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COMMUNICATION OVER A NOISY CHANNEL

Lecture 6:

It is possible to communicate Rn bits by sending n bits through a noisy channel Q if and only if

R ≤ C(Q)
(
capacity

)
−→ The proof relies on the use of block-codes:

we encode a symbol into a block-code which adds redundancy

An example: spell your name over the phone, send first names!

M like Mike, O like Oscar, R like Romeo, A like Alpha, I like India and N like November
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MOTIVATION: BLOCK-CODES ARE NOT REALLY EFFICIENT

Block-codes reach the capacity of discrete memoryless channels, but. . .

▶ To encode messages to send we need to store a table of exponential size. . .

▶ Encoding is an issue but also decoding, i.e., recovering the sent message from a noisy version(
in Shannon’s proof we need to compute an exponential number of probabilities

)
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OBJECTIVES

Our wish list: defining a sub-class of codes verifying

1. Admitting an efficient encoding algorithm

2. Admitting an efficient decoding algorithm

3. Reaching the capacity

−→ Linear codes! At least they verify 1 . . .
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COURSE OUTLINE

1. Basics on Linear Codes

2. Dual Representation of Linear Codes

3. Hamming Distance/Weight

4. Bounds on Minimum Distance

5. Reed-Solomon Codes and their Decoding Algorithm 
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BASICS ON LINEAR CODES



REMINDER: FINITE FIELDS

A finite field Fq is a finite set with size q admitting operations
(
+,−,×, /

)
 
▶ We necessarily have q = pm for some prime number p and m integer > 0

▶ Algebraic structure: Fpm = Fp[X]/(P(X)) where P ∈ Fp[X] is a polynomial of degree m and

irreducible
(
P = QR, implies that P or Q ∈ Fq

)
F4 = F2[X]/(1 + X + X2)

X(1 + X) = X + X2 = −1 = 1

Be careful:

Fq = Z/qZ⇐⇒ q is prime

An important example: the binary field F2

F2 = {0, 1} where

0 + 1 = 1 + 0 = 1, 0 + 0 = 1 + 1 = 0, 1× 0 = 0× 1 = 0× 0 = 0 and 1× 1 = 1
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VECTOR SPACE STRUCTURE

Fnq = Fq × · · · × Fq︸ ︷︷ ︸
n times

is a Fq-vector space

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

∀λ ∈ Fq , λ · (x1, . . . , xn) = (λx1, . . . , λxn)

7



LINEAR CODES

Linear codes:

A linear code C is a subspace of Fnq
When C has dimension k, we say that it is an [n, k]q-code: n length, k dimension

Linear codes are block-codes when the alphabet is a finite field + a linear structure
(
subspace

)

First example: repetition code of length 3{
(0, 0, 0), (1, 1, 1)

}
is a [3, 1]2-code

Rate of linear codes:

An [n, k]q-code has cardinal qk
(
why?

)
and its rate R is equal to

R =
logq qk

n = k
n
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EXAMPLE OF CODES

Non trivial linear codes:

1.
{
(f(x1), . . . , f(xn)) : f ∈ Fq[X], deg(f) < k

}
⊆ Fnq

2. Given two linear codes U, V ⊆ Fn/2q ,
{
(u, u + v) : u ∈ U and v ∈ V

}
⊆ Fnq

Exercise Session:

What are the dimensions of the above linear codes?
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BASIS REPRESENTATION

How to represent an [n, k]q-code? It has size qk , is a table of this size necessary?

No!

Basis/Primal representation:

An [n, k]q-code C admits a basis b1, . . . , bk ∈ Fnq

C =
{
mG : m ∈ Fkq

}
where the rows of G ∈ Fk×n

q are the bi ’s

The matrix G is called a generator matrix of C

Redundancy versus rate:

Given a binary code C of dimension k, we can easily encode k bits (m1, . . . ,mk) as mG∈ C where

G generator matrix
(
to encode does not necessitate to store an exponential size table

)
We have mapped k bits to n bits! The

(
normalized

)
redundancy (n− k)/n = 1− k/n = 1− R

R ≈ 0: a lot of redundancy ; R ≈ 1: few redundancy
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THE BIG PICTURE

Particular case of F2 , but can be generalized to Fq by encoding elements with log2(q) bits

 
How to transmit k bits over a noisy channel?

1. Linear code: fix C subspace ⊆ Fn2 of dimension k < n

2. Encoding: map (m1, . . . ,mk) −→ c = (c1, . . . , cn) ∈ C task adding n− k bits redundancy

−→ as C is linear the encoding is easy
(
only linear algebra

)
, i.e., c = mG

3. Send c across the noisy channel, errors happen and some bits of c are modified

Sender

m

Encoding

c

Noisy Channel

Error e

c + e

Decoding

c? m

Decoding:

−→ from c + e: recover e and then c. Now as G has rank k, we easily recover m

by Gaussian elimination
(
we use the linearity

)
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DUAL REPRESENTATION OF CODES



DUAL CODE

Linear codes as subspaces can also be written as the kernel of a matrix

Dual code:

Given an [n, k]q-code C, its dual C⊥ is an [n, n− k]q-code defined as

C⊥ =

c⊥ ∈ Fnq : ∀c ∈ C, 〈c⊥, c〉 def=
n∑
i=1

c⊥i ci︸︷︷︸
∈Fq

= 0



Parity-check/Dual representation:

C⊥ is an [n, n− k]q-code. Furthermore, for any generator matrix H ∈ F(n−k)×n
q

(
rows of H

form a basis of C⊥
)
we have,

C =
{
c ∈ Fnq : Hc⊤ = 0

}
Furthermore, any matrix H ∈ F(n−k)×n

q with rank n− k, such that C is its right kernel, forms(
considering its rows

)
a basis of C⊥ .

Such matrix H is called a parity-check matrix of C
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PROOF

Proof:

It is clear that C⊥ is a subspace of Fnq . Let us show that C has dimension n− k. First, C can be
written as the right kernel of a matrix H ∈ F(n−k)×n

q with rank n− k,

C =
{
c ∈ Fnq : Hc⊤ = 0

}
Therefore, all rows of H are elements in C⊥ showing that dim C⊥ ≥ n− k. On the other hand, if

B ∈ Fm×n
q is a basis

(
considering its rows

)
of C⊥ . Then by linearity C is included in the

(
right

)
kernel of B. We deduce that k = dim C ≤ n− dim C⊥ concluding the whole proof
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A REMARK

G ∈ Fk×n
q generator matrix of C, i.e., C =

{
mG : m ∈ Fkq

}
−→ SG is still a generator matrix when S ∈ Fk×k

q is invertible

H ∈ F(n−k)×n
q parity-check matrix of C, i.e., C =

{
c ∈ Fnq : Hc⊤ = 0

}
−→ SH is still a parity-check matrix when S ∈ F(n−k)×(n−k)

q is invertible

Left multiplication by an invertible matrix computes a change of basis!
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MOVING FROM ONE REPRESENTATION TO ANOTHER (I)

G ∈ Fk×n
q generator matrix of C easy to compute?←−−−−−−−→ H ∈ F(n−k)×n

q parity-check matrix of C

▶ Given G ∈ Fk×n
q , it has rank k. We can perform a Gaussian elimination, i.e., compute S ∈ Fk×k

q

invertible such that
(
up to a permutation of columns

)
,

SG = (Ik | A) where A ∈ Fk×(n−k)
q

−→ Then H = (−A⊤ | In−k) parity-check matrix of C

Proof:

Indeed, m (SG)H⊤ = m(Ik | A)
(
−A
In−k

)
= m(0) = (0). Therefore, C included in the right

kernel of H. But H has rank n− k, showing the H is a parity-check matrix of C
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MOVING FROM ONE REPRESENTATION TO ANOTHER (II)

G ∈ Fk×n
q generator matrix of C easy to compute?←−−−−−−−→ H ∈ F(n−k)×n

q parity-check matrix of C

▶ Given H ∈ F(n−k)×n
q , it has rank n− k. We can perform a Gaussian elimination, i.e., compute

S ∈ F(n−k)×(n−k)
q invertible such that

(
up to a permutation of columns

)
,

SH = (In−k | B) where B ∈ F(n−k)×k
q

−→ Then G = (−B⊤ | Ik) generator matrix of C

Exercise:

Given x ∈ Fnq and a linear code C ⊆ Fnq , is it easy to decide if x ∈ C?
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BE CAREFUL

C⊥ =

{
c⊥ ∈ C⊥ : ∀c ∈ C, 〈c, c⊥〉 =

n∑
i=1

c⊥i ci = 0 ∈ Fq

}

If C ⊆ Fnq has dimension k, then C
⊥ has dimension n− k where n = dim Fnq

−→ It seems that C⊥ is the orthogonal of C and 〈·, ·〉 is a scalar product, but no!

The dual is not an orthogonal!

C + C⊥ 6= Fnq

It happens that C
⋂
C⊥ 6= {0} and this intersection is called the hull
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DUAL CODE: FOURIER THEORY

Characters and Fourier transforms for prime q:

▶ Characters are χx(y) = e2iπ⟨x,y⟩/q where x, y ∈ Fnq . They are morphisms from (Fnq,+) to the

units of (C,×).

▶ The Fourier transform of f : Fnq → C, is

f̂(x) = 1√q
∑

y∈Fnq
f(y)χx(y)

The dual code is defined via group theory involving dual groups

The dual code C⊥ is the set of points for which characters are trivial when restricted to C, i.e.,

C⊥ =
{
c⊥ ∈ Fnq : ∀c ∈ C, χc⊥ (c) = 1

}
(
when q prime, χx(y) = 1⇐⇒ 〈x, y〉 = 0 ∈ Fq

)
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A QUICK REMINDER: QUOTIENT SPACES

Given two finite subspaces: F ⊆ E

Equivalence relation: x ∼ y ⇐⇒ x− y ∈ F

E/F = {x : x ∈ E} where x def
= {y ∈ E : x ∼ y} = x + F

−→ It defines a linear space!

k = dim E/F = dim E− dim F

Rough analogy:

E/F Z/4Z

{x1, . . . , xN} {0, 1, 2, 3}
xi = xi + F ℓ = ℓ + 4Z

x = y ⇐⇒ x− y ∈ F ℓ = m ⇐⇒ ℓ− m ∈ 4Z
E =

⊔
1≤i≤N

xi Z =
⊔

ℓ∈{0,1,2,3}
ℓ
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COSETS: MODULO THE CODE

Decoding: given c + e, recover e

−→ Make modulo C to extract the information about e

Coset space: Fn2/C

♯ Fnq/C = qn−k and Fnq/C =
{
xi : 1 ≤ i ≤ qn−k

}
=

{
xi + C : 1 ≤ i ≤ qn−k

}
where the xi ’s are the representatives of Fnq/C. The xi + C’s are disjoint!

A natural set of representatives via a parity-check H: syndromes

Proposition:

We have:

1. xi + C ∈ Fnq/C 7−→ Hx⊺i ∈ Fn−k
q

(
called a syndrome

)
is an isomorphism

2. Fnq =
⊔

s∈Fn−k
q

{
z ∈ Fnq : Hz⊺ = s⊺

}

c + e mod C = H(c + e)⊺ = Hc⊺︸︷︷︸
=0

+He⊺ = He⊺ which gives information to recover e
(
decoding

)
−→ c + e mod C is only function of e!
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PROOF

Proof:

1. Let us first show that xi + C ∈ Fnq/C 7−→ Hx⊺i ∈ Fn−k
q is a well-defined mapping. If we

choose another class representative yi + C = xi + C. Then by definition

yi − xi ∈ C ⇐⇒ H (yi − xi)⊤ = 0 ⇐⇒ Hy⊤i = Hx⊤i

It shows that we have a well-defined mapping. But the equivalence also shows that it is a

one-to-one mapping

The above application is surjective as H has rank n− k, therefore for any s ∈ Fn−k
q it exists

x ∈ Fnq such that Hx⊤ = s⊤ and x defines one representative. Furthermore the mapping is

clearly linear, concluding the proof of 1

2. This is a consequence of the equivalence relation but let’s give a direct proof. We have shown

above that ∀z ∈ Fnq , it exists s ∈ Fnq such that Hz⊤ = s⊤
(
H has rank n− k

)
.

To conclude notice that
{
z ∈ Fnq : Hz⊺ = s⊺

}
are clearly disjoint for s ∈ Fn−k

q
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NOISY CODEWORDS VERSUS SYNDROMES

C be an [n, k]q-code with generator and parity-check matrices G and H

▶ Given a noisy codeword, y = c︸︷︷︸
∈C

+e, its syndrome is

Hy⊤ = Hc⊤ + He⊤ = He⊤ where we use C =
{
c ∈ Fnq : Hc⊤ = 0

}
▶ Given a syndrome, s⊤ = He⊤ , we can easily compute its associated noisy codeword, by a

Gaussian elimination we compute y such that Hy⊤ = s⊤
(
as rank(H) = n− k

)
Hy⊤ = s⊤ ⇐⇒ H(y− e)⊤ = 0⇐⇒ y− e ∈ C ⇐⇒ y = c︸︷︷︸

∈C

+e
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HAMMING DISTANCE



OUR GOAL

Remember, we introduced codes to communicate over a noisy channel

−→ We will restrict our attention to the following channels:

q-ary symmetric channels:

Memoryless channel
(
Fq, Fq, p(y | x)

)
where,

∀x, y ∈ Fq , p(y | x) =
{
1− p if x = y
p

q−1 otherwise

p: probability of error ; p
q−1 transition probability

When sending x ∈ Fnq through the channel

y = c + e where the ei are i.i.d and p(ei = x) =
{
1− p if x = 0
p

q−1 otherwise

0
1− p

p
q−1

α ∈ Fq\{0}
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MAXIMUM LIKELIHOOD DECODER

Remember, after sending a codeword across a noisy channel we want to recover the sent

codeword, i.e., decoding

−→ The optimal decoder is the following one:

Maximum likelihood decoder:

Given a q-ary symmetric channel
(
Fq, Fq, p(y | x)

)
and a block-code C ⊆ Fnq . We call the

maximum likelihood decoder the map
φ : Fnq −→ C

such that given y ∈ Fnq , it outputs the codeword c ∈ C maximizing the transition probabilities

φ(y) def
= arg max

c∈C
p(c | y) = arg max

c∈C

n∏
i=1
p(ci | yi)
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MAXIMUM LIKELIHOOD DECODER AND HAMMING DISTANCE

Proposition:

In a q-ary symmetric channel with probability of transition p/(q− 1) < 1/q, if codewords c ∈ C

are chosen uniformly at random among C, then

∀y ∈ Fnq, φ(y) = c ∈ C such that c = arg min
d∈C

dH(y, d)

where dH(·, ·) is the Hamming distance,

∀x, y ∈ Fnq , dH(x, y) def
= ♯ {i ∈ [1, n], xi 6= yi}

Given y ∈ Fnq , the maximum likelihood decoder for q-ary symmetric channels outputs the closest

codewords c for the Hamming distance

It justifies the use of the Hamming distance for decoding in the q-ary symmetric channel
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PROOF

Proof:

1. First, by using that the c’s are uniform among C

p(c | y) = p(y | c)
p(c)
p(y)

= p(y | c)
1

♯C p(y)

We deduce that maximizing p(c | y)
(
over c

)
boils down to maximize p(y | c)

2. Second, by definition of the q-ary symmetric channel,

p(y | c) = (1− p)♯{i∈[1,n]: yi=ci}
( p
q− 1

)♯{i∈[1,n]: yi ̸=ci}

= (1− p)n−dH(y,c)
( p
q− 1

)dH(y,c)

As p/(q− 1) < 1/q,

α 7→ (1− p)n−α
(

p
q−1

)α

is a decreasing function showing that p(y | c) is maximal when dH(y, c) is minimal
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HAMMING WEIGHT

Hamming weight:

∀x ∈ Fnq , |x|
def
= ♯ {i ∈ [1, n], xi 6= 0}

−→ dH(x, y) = |x− y|

Some remarks:

• | · | is not a norm but dH(·, ·) is a distance

• The Hamming weight does not discriminate non-zero symbols, for instance in F5 = Z/5Z,∣∣∣(1, 2, 0, 1, 0, 0, 2)∣∣∣ = ∣∣∣(3, 3, 4, 0, 0, 0, 1)∣∣∣ = 4
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MINIMUM DISTANCE

An important parameter for a code: its minimum distance

−→ It measures the quality of a code in terms of “error detection”

Minimum distance:

Given C ⊆ Fnq , its minimum distance is defined as

dmin(C)
def
= min

{
|c1 − c2| : c1, c2 ∈ C and c1 6= c2

}

Remark:

For a linear code C,

dmin(C) = min
{
|c| : c ∈ C\{0}

}
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ERROR DETECTION

Suppose that someone sends us a codeword c ∈ C across a noisy channel

Our goal is to guess if an error occurred

How can we proceed? What is the maximal amount of errors for which we can take the right

decision with certainty?

Error detection strategy:

Given a received y we compute Hy⊤ for H being a parity-check matrix of the code. If we obtain 0

then we say that no error occurred

This strategy gives the right answer with certainty if the Hamming weight of the error is < dmin(C)!

Proof:

If an error occurred then we receive c + e. Therefore H (c + e)⊤ = Hc⊤ + He⊤ = He⊤ . Then if

|e| < dmin(C) we necessarily have e /∈ C and He⊤ 6= 0. However, if |e| ≥ dmin(C) it is possible

that e ∈ C and He⊤ = 0
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DECODING: A WORST CASE CONDITION

x ∈ Fnq , B(x, r)
def
=

{
y ∈ Fnq : |y− x| ≤ r

}
Proposition:

Given a code C ⊆ Fnq ,

∀c1, c2 ∈ C, c1 6= c2 : B
(
c1,

⌊
dmin(C)−1

2

⌋)⋂
B
(
c2,

⌊
dmin(C)−1

2

⌋)
= ∅

Proof:

By contradiction, suppose there exists y ∈ B
(
c1,

⌊
dmin(C)−1

2

⌋)⋂
B
(
c2,

⌊
dmin(C)−1

2

⌋)
,

|c1 − c2| = |(c1 − y)− (c2 − y)|
≤ |c1 − y| + |c2 − y| (triangular inequality)

≤
⌊dmin(C)− 1

2

⌋
+

⌊dmin(C)− 1
2

⌋
< dmin(C)

which is a contradiction as c1 6= c2 and they belong to C with minimum distance dmin(C)

When transmitting c ∈ C, if the Hamming weight of the error is < dmin(C)/2, then the maximum

likelihood decoder necessarily outputs c
(
closest codeword for the Hamming distance

)
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BE CAREFUL

When transmitting c ∈ C, if the Hamming weight of the error is < dmin(C)/2, then the maximum

likelihood decoder necessarily outputs c

The above statement says that with < dmin(C)/2 error the maximum likelihood decoder succeeds

with certainty!

−→ There are codes for which the maximum likelihood decoder works with probability 1− e−Cn

as soon as there are ≤ dmin(C) errors, we gain a factor two!(
in particular random codes as we will see in Lecture 8

)
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GOOD CODES VERSUS BAD CODES

The minimum distance quantifies how “good” is a code in term of error decoding/detection

▶ Balls centered at codewords with radius
⌊
dmin(C)−1

2

⌋
are disjoint

−→ We can correct
⌊
dmin(C)−1

2

⌋
errors with certainty!

▶ There are no codewords in any ball centered at codewords with radius dmin(C)− 1

−→ We can detect any < dmin(C) errors

Given an [n, k]q-code C, how large can be its minimum distance dmin(C)?
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BOUNDS ON MINIMUM DISTANCE



HAMMING CODE

The [7, 4]2 Hamming code CH admits as parity check matrix

H def
=

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


It has minimum distance dmin(CH) = 2, indeed use the following proposition

Proposition:

Given a linear code C with parity-check matrix H,

C has minimum distance ≥ d⇐⇒ every d− 1 columns of H form a free family

Given c ∈ CH there are 8 = 23 noisy codewords c + e where |e| ≤ 1 =
⌊
dmin(CH)−1

2

⌋
−→ The balls B

(
c,

⌊
dmin(C)−1

2

⌋)
’s for c ∈ CH form a partition of F72!

Perfect codes:

A linear code C ⊆ Fnq is said to be perfect if the balls B
(
c,

⌊
dmin(C)−1

2

⌋)
form a partition of Fnq

36



ABOUT THE COMPUTATION OF THE MINIMUM DISTANCE

Exercise:

Given a parity-check of some matrix H, is it easy to check that every d− 1 columns of H form a free

family? More generally, does it seem easy to compute the minimum distance of a given code?
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HAMMING CODE WITH LENGTH 2m − 1 AND PERFECT CODES

An Hamming code is the [2m − 1, 2m − m− 1]2-code admitting as parity-check matrix

H ∈ F(2m−1)×m
2 whose columns are all the vectors Fm2 \{0}. It has minimum distance 3 and it is a

perfect code

22
m−m−1

((2m−1
1

)
+ 1

)
= 22

m−1

Theorem:

Parameters [n, k, dmin(C)]q of perfect codes are known: [2ℓ + 1, 1, 2ℓ + 1]2
(
repetition codes with

odd length
)
, [2m − 1, 2m − m− 1, 3]2

(
Hamming codes

)
, [23, 12, 7]2

(
binary Golay code G23

)
and [11, 6, 5]3

(
ternary Golay code G11

)
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SINGLETON BOUNDS

Singleton bound:

For all [n, k]q-code C,
dmin(C) ≤ n− k + 1

Proof:

Given a parity-check matrix H ∈ F(n−k)×n
q , it has rank n− k. We cannot hope having more than

(n− k) columns forming a free family. Therefore,

d− 1 ≤ n− k

Do we know codes that reach this bound? Yes!(
codes reaching the Singleton bound are said MDS, i.e., Maximum Distance Separable

)
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REED-SOLOMON CODES

Reed-Solomon code:

Given x1, . . . , xn ∈ Fq where the xi ’s are different, i.e., xi 6= xj ,{
(f(x1), . . . , f(xn)) : f ∈ Fq[X], deg(f) < k

}
is a [n, k]q-code with minimum distance n− k + 1

Reed-Solomon codes have optimal minimum distances, but be careful, their length n ≤ q

−→ There are sharper bounds when q is fixed and n grows!
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HAMMING BOUND

Hamming bound:

For any code C ⊆ Fnq ,

♯C · ♯B
(
0,

⌊
dmin(C)−1

2

⌋)
= ♯C ·


⌊
dmin(C)−1

2

⌋∑
r=0

(n
r
)
(q− 1)r

 ≤ qn

It asymptotic form when n→ +∞: for any sequence of codes Cn ⊆ Fnq such that the following

limits exist:
δ
def
= lim

n→∞
dmin(C)

n and R def
= lim

n→+∞

logq ♯Cn
n

we have,
δ
2 ≤ h−1

q (1− R) where hq(x)
def
= −(1− x) logq(1− x)− x logq x

q−1

Proof:

The Hamming bound is a consequence of the fact that balls centered at codewords with radius⌊
dmin(C)−1

2

⌋
are disjoint

The asymptotic form comes from the fact that for a fixed q,
(n
r
)
(q− 1)n = poly(n) · qnhq(r/n)
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GILBERT-VARSHAMOV BOUND

Gilbert-Varshamov bound:

qk · ♯B (0, d− 2) = qk ·
d−2∑
i=0

(n
i
)
(q− 1)i < qn =⇒ it exits an [n, k]q-code with minimum distance d

−→ The maximum d reaching the inequality is dGV(n, k)

Be careful:

The Gilbert-Varshamov bound states that it exists an [n, k]q-code C with dmin(C) ≥ dGV(n, k), not

that for all [n, k]q-code C, dmin(C) ≤ dGV(n, k)
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ALMOST ALL CODES MEET THE GILBERT-VARSHAMOV BOUND

Almost all codes reach asymptotically the Gilbert-Varshamov bound

Asymptotic Gilbert-Varshamov bound:

Let ε > 0 and δGV = h−1
q (1− R). We have for uniform [n, Rn]q-codes C,

PC

(
(1− ε)δGV <

dmin(C)
n

< (1 + ε)δGV

)
≥ 1− q−αn(1+o(1))

where α
def
= min

(
(1− R)− hq ((1 + ε)δGV) , hq ((1− ε)δGV)− (1− R)

)
> 0

1M$ open question:

Does it exist a sequence of binary linear codes Cn with rate R such that

dmin(Cn)
n −−−−−→

n→+∞
δ > δGV = h−1

2 (1− R)?
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SOME CURVES(I)

Bounds for sequences of [n, Rn]q-codes Cn s.t.
dmin(Cn)

n −−−−−→
n→+∞

δ
(
but q is fixed

)
(
It exists codes above Gilbert-Varshamov, all codes are below Hamming and Singleton

)

0.2 0.4 0.6 0.8 1.0
δ

0.2

0.4

0.6

0.8

1.0
R

Gilbert-Varshamov (q= 2)
Hamming (q= 2)
Singleton (q= 2)
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SOME CURVES(II)

Bounds for sequences of [n, Rn]q-codes Cn s.t.
dmin(Cn)

n −−−−−→
n→+∞

δ
(
but q is fixed

)

0.2 0.4 0.6 0.8 1.0
δ

0.2

0.4

0.6

0.8

1.0
R

Gilbert-Varshamov (q= 16)
Hamming (q= 16)
Singleton (q= 16)

0.2 0.4 0.6 0.8 1.0
δ

0.2

0.4

0.6

0.8

1.0
R

Gilbert-Varshamov (q= 49)
Hamming (q= 49)
Singleton (q= 49)
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NOT A PARADOX

We have seen that Reed-Solomon codes reach the Singleton bound
(
red curve

)
But the Hamming bound

(
blue curve

)
is an upper-bound below the Singleton bound

Don’t forget that for Reed-Solomon codes we have q ≥ n and for our curve we let n→ +∞

while q is fixed!
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DECODING REED-SOLOMON CODES



REED-SOLOMON CODES

Reed-Solomon (RS) codes:

x ∈ Fnq such that xi 6= xj
(
in particular n ≤ q

)
and k ≤ n. The code RSk(x) is defined as

RSk(x)
def
=

{
(f(x1), . . . , f(xn)) : f ∈ Fq[X] and deg(f) < k

}
−→ These codes are used in QR-codes!

Exercise:

Show that RSk(x) has generator matrix

G def
=



1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
...

...
...

...
xk−1
1 xk−1

2 · · · xk−1
n


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BERLEKAMP-WELSH DECODING ALGORITHM

Decoding algorithm:

Given, RSk(x) and c + e such that
{

c ∈ RSk(x)
|e| ≤

⌊
n−k
2

⌋
Then, we can efficiently recover (c, e)
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PROOF(I)

Given y = c + e where
{

c ∈ RSk(x)
|e| ≤

⌊
n−k
2

⌋ .

By definition, c =
(
f(xi)

)
i
where f ∈ Fq[X] is unknown with deg(f) < k

1. Let I be the unknown set of positions where ei 6= 0, i.e.,

I =
{
i ∈ [1, n] : yi 6= f(xi)

}
Fundamental idea (I):

Let E ∈ Fq[X] be the following unknown polynomial,

E(X) =
∏
i∈I

(X− xi) which has degree ≤
⌊
n−k
2

⌋
by assumption on |e|

2. By definition of I and E,

∀i ∈ [1, n], yiE(xi) = f(xi)E(xi)

3. The xi ’s and yi ’s are known: we have above a quadratic system to solve which is a priori not

easy
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PROOF(II)

2. By definition of I and E,

∀i ∈ [1, n], yiE(xi) = f(xi)E(xi)

3. The xi ’s and yi ’s are known, we have above a quadratic system to solve which is not easy

Fundamental idea (II): linearize

Solve the following linear system for unknown N ∈ Fq[X] with degree ≤ k− 1 +
⌊
n−k
2

⌋
,

∀i ∈ [1, n], yiE(xi) = N(xi)

There are n equations and k + 2
⌊
n−k
2

⌋
+ 1 unknowns

(
coefficients of N and E

)
−→ (E, Ef) is a solution but it it is not the only one. . .
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PROOF (III)

Fundamental idea (II): linearize

Solve the following linear system for unknown N ∈ Fq[X] with degree ≤ k− 1 +
⌊
n−k
2

⌋
and

E ∈ Fq[X] with degree ≤
⌊
n−k
2

⌋
,

∀i ∈ [1, n], yiE(xi) = N(xi) (1)

Lemma:

Any non-zero solution (E1,N1) and (E2,N2) of the above system is such that N1
E1

=
N2
E2

= f

−→ Therefore the decoding algorithm only consists in computing an non-zero solution (E,N) and

to output f = N/E

Proof:

First, if Ei = 0, then by Equation (1), Ni has n > k− 1 + b(n− k)/2c zeros and Ni = 0. Therefore,

Ei 6= 0. Now set R = N1E2 − N2E1 . We have,

deg(R) ≤ k− 1 + 2
⌊
n−k
2

⌋
≤ n− 1

On the other hand, by Equation (1),

∀i ∈ [1, n], R(xi) = N1(xi)E2(xi)− N2(xi)E1(xi) = yiE1(xi)E2(xi)− yiE1(xi)E2(xi) = 0

Therefore, R = 0, showing N1/E1 = N2/E2 . But (N, Ef) is a non-zero solution concluding the proof 52



OTHER CODES THAT WE KNOW HOW TO DECODE

We have demonstrated that we can decode Reed-Solomon codes. Does it exist other codes that

we know how to decode?

−→ Yes!

▶ Algebraic decoders: Reed-Solomon, alternant, geometric codes

▶ Probabilistic decoders: LDPC, Turbo, Polar codes

Be careful:

• It is an hard problem to design codes with an efficient decoding algorithm

• When designing a decoding algorithm we have to be cautious about the parameters:

the field size q or the decoding distance
(
larger it is, harder is to decode

)
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FURTHER READING

▶ An introduction to Low-Density Parity-Check
(
LDPC

)
codes available here:

https://repository.arizona.edu/handle/10150/607470
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