X | Y) ≤ H(X).

Exercise 11 (The password problem). Someone (probably a malicious person) tries
to access to some service protected by a password which is unknown. Let M = {0, 1}n
be the set of possible passwords.

Let us suppose that the protected service is perfect, i.e., the only possibility for the
attacker is to try passwords one by one. Let us also suppose that the secret password
was chosen according to some random variable with entropy h. Let us denote by
decreasing order the probability pi that the word mi was chosen according to this
distribution.

1. Show that the best strategy consists in testing words one by one in the order
given by the probabilities pi. Give the expected number N (p) as function of the
pi’s.

2. Let p = (pi)i≥1 and q = (qi)i≥1 be two probability distributions such that series
pi et qi are in decreasing order. Suppose that,

qi = (1− α)αi−1

for some 0 < α < 1. Show that if H(p) = H(q), then

N (p) ≥ N (q)

3. Compute the entropy H(q) as function of α. Let Hα be this quantity. Recall
that, ∑

i≥1

αi−1 = 1/(1− α)  and
∑
i≥1

iαi−1 = 1/(1− α)2

4. Deduce that for all 0 < α < 1 we have 1 < (1− α)2Hα < e.

5. Deduce that N (p) > 1
e
2h. Interpret this result.
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