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COMMUNICATION OVER A NOISY CHANNEL

Lecture 6:

It is possible to communicate Rn bits by sending n bits through a noisy channel Q if and only if

R ≤ C(Q)
(
capacity

)
−→ The proof relies on the use of block-codes:

we encode a symbol into a block-code which adds redundancy

Issue:

Shannon’s proof does not give an efficient algorithm to communicate: even encoding is

non-efficient with block-codes
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MOTIVATION: LINEAR CODES OFFER AN EFFICIENT ENCODING

Lecture 7:

We introduced linear codes which enable at least an efficient encoding

Issue:

Linear codes form a sub-class of block-codes: we don’t know if they reach the capacity of noisy

channels
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OBJECTIVE

Linear codes reach the capacity of the q−ary Symmetric Channel
(
qSC(p)

)
, but. . .

▶ The proof which is a variation of Shannon’s proof from Lecture 6 does not exhibit an efficient

decoding algorithmm
(
a priori the decoding algorithm requires computations with an

exponential cost
)
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COURSE OUTLINE

1. Shannon’s Theorem for Linear Codes

2. About Random Codes

3. Proof of Shannon’s Theorem for Linear Codes

4. Random Codes: a Powerful Tool

5. A Little Bit of Cryptography
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SHANNON’S THEOREM



THE q-ARY SYMMETRIC CHANNEL

q-ary symmetric
(
qSC(p)

)
channels:

Memoryless channel
(
Fq, Fq, p(y | x)

)
where,

∀x, y ∈ Fq , p(y | x) =
{
1− p if x = y
p

q−1 otherwise

p: probability of error ; p
q−1 transition probability

When sending c ∈ Fnq through the channel

y = c + e where the ei are i.i.d and p(ei = x) =
{
1− p if x = 0
p

q−1 otherwise

0
1− p

p
q−1

α ∈ Fq\{0}
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DECODER AND FAILURE PROBABILITY

Decoder:

A decoder D is defined as a mapping D : Fnq 7→ Fnq ∪ {⊥} where ⊥ is a special symbol used to

denote the potential case where the decoder fails to output something

Given a code C, we can associate a decoderD to form the pair (C,D). The failure probability ofD

relatively to C is defined as
Pfail (C,D)

def
= P (D(c + e) 6= c)

where the probability is computed over: (i) the internal randomness of D, (ii) c be chosen

uniformly at random among C and (iii) e be the error induced by the qSC(p), i.e.,

e = (e1, . . . , en) where the ei are i.i.d and p(ei = x) =
{
1− p if x = 0
p

q−1 otherwise

7



MAXIMUM LIKELIHOOD DECODER

Maximum likelihood decoder:

Given the qSC(p) and C ⊆ Fnq , we call the maximum likelihood decoder the map

DML : Fnq −→ C

such that given y ∈ Fnq , it outputs the codeword c ∈ C maximizing the transition probabilities

DML(y) def
= arg max

c∈C
P(c | y) = arg max

c∈C

n∏
i=1

P(ci | yi)

Proposition
(
from Lecture 7

)
:

In a qSC(p) with probability of transition p/(q− 1) < 1/q, if codewords c ∈ C are chosen

uniformly at random among C, then

∀y ∈ Fnq , DML(y) = c ∈ C such that c = arg min
d∈C

dH(y, d)

where dH(·, ·) is the Hamming distance,

∀x, y ∈ Fnq , dH(x, y) def
= ♯ {i ∈ [1, n], xi 6= yi}
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ASYMPTOTIC SEQUENCE OF CODES

Remember, an [n, k]q-code is a subspace of Fnq with dimension k

Asymptotic sequence of codes:

A sequence of codes (Cn)n∈N is defined as a series of [n, k]q-codes where k is a function of n, i.e.,

k : n ∈ N 7−→ k(n) ∈ J0, nK
−→ Be careful, abuse of notation: we write k instead of k(n)

Rate of asymptotic sequence of codes:

Given a sequence of codes (Cn)n∈N , its rate is defined as
(
if the following limit exists

)
,

R def
= lim

n→+∞
k
n

(
= lim

n→+∞
k(n)
n

)
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q-ARY ENTROPY

q-ary entropy

The q-ary entropy is defined as,

hq : x ∈ [0, 1] 7−→ −x logq x
q−1 − (1− x) logq (1− x)

Exercise:

Let X ∈ J0, q− 1K where,
P(X = x) =

{
1− p if x = 0
p

q−1 if x 6= 0

Show that the q-ary entropy is the entropy of X up to log2 q factor, i.e.,

hq(p) = 1
log2 q

· H(X)
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SHANNON’S THEOREM STATEMENT

Shannon’s Theorem for Linear Codes:

For all 0 ≤ p < q−1
q and ε > 0 it holds that,

1. It exists δ > 0 such that for any n large enough it exists (C,D) where C is a linear code of

length n and dimension n (1− hq(p)− ε) and

Pfail (C,D) ≤ 1
qδn

2. For all δ > 0 and n large enough, and all pair (C,D), where C is a linear code with length n

and dimension n (1− hq(p) + ε), we have
Pfail (C,D) ≥ 1− δ

−→ In particular: the proof of Shannon’s theorem for linear codes uses the maximum likelihood

decoder, not the jointly typical decoder!

An important remark:

Linear codes enable to achieve reliable communication over qSC(p) but under the necessary and

sufficient condition to have a transmission rate

R = k/n < 1− hq(p)

But
(
1− hq(p)

)
is exactly the capacity, as defined in Lecture 6, of the qSC(p) channel
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PROOF STRATEGY

1. As with block codes we will used the average code trick but by picking them as uniform

[n, k]q-codes
(
not a coincidence, capacity of qSC(p) = max

X
I(X, Y) achieved for a uniform X

)
2. Our decoder choice will be the maximum likelihood decoder

3. We will show that errors of the qSC(p) concentrate over Hamming ball of radius np

4. Then for “random codes” balls centered at codewords and with radius np do not typically

intersect at the condition
♯C · Vol (B(np)) = qk · Vol (B(np)) ≤ ♯Fnq = qn ⇐⇒ k < n(1− hq(p))

5. As above balls do not intersect under the good condition, the maximum likelihood decoder

works because it outputs the closest codeword
(
for the Hamming distance

)

The average trick is the crucial idea of the proof

−→ If a quantity is < ε in average over {A}, then it exists an A0 s.t the quantity is < ε for this A0
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SOME PICTURE: AVOID CONFUSION

Errors e in the qSC(p) are such that |e| ≈ np

−→ There are ≈ qnhq(p) vectors of Hamming weight ≈ np

transmit word

typical realisation
after noise

Fnq
Size: qnhq(p)

qn(1−hq(p)) words can be transmitted without confusion

In Shannon’s theorem we use the maximum likelihood-decoder: from y ∈ Fnq it outputs c ∈ C, the

closest codeword for the Hamming distance!

As soon as the code size is > qn(1−hq(p)) an exponential number of balls intersect:

it is impossible to recover the sent codeword without ambiguity
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ABOUT RANDOM CODES



RANDOM CODES: FIRST MODELS

Random code(s):

It is defined as

• C =
{
mGu : m ∈ Fkq

}
where Gu ← Unif

(
Fk×nq

)
or,

• C =
{
c ∈ Fnq : Huc⊺ = 0

}
where Hu ← Unif

(
F(n−k)×n
q

)
where Unif

(
Fm×nq

)
means the uniform distribution over Fm×nq , i.e., coefficients the matrix are i.i.d.

and uniform over Fq

Exercise:

Are these models equivalent? Do they define a uniform [n, k]q-code?
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AT FIRST SIGHT

Random code(s):

• C =
{
mGu : m ∈ Fkq

}
where Gu ← Unif

(
Fk×nq

)
−→ dim C ≤ k as rank(Gu) ≤ k

• C =
{
c ∈ Fnq : Huc⊺ = 0

}
where Hu ← Unif

(
F(n−k)×n
q

)
−→ dim C ≥ k as rank(Hu) ≤ n− k

Both models do not seem to be equivalent. . .
(
Spoiler: they “are”!

)
and they don’t define uniform [n, k]q-codes. . .
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OTHER MODELS

Random code(s):

It is defined as

• C =
{
mGk : m ∈ Fkq

}
where Gk ← Unif

{
M ∈ Fk×nq with rank k

}
or,

• C =
{
c ∈ Fnq : Hkc

⊺
= 0

}
where Hk ← Unif

{
M ∈ F(n−k)×n

q with rank n− k
}

−→ Both models are equivalent: they pick a code uniformly at random among [n, k]q-codes

Issue:

These models imply in many situations unnecessarily complex computations contrary to the cases

where we don’t fix the rank of the matrix. . .

But could it be that all these models are “equivalent”?
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AN IMPORTANT TOOL: STATISTICAL DISTANCE

Statistical distance:

Let X and Y be random variables,

∆(X, Y) def
= 1

2
∑

a∈E

∣∣∣P (X = a)− P (Y = a)
∣∣∣

A crucial property: data processing inequality

∆ (f(X), f(Y)) ≤ ∆ (X, Y)

Consequence: ∀A algorithm∣∣∣PX(A(X) = “success”
)
− PY

(
A(Y) = “success”

)∣∣∣ ≤ ∆(X, Y)

Typical situation:

We want to analyse the success probability of A(m) when its input m is picked according to X. But

it implies ugly computations. . . However, we know how to analyse this success probability when

m picked according to Y. If∆(X, Y) is small we are done! We perform computations with Y, what we

loose in our estimation of the success probability is ±∆(X, Y)

18



SAME MODELS

Gu or Hu-models ⇐⇒ draw uniformly an [n, k]-code:

Gk ∈ Fk×nq

(
Hk ∈ F(n−k)×n

q

)
be uniform of rank k

(
resp. n− k

)
:

∆ (Gu, Gk) = O
(
q−(n−k)

) (
resp. ∆ (Hu,Hk) = O

(
q−k

))

Computation are the same in Gu and Hu-models:

Let E be a set of codes
(
defined as an event

)
. We have,

1. ∣∣∣PGk (E)− PHk (E)
∣∣∣ = 0

2. ∣∣∣PGu (E)− PHu (E)
∣∣∣ = O

(
q−min(k,n−k)

)
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PROOF

Proof: ∣∣∣PGu (E)− PHu (E)
∣∣∣ ≤ ∣∣∣PGu (E)− PGk (E)

∣∣∣ + ∣∣∣PHk (E)− PHu (E) +
∣∣∣PGk (E)− PHk (E)

∣∣∣
•

∣∣∣PGu (E)− PHu (E)
∣∣∣ and ∣∣∣PHk (E)− PHu (E)

∣∣∣ are O(q−min(k,n−k)) because of the

statistical distance

• PGk (E) = PHk (E) because codes defined by Gk and Hk have the same distribution:

uniform over [n, k]q-codes
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SHANNON’S THEOREM: PROOF



THE ASYMPTOTIC VOLUME OF HAMMING BALLS

Hamming ball:

The Hamming ball of center x and radius r ∈ J0, nK is defined as,
BH(x, r) =

{
y ∈ Fnq, dH(x, y) ≤ r

}

−→ The volume of BH(x, r) is given by
∑r

j=0
(n
j
)
(q− 1)j , it is independent from x

Lemma
(
see Exercise Session 5

)
:

for all 0 ≤ r ≤ q−1
q n,

1
n+1 q

nhq(r/n) ≤
(n
r
)
(q− 1)r ≤ qnhq(r/n) , then ♯BH(x, r) = qn(hq(r/n)+o(1))

Intuitive proof: a q-ary Bernoulli with parameter concentrates exactly over the shell of BH(0, r)(
Chernoff bound

)
but we know that the number of typical sequence of this distribution is

qnhq(r/n) . To conclude, the volume of a ball is ≈ given by its shell
(
or x 7→ hq(x) is increasing over

[0, (q− 1)/q]
)
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MAXIMUM LIKELIHOOD DECODER AND THE LINEARITY

From Lecture 7:

Proposition:

In a qSC(p) with probability of transition p/(q− 1) < 1/q, if codewords c ∈ C are chosen

uniformly at random among C, then

∀y ∈ Fnq , DML(y) = arg max
c0∈C

P(c0 | y) = c ∈ C such that c = arg min
d∈C

dH(y, d)

where dH(·, ·) is the Hamming distance,

∀x, y ∈ Fnq , dH(x, y) def
= ♯ {i ∈ [1, n], xi 6= yi}

Lemma: maximum likelihood decoder and the linearity

Let C ⊆ Fnq be a linear code, and e be the error induced by qSC(p),

Pfail (C,DML) = P (DML(c + e) 6= c) = Pe (DML(e) 6= 0)
or equivalently,

Pfail (C,DML) = Pe
(
∃c ∈ BH (e, |e|) ∩ C\{0}

)
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PROOF

c

c′

c + e

Proof:

Given c ∈ C be chose uniformly at random and e be the error induced by qSC(p). The maximum

likelihood decoder DML will fail given y def
= c + e if there is another codeword c′ ∈ C such that

|y− c′| ≤ |y− c|

Pfail (C,DML) = P
(
∃c′ ∈ BH (c + e, |e|) ∩ C\{c}

)
=

1
qk

∑
c0∈C

P
(
∃c′ ∈ BH (c0 + e, |e|) ∩ C\{c0}

) (
law of total probability

)

=
1
qk

∑
c0∈C

P
(
∃c′ ∈ BH (e, |e|) ∩ C\{0}

)

where in the last equality we used that fact that C is linear by applying a translation −c0 . Then,

Pfail (C,DML) = Pe
(
∃u ∈ BH (e, |e|) ∩ C\{0}

)
= Pe (DML(e) 6= 0)
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THE MODEL OF RANDOM CODE AND A FIRST CONSEQUENCE

In the proof of Shannon’s theorem will use as model of random codes:

Gk be a uniform matrix over Fk×nq with rank k

Lemma:

For all
(
fixed

)
m ∈ Fkq\{0}, the random variable mGk is uniform over Fnq\{0}

Proof:

Let y, y′ ∈ Fnq\{0}: we will prove that P (mGk = y) = Pr
(
mGk = y′

)
First, it exists an invertible n× n matrix M such that yM = y′ . Therefore,

P (xGk = y) = P
(
xGkM = y′

)
Since A 7→ AM is a bijection from the set of full rank k× n matrices onto itself, GkM is a uniformly

random full rank k× n matrix and,

P
(
xGkM = y′

)
= P

(
xGk = y′

)
Combining the previous equality concludes the proof
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PROOF OF SHANNON THEOREM’S(I)

Proof of Shannon’s theorem:

Let k = b(1− hq(p)− ε)nc. Let C be an [n, k]q-code and G be a generator matrix for C. We have

proved,
Pfail(C,DML) = P

e←qSC(p)

(
∃m ∈ Fkq\{0}, mG ∈ BH (e, |e|)

)

Let E(G, e) be the event: E(G, e) def
=

{
∃m ∈ (Fkq\{0}), mG ∈ BH (e, |e|)

}
. Let γ > 0, then,

Pfail(C,DML) = Pe
(
E(G, e) | |e| ≤ (p + γ)n

)
Pe

(
|e| ≤ (p + γ)n

)
+ Pe

(
E(G, e) | |e| > (p + γ)n

)
Pe

(
|e| > (p + γ)n

)
Since probabilities are always less than or equal to 1, we get

Pfail(C,DML) ≤ Pe
(
E(G, e) | |e| ≤ (p + γ)n

)
+ Pe

(
|e| > (p + γ)n

)
Thanks to Chernoff bound,

Pe
(
|e| > (p + γ)n

)
≤ 2e−2pnγ

2

 

Conclusion:

To conclude it remains to upper-bound: Pe
(
E(G, e) | |e| ≤ (p + γ)n

)
−→ Use the average trick over G
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PROOF OF SHANNON’S THEOREM(II)

It remains to get an upper bound on Pe
(
E(G, e) | |e| ≤ (p + γ)n

)
but it is hopeless to get

a uniform and sharp upper bound for all G

Proof of Shannon’s theorem

Let Gk be uniformly picked over Gn,k the set of matrices Fk×nq with rank k

M def
= EGk

(
Pe

(
E(Gk, e) | |e| ≤ (p + γ)n

))
=

1
|Gk,n|

∑
G∈Gk,n

Pe
(
∃m ∈ Fkq \ {0}, mG ∈ BH(e, |e|) | |e| ≤ (p + γ)n

)

≤
1
|Gk,n|

∑
G∈Gk,n

Pe
(
∃m ∈ Fkq \ {0}, mG ∈ BH(e, (p + γ)n) | |e| ≤ (p + γ)n

)

By the union bound, we get

M ≤ 1
|Gk,n|

∑
G∈Gk,n

∑
m∈Fkq\{0}

Pe
(
mG ∈ BH(e, (p + γ)n) | |e| ≤ (p + γ)n

)
Therefore,

M ≤
1
|Gk,n|

∑
G

∑
m∈Fkq\{0}

∑
x:|x|≤(p+γ)n

Pe
(
mG ∈ BH(x, (p + γ)n)

)
Pe

(
e = x | |e| ≤ (p + γ)n

)

=
∑

m∈Fkq\{0}

∑
x:|x|≤(p+γ)n

PGk
(
mGk ∈ BH(x, (p + γ)n)

)
Pe

(
e = x | |e| ≤ (p + γ)n

)
27



PROOF OF SHANNON’S THEOREM(III)

Proof of Shannon’s Theorem

We have proved: if m ∈ Fkq\{0} then mGk is uniform over Fnq\{0}. Therefore,

PGk
(
mGk ∈ BH(x, (p + γ)n)

)
=

♯BH((p + γ)n, n)− 1
qn − 1

≤ qn(hq(p+γ)−1)

where the last inequality we used our inequality on the size of Hamming ball. Therefore,

M ≤
∑

m∈Fkq\{0}

∑
x:|x|≤(p+γ)n

qn(hq(p+γ)−1) Pe
(
e = x | |e| ≤ (p + γ)n

)

= qn(hq(p+γ)−1) ∑
m∈Fkq\{0}

Pe
(
|e| ≤ (p + γ)n

)

≤ qn(hq(p+γ)−1) qk

Finally, since k ≤ n(1− hq(p)− ε) and hq is a decreasing continuous function over
[
0, p

q−1

]
, we

obtain for γ small enough

M = EGk
(
Pe

(
E(Gk, e) | |e| ≤ (p + γ)n

))
≤ qn(hq(p+γ)−hq(p)−ε) ≤ q−nδ

where δ > 0 is some constant. Therefore, it exists at least one matrix G0 of rank k in Fk×nq s.t

Pe
(
E(G0, e) | |e| ≤ (p + γ)n

)
≤ q−nδ
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PROOF OF SHANNON’S THEOREM (IV)

Proof of Shannon’s theorem:

Putting everything together we obtain, where C0 is the code with generator matrix G0 ,

Pfail(C0,DML) ≤ q−nδ + 2e−pnγ
2
≤ q−δ′n

for some constant δ′ > 0 showing 1. in Shannon’s theorem
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AN IMPORTANT REMARK

It turns out that we have proven
(
where C is a uniform [n, k]q-code

)
EC

(
Pfail

(
C,DML

))
≤ q−δ′n

−→ Therefore, by Markov’s inequality: PC
(
Pfail

(
C,DML

)
≥ q−δ′n/2

)
≤ q−δ′n/2

Conclusion:

For almost all [n, k]q-codes C
(
a proportion 1− 1

qδ′n/2

)
, the maximum-likelihood decoder fails

with probability exponentially close to 0, i.e., Pfail (C,DML) ≤ q−δ′n/2
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SHANNON’S THEOREM: NEGATIVE PART

Shannon’s theorem for linear codes: negative part

For all 0 ≤ p < q−1
q and ε > 0 it holds that,

2. For all δ > 0 and n large enough, and all pair (C,D), where C is a linear code with length n

and dimension n (1− hq(p) + ε), we have
Pfail (C,D) ≥ 1− δ

▶ The capacity of the qSC(p)
(
according to Lecture 6

)
is given by

(
1− hq(p)

)
. Therefore to

prove this part of the theorem we can use the negative part of Shannon’s theorem from

Lecture 6
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RANDOM CODES: A POWERFUL TOOL



THE AVERAGE TRICK

Fundamental trick:

Suppose that C is a uniform [n, k]q-code, X be some source of randomness and

PC,X
(
C verifies some good property P

)
≥ C or PC,X

(
C verifies some bad propertyQ

)
≤ ε

Then,

1. It exists at least one [n, k]q-code C0 verifying the good property with probability at least C,

PX
(
C0 verifies some good property P

)
≥ C

2. The proportion of codes for which the probability of the bad property is ≥
√
ε is ≤

√
ε,

♯

{
C0 : PX

(
C0 an [n, k]q-code verifying some bad propertyQ

)
≥
√

ε

}
♯

{
C0 be an [n, k]q-code

} ≤
√
ε
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PROOF

Proof
(
nothing else than Markov’s inequality

)
:

As C is uniform over [n, k]q-codes we have by the law of total number,

PC,X
(
C verifies some property

)
=

1
M

∑
C0 be an
[n,k]q-code

PX
(
C0 verifies some property

)

= EC
(
PX

(
C verifies some property

))
where M is the number of [n, k]q-code. The above sum is enough to conclude
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RANDOM CODES AND WEIGHT DISTRIBUTION

We have proved that we can decode
(
but without an efficient decoding algorithm

)
a random code

up to the channel capacity of qSC(p)

−→ We know more things about random codes

Proposition: weight distribution of random codes

Let C be a random [n, k]q-codes where we use the model that C admits as parity-check matrix a

uniform H ∈ F(n−k)×n
q . We have,

∀ℓ > 0, EC
(
♯
{
c ∈ C : |c| = ℓ

})
=

(n
ℓ

)
(q− 1)ℓ

qn−k
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RANDOM CODES AND MINIMUM DISTANCE

We have proved that we can decode
(
but without an efficient decoding algorithm

)
a random code

up to the channel capacity of qSC(p)

−→ We know more things about random codes

Proposition: minimum distance of random codes

Let ε > 0 and (Cn)n∈N be an asymptotic sequence of random [n, k]q-codes
(
whichever of the four

models we previously discussed
)
where k

n −−−−−→n→+∞
R. Then,

PC
(
(1− ε)h−1q (1− R) ≤

dmin(Cn)
n

≤ (1 + ε)h−1q (1− R)
)
≥ 1− q−αn

for some constant α > 0

Consequence:

Almost all codes [n, k]q-codes
(
via Markov’s inequality

)
with rate R def

= k/n have a minimum

distance given by
tGV(R)

def
= h−1q (1− R) · n known as Gilbert-Varshamov radius
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PROOFS

Proof:

See Exercise Session
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DECODING RANDOM CODES AT THE CAPACITY

We know that,

▶ we can decode with success probability > 0 a random code with rate R in the qSC(p) as soon

as R ≤ 1− hq(p). But in the qSC(p) there are ≈ np errors. Notice that

R ≤ 1− hq(p) ⇐⇒ p ≤ nh−1q (1− R)

Conclusion:

We can decode a random code of rate R up to the Hamming distance h−1q (1− R) · n

▶ random codes with rate R have minimum distance ≈ h−1q (1− R)·

Surprising conclusion:

We can
(
theoretically, i.e., non-efficiently

)
decode a random code Crand with probability > 0 as

soon as the number of errors is ≤ dmin(Crand) and not dmin(Crand)/2
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A LITTLE BIT OF CRYPTOGRAPHY



CRYPTOGRAPHER’S GOAL

Find hard problems. . .
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ONE-WAY FUNCTIONS

Hard problem: given some function f such that

x f(x)

Easy

Hard

• What is Mr. Rodemich number?

• Who is owner of +33 631053595?

−→ Can we really do cryptography with one-way functions?
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TRAPDOOR ONE-WAY FUNCTIONS AND ENCRYPTION SCHEMES

Cryptography asks for particular one-way functions: trapdoor one-way functions

x f(x)

Easy

Hard

Easy with trapdoor

Alice wants to receive secret data

Public-Key Encryption:

• Alice reveals f to the world but Alice owes the trapdoor

• Bob wants to share secretly with Alice some number 711327: he computes f(711327)

• Alice receives f(711327) and she recovers 711327 while it is hard for everyone else
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OUR WISH LIST

To build a public-key encryption scheme we need:

▶ first, a one-way function f

▶ then to find a trapdoor for this function

Public-Key: description of f ; Secret-Key: its associated trapdoor
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WHAT ABOUT DECODING A RANDOM CODE?

Shannon’s proof relied on the following decoding problem:

Given y def
= c + e where

{
c ∈ C with C being a random code
e is such that |e| ≈ t

,

we have to recover the closest codeword from y

It seems to be a hard problem, Shannon did not give any efficient algorithm to solve this problem!

Shannon only proved that the closest codeword from y is c if and only if ♯C is small enough(
capacity condition

)
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DECODING A RANDOM CODE AND ONE-WAY FUNCTIONS

Given G ∈ Fk×nq ,
fG : (m, e) ∈ Fkq ×

{
x ∈ Fnq : |x| = t

}
7−→ mG + e

▶ The knowledge of G which defines an [n, k]q-code C and t is enough to compute fG

▶ It is easy to compute fG(m, e)
(
only linear algebra

)
▶ If G has been chosen uniformly,inverting fG amount to decode a random code at distance t

which is believed to be hard

But we need a trapdoor to build public-key encryptions!
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MCELIECE’S APPROACH

McEliece in ’78 had the idea of introducing the following trapdoor:

The underlying code in fG is chosen as a code that we know how to decode

and the quantities which enable to decode form the secret key

−→ McEliece proposed in ′78 to choose G as the generator matrix of a Goppa code
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AN INSTANTIATION

In Lecture 7 we have studied codes that we know how to decode: Reed-Solomon codes

Berlekamp-Welsh Algorithm:

We can decode RSk(x, z) at any distance < n−k
2

• Public Key: a representation of RSk(x, z) which admits as generator matrix



1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
...

...
...

...
xk1 xk2 · · · xkn



• Secret Key:

What is the secret key? Can we give the above matrix as a public key?
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AN INSTANTIATION

In Lecture 7 we have studied codes that we know how to decode: Reed-Solomon codes

Berlekamp-Welsh Algorithm:

We can decode RSk(x, z) at any distance < n−k
2

• Public Key: a representation of RSk(x, z) which admits as generator matrix

Gpk = S



1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
...

...
...

...
xk1 xk2 · · · xkn

 where S non-singular picks random basis

• Secret Key: T = x

▶ To encrypt a message m with the public-key Gpk : compute mG + e where |e| < n−k
2

▶ To decrypt mGpk + e with the knowledge of the secret-key T: use Berlekamp-Welsh algorithm
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AND AN ATTACK...

But in ’92, Sidelnikov and Shestakov have shown how to break this instantiation of McEliece’s

encryption

−→ From the knowledge of Gpk = S



1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
...

...
...

...
xk1 xk2 · · · xkn

 we can easily recover the secret x
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ABOUT THE SECURITY

The above attack shows that the security of McEliece’s encryption scheme does not strictly relies

on the hardness of decoding a random code

But under which assumptions McEliece’s scheme is secure?

McEliece security assumption:

We can prove that McEliece’s encryption is secure under the following assumptions:

1. It is hard to decode a random code

2. It is hard to distinguish the public-key G ∈ Fk×nq and a uniform matrix with the same size

Can we build an encryption scheme whose security is only based on the hardness of decoding a

random code?
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FURTHER READING

Yes, a public-key encryption scheme whose security is only based on the hardness of decoding a

random code is known since ’03:

Alekhnovich’s cryptosystem

▶ Lecture notes by Gilles Zémor about Alekhnovich’s cryptosystem:

https://www.math.u-bordeaux.fr/~gzemor/alekhnovich.pdf
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