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OBJECTIVES

Relation between information theory and probability theory

−→ The method of types

Powerful technique:

• Probability of rare events
(
large deviations

)
• Universal source coding

• Testing hypothesis

• etc. . .

1



MOTIVATION

Thought experiment:

Given i.i.d Xi ∈ X according to X, we want to estimate the P(X = a)’s

A natural approach, observe a sequence x of length n and compute the empirical distribution:

P(X = a) ≈
♯{i ∈ [1, n] : xi = a}

n

−→ By the weak law of large number
(
AEP
)
we know that our estimation will tend to the right

one when n large enough

▶ How large should be n?

▶ What is the exact probability to make mistakes?

AEP has been a powerful tool but it does not help for rare events!
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COURSE OUTLINE

1. Method of Types

2. Alternative Law of Large Numbers

3. Universal Coding

4. Large Deviation Theory

5. Chernoff’s Bound

6. Sanov’s Theorem

7. Some Applications of Sanov’s Theorem
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METHOD OF TYPES



AEP VERSUS METHOD OF TYPES

▶ AEP: what are the typical sequences? Their probability to appear is given by the entropy!

−→ Crude tool in many situations!

▶ Method of types: split sequences according to their empirical distribution
(
the type

)
−→ The event of interest is partitioned into its intersections with the type classes. But,

1. The number of types is polynomial

2. There are an exponential number of sequences

3. All sequences in a type are equiprobable
(
memoryless source

)

The event probability has the same exponential asymptotics as the largest one among the

probabilities of the above intersections!
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NOTATION

We will consider random variables X1, . . . , Xn from an alphabet X = {a1, . . . , a♯X }

Any vector x
(
bold letter

)
denotes a sequence x1, . . . , xn ∈ X

If X1, . . . , Xn are i.i.d random variables distributed according to Q, i.e. P(Xi = a) = Q(a), then

∀x ∈ X n
, Qn(x) =

n∏
i=1

P(Xi = xi) =
n∏
i=1

Q(xi)

Furthermore, given some event E ,

P
x←Qn

(x ∈ E) def
=
∑
x∈E

Qn(x) =
∑
x∈E

n∏
i=1

Q(xi)
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TYPE

Type:

Given x ∈ X n for some n > 0, a type Pempx is a probability distribution over X defined as:

∀a ∈ X , Pempx (a) def
=

♯{i ∈ [1, n] : xi = a}
n

(
A type Pempx is also called empirical distribution of x

)

An example:

X = {0, 1} and x = (1, 1, 1, 0, 1, 0, 0, 1) ∈ {0, 1}8 ,

Pempx (0) =
3
8

and Pempx (1) =
5
8

−→ Be careful: a type Pempx is defined according to the sequence x
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TYPE OF FIXED LENGTH

Type of fixed length:

Given n > 0,
Pn

def
=
{
Pempx : x ∈ X n}

The binary case:

Given X = {0, 1}, types of length n:

Pn =


 0

n︸︷︷︸
p(0)

,
1
n︸︷︷︸
p(1)

 ,

 1
n︸︷︷︸
p(0)

,
n− 1
n︸ ︷︷ ︸
p(1)

 , . . . ,

 n
n︸︷︷︸
p(0)

,
0
n︸︷︷︸
p(1)



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TYPE CLASS

Type class:

Given P ∈ Pn , its type class is,

T (P) def
=
{
x ∈ X n : Pempx = P

}
The type class is the set of vectors having the same empirical distribution

Exercise:

Let X = {0, 1} and x = (1, 1, 1, 0, 1, 0, 0, 1) ∈ X 8 . Describe T
(
Pempx

)
.
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A FUNDAMENTAL RESULT

The number of class type is polynomial!

Proposition:

♯Pn ≤ (n + 1)♯X

Proof:

For any x ∈ X n ,

Pempx ∈

p(a0)︷ ︸︸ ︷{ i
n

: 0 ≤ i ≤ n
}
× · · · ×

p(a♯X )︷ ︸︸ ︷{ i
n

: 0 ≤ i ≤ n
}

︸ ︷︷ ︸
♯X times

Therefore,

♯Pn ≤ ♯

{ i
n

: 0 ≤ i ≤ n
}
× · · · × ♯

{ i
n

: 0 ≤ i ≤ n
}

︸ ︷︷ ︸
♯X times

= (n + 1)♯X
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CONSEQUENCE

Pn =
{
Pempx : x ∈ X n}

♯Pn ≤ (n + 1)♯X

−→ There is a polynomial number of types of length n

But there are ♯X n = 2n log2 ♯X sequences
(
exponential

)

Pigeonhole principle:

It exists an exponential number of sequences having the same type!

Exercise:

Let X = {0, 1}. How many different types Pempx exist? How many sequences have a fixed type?
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TYPES VERSUS I.I.D. DISTRIBUTIONS

Kullback-Leiber divergence:

DKL(P||Q) =
∑

a P(a) log2
P(a)
Q(a)

Theorem:

Let X1, . . . , Xn be i.i.d according to Q, then

Qn(x) = 2−n
(
H(Pempx )+DKL(P

emp
x ||Q)

)

Furthermore, if Q ∈ Pn and x ∈ T(Q)
(
where T (Q) =

{
x ∈ X n : Qempx = Q

})
,

Qn(x) = 2−nH(Q)

−→ It shows that, when considering a sequence x with its associated empirical distribution,

i.e., Pempx , what we loose is DKL
(
Pempx ||Q

)
(
with the AEP, a typical event happens with probability 2−nH(X)

)
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PROOF

Proof:

Qn(x) =
∏
a∈X

Q(a)♯{i∈[1,n]: xi=a}

=
∏
a∈X

Q(a)nP
emp
x (a)

=
∏
a∈X

2n
(
Pempx (a) log2 Q(a)−P

emp
x (a) log2 P

emp
x (a)+Pempx (a) log2 P

emp
x (a)

)

Therefore, Qn(x) = 2−n
(
H(Pempx )+DKL(P

emp
x ||Q)

)
. To conclude use that DKL(P||Q) = 0 if P = Q
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NUMBER OF SEQUENCES OF A GIVEN TYPE

Theorem:

For any Pempx ∈ Pn ,
1

(n + 1)♯X
2nH

(
Pempx

)
≤ ♯T

(
Pempx

)
≤ 2nH

(
Pempx

)

where T
(
Pempx

)
=
{
y ∈ X n : Pempy = Pempx

}

Proof:

Let P def
= Pempx ,

1 ≥
∑

x∈T(P) P
n(x) =︸︷︷︸

prev th.

∑
x∈T(P)

2−nH(P) = ♯T (P) 2−nH(P) which gives the upper bound

To derive the lower bound, let us admit: ∀Q ∈ Pn, P (T (Q)) ≤ P (T(P)).

1 =
∑
Q∈Pn

Pn(T(Q)) ≤
∑
Q∈Pn

Pn(T(P)) ≤ (n + 1)♯X
∑
x∈T(P)

Pn(x) = (n + 1)♯X
∑
x∈T(P)

2−nH(P)
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PROBABILITY OF TYPE CLASS

Theorem:

For any P ∈ Pn we have,
1

(n + 1)♯X
2−nDKL(P||Q) ≤ Qn (T (P)) = P

x←Qn

(
Pempx = P

)
≤ 2−nDKL(P||Q)

Proof:

Qn(T(P)) =
∑
x∈T(P)

Qn(x)

=
∑
x∈T(P)

2−n(DKL(P||Q)+H(P))

= ♯T(P) 2−n(DKL(P||Q)+H(P))

Moral: sequences with empirical distribution P appear under the distribution Q with an

exponentially small probability, whose exponent is given by DKL(P,Q)
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SUMMARY

• ♯Pn ≤ (n + 1)♯X
(
polynomial number of types

)
• ♯T

(
Pempx

) (poly)
= 2nH

(
Pempx

) (
exponential number of sequences in each type

)
• Qn(x) = 2−n

(
H
(
Pempx

)
+DKL

(
Pempx ||Q

)) (
probability of sequence of some type under Q

)
• Qn

(
T
(
Pempx

)) (poly)
= 2−nDKL

(
Pempx ||Q

)

Exercise:

Explicit and compute the above equations when X = {0, 1}

−→ These results admit many consequences that we will describe now!
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ALTERNATIVE LAW OF LARGE NUMBERS



LAW OF LARGE NUMBER AND TYPES

Types and type classes offer an alternative “statement‘” of the law of large numbers!

The crucial property:

Polynomial number of types and an exponential number of sequences of each type

But the probability of each type class T(P) depends exponentially on DKL(P||Qtrue distrib.)

−→ Type classes far from the true distribution have exponentially smaller probability!
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TYPICAL SET

New concept of typical sequences: close for the KL-divergence

Typical Set:

Let ε > 0 and a distribution Q,
T(ε)Q =

{
x ∈ X n : DKL(Pempx ||Q) ≤ ε

}

−→ The probability of not being “empirical typical” is exponentially small!
(
similar to AEP

)
Probability of not being typical:

P
x←Qn

(
DKL
(
Pempx ||Q

)
> ε
)
= 1− Qn(T(ε)Q ) ≤ (n + 1)♯X 2−nε

Proof:

1− Qn(T(ε)Q ) =
∑

P∈Pn : DKL(P||Q)≥ε

Qn(T(P)) ≤
∑

P∈Pn : DKL(P||Q)≥ε

2−nε

To conclude the proof, use that there are a polynomial number of types!
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ALTERNATIVE LAW OF LARGE NUMBERS

Law of large number with KL-divergence
(
admitted

)
:

X1, . . . , Xn be i.i.d according to Q,

P
x←Qn

(
x : DKL(Pempx ||Q) > ε

)
≤ (n + 1)♯X 2−nε

and, if x(n) ← Qn , then DKL(Pempx ||Q) −−−−−→n→+∞
0 almost surely, i.e.,

∀ε > 0, P
(

lim
n→+∞

DKL
(
Px(n) ||Q

)
≤ ε

)
= 1
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UNIVERSAL CODING



GOAL: UNIVERSAL CODING

Huffman compresses source with known distribution X with an amount of bits given by the

entropy H(X)

−→ if instead a distribution Y is assumed: a penalty of DKL(X||Y) is incurred!

What compression can be achieved if the true distribution X is unknown?
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UNIVERSAL CODING SCHEMES

Universal coding:

A symbol code φ : X n → {0, 1}nR is said to be 2nR-universal if we can decode it with probability
tending to one, i.e. it exists,

Dec : {0, 1}nR → X n

such that independently of the memoryless source distribution Q,

P(n)e
def
= P

x←Qn

(
Dec(φ(x)) ̸= x

)
−−−−−→
n→+∞

0

Consequence of AEP: Shannon source coding theorem but for known source distribution!

Is type method enables to prove the stronger statement that universal source coding exits?
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EXISTENCE OF UNIVERSAL SOURCE CODING

Universal source coding: it is possible!

There exists a sequence
(
in n
)
of 2nR-universal code such that P(n)e −−−−−→n→+∞

0 independently of

the memoryless source distribution Q as soon as R > H(Q)
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PROOF (I): ENCODING AND DECODING

Proof:

Let Rn
def
= R− ♯X log2(n+1)

n . We consider sequences:

A =
{
x ∈ X n : H

(
Pempx

)
≤ Rn

}
Then,

♯A =
∑

P∈Pn : H(P)≤Rn

♯T(P)

≤
∑

P∈Pn : H(P)≤Rn

2nH(P)

≤
∑

P∈Pn : H(P)≤Rn

2nRn

≤ (n + 1)♯X 2nRn
(
the method of types in action!

)
= 2nR

▶ Encoding:
φ(x) =

{
index of x in A if x ∈ A

⊥  otherwise
The compression size asks log2 ♯A ≤ nR bits!

▶ Decoding: map an index to its corresponding element
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PROOF (II): ERROR IN DECODING

Proof:

X1, . . . , Xn be i.i.d according to Q where H(Q) < R. The probability to make a mistake during

decoding verifies,

P(n)e = 1− Qn(A)

=
∑

P∈Pn : H(P)>Rn

Qn(T(P))

≤ (n + 1)♯X max
P: H(P)>Rn

Qn(T(P))

≤ (n + 1)♯X 2
−n min

P: H(P)>Rn
DKL(P||Q) (

the method of types in action!
)

But Rn −−−−−→n→+∞
R and H(Q) < R. Therefore, for n sufficiently large H(Q) < Rn and

H(P) > Rn =⇒ H(P) > H(Q)

from which we conclude that P ̸= Q and by Gibb’s inequality DKL(P||Q) > 0

Some remark:

The error in the decoding tends to 0 exponentially fast in the code-length
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TO GO FURTHER

Universal source coding is a huge topic

▶ Elements of Information Theory, Universal Source Coding Chapter 13, by M. Cover & Joy A.

Thomas

27



LARGE DEVIATION THEORY



MOTIVATION

I repeated too often: a random variable is equal to its expectation. . .

But, if yes, why? If you don’t believe me, how to convince you that I say the truth?

−→ Let us study P (X≫ E(X))

First two approaches:

▶ Markov inequality

▶ Bienaymé-Tchebychev inequality
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MARKOV AND BIENAYMÉ-TCHEBYCHEV

Markov’s Inequality:

Given X : Ω −→ R+ and t > 0,
P (X ≥ t) ≤

E(X)
t

Bienaymé-Tchebychev

Given t > 0,
P (|X− E(X)| ≥ t) ≤

V(X)
t2

−→ Are these inequalities tight?

▶ We know random variables s.t the above probabilities reach the inequalities
(
exercise

)

Markov and Bienaymé-Tchebychev are worst-case bounds
(
true for any random variable

)
−→ Goal of large deviation theory: provide better bounds for a given family of random variables!
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MARKOV AND BIENAYMÉ-TCHEBYCHEV: TIGHTNESS?

Given X1, . . . , Xn ∈ {0, 1} be i.i.d with P(Xi = 1) = p.

X(n) def
=
∑n

i=1 Xi

E
(
X(n)
)

= np and V
(
X(n)
)

= np(1− p)

Bienaymé-Tchebychev:

Let ε > 0,

P
(∣∣∣X(n) − np

∣∣∣ ≥ εn
)
≤ 1

εn p(1− p) −−−−−→
n→+∞

0

It tends to 0 as 1/(εn), is it the best that we can expect?

−→ No!
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MARKOV AND BIENAYMÉ-TCHEBYCHEV: TIGHTNESS?

Given X1, . . . , Xn ∈ {0, 1} be i.i.d with P(Xi = 1) = p.

X(n) def
=
∑n

i=1 Xi

E
(
X(n)
)

= np and V
(
X(n)
)

= np(1− p)

Bienaymé-Tchebychev:

Let ε > 0,

P
(∣∣∣X(n) − np

∣∣∣ ≥ εn
)
≤ 1

εn p(1− p) −−−−−→
n→+∞

0

It tends to 0 as 1/(εn), is it the best that we can expect?

−→ No!
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CHERNOFF’S BOUND

Given X1, . . . , Xn ∈ {0, 1} be i.i.d with P(Xi = 1) = p.

X(n) def
=
∑n

i=1 Xi

E
(
X(n)
)

= np and V
(
X(n)
)

= np(1− p)

Chernoff:

Let ε > 0,
P
(∣∣∣X(n) − np

∣∣∣ ≥ εn
)
≤ 2 e−2ε

2 n −−−−−→
n→+∞

0

It tends to 0 as e−2ε
2 n : exponentially better than 1/(εn)

But is −2ε2n the best exponent that we can expect?

−→ Yes as we show now thanks to the method of types!
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CHERNOFF’S BOUND

Given X1, . . . , Xn ∈ {0, 1} be i.i.d with P(Xi = 1) = p.
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CHERNOFF’S BOUND



OUR APPROACH

▶ First approach: central limit theorem

−→ Poor estimations in many cases
(
try with the binomial distribution

)
▶ Our approach: method of type!

x1, . . . , xn ∈ {0, 1} be i.i.d with P(xi = 1) = 1
3 . Crucial remark: if,

1
n
∑n

i=1 xi = 3
4 , then Pempx =

( 1
4 ,

3
4
)

−→ We expect
(
by method of types

)
to obtain such sequences with probability

≈ 2−nDKL
((

1
4 ,

3
4
)
||
(
2
3 ,

1
3
))

(
exponentially small and we know that the exponent cannot be smaller

)
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SOME REMINDER

We know the optimal exponent. . .

Theorem:

For any P ∈ Pn we have,
1

(n + 1)♯X
2−nDKL(P||Q) ≤ Qn (T (P)) = P

x←Qn

(
Pempx = P

)
≤ 2−nDKL(P||Q)

35



CHERNOFF BOUND AND TYPES

Q =

{
0 with probability 1− p
1 with probability p and P =

{
0 with probability 1− p− ε

1 with probability p + ε

Some computation:

For ε > 0 small enough,
DKL(P||Q) =

2ε2

ln(2)
+ o(1)

The crucial remark:

P
x←Qn

(x1 + · · · + xn = np + εn) = P
x←Qn

(
Pempx = P

)
= Qn(T(P))

From the previous theorem,

1
(n+1)2

e−2nε
2(1+o(1)) ≤ P

x←Qn
(x1 + · · · + xn = np + εn) ≤ e−2nε

2(1+o(1))

We almost recover the optimality of Chernoff’s bound! We want to know sufficiently large

deviation, not just the deviation exactly equal to +εn
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GENERAL BOUND

▶ By the previous bound, for all η
(
integer

)
1

(n+1)2
e−2n(ε+η/n)2(1+o(1)) ≤ P

x←Qn
(x1 + · · · + xn = np + εn + η) ≤ e−2n(ε+η/n)2(1+o(1))

▶ By summing all possible η
(
polynomial number of types

)
1

(n+1) e−2nε
2(1+o(1)) ≤ P

x←Qn
(x1 + · · · + xn ≥ np + εn) ≤ (n + 1)e−2nε

2(1+o(1))

We can obtain the same bound for

P
x←Qn

(x1 + · · · + xn ≤ np− εn)

by replacing ε←→ −ε
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CONCLUSION

Q =

{
0 with probability 1− p
1 with probability p

1
n
log2 P

x←Qn
(|x1 + · · · + xn − np| ≥ εn) = −2ε2/ ln(2) + o(1)

We obtained the best exponent by using method of types!
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TAKING SOME HEIGHT

To obtain the “optimality” of Chernoff’s bound we made the following reasoning

1. Start from the distribution Q

2. Our aim: to get an upper bound on P
x←Qn

(∑
i xi = E(X) + α

)
3. To this aim we introduced the distribution P s.t Pempx = P if and only if

∑
i xi = E(X) + α

We are going to systematize this approach: Sanov’s theorem!
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SANOV’S THEOREM



THE CONTEXT

Given i.i.d random variables Xi ’s distributed as Q, we want to estimate,

P
x←Qn

(
1
n

n∑
i=1

g(xi) ≥ α

)

Fundamental ideal: introduce the x← Qn such that
∑
a∈X

g(a)Pempx (a) ≥ α

−→ We expect the probability exponent to behave as DKL
(
Pempx ||Q

)
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THE ISSUE

The fundamental ideal: introduce the x← Qn such that
∑
a∈X

g(a)Pempx (a) ≥ α

−→ We expect the probability exponent to behave as DKL
(
Pempx ||Q

)
Issue:

There are many Pempx ’s
(
from different classes

)
verifying

∑
a∈X

g(a)Pempx (a) ≥ α

−→ We will show that the exponent behaves as DKL (P⋆||Q) for P⋆ minimizing DKL (P||Q) for the

P ∈ Pn ’s verifying
∑
a∈X

g(a)P(a) ≥ α

(
the minimization is here to “extract” the dominant exponential term

)

Goal: find the “closest” P in the constraint set for the KL-divergence to obtain the exponent!

−→ We need to define the topology associated to this “KL-distance”
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TOPOLOGY

Probability simplex:

Subset of [0, 1]♯X defined as,

P def
=

(x1, . . . , x♯X ) ∈ [0, 1]♯X : xi ≥ 0 and
♯X∑
i=1

xi = 1


P ⊆ R♯X , we will speak of closure, interior, . . . But for the DKL-divergence

We will identify distributions P over X with elements of S

Proposition:⋃
n∈N Pn is dense in S the set of all distributions over X

Proof:

Given P = (p(a1), . . . , p(am)) ∈ S ,

∀i ∈ [1, ♯X − 1], ni
def
=
⌊np(ai)⌋

n and n♯S =
1−
∑♯X−1
i=1 ni
n

Then, Pempn
def
= (ni)i ∈ Pn and DKL

(
Pempn ||P

)
−−−−−→
n→+∞

0
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ABUSE OF NOTATION

Pempx ←→ x

▶ Given E ⊆ P ,
Qn (E) def

= Qn (E ∩ Pn) =
∑

x: Pempx ∈E∩Pn

Qn(x)

Qn(E) = P
x←Qn

(
Pempx ∈ E ∩ Pn

)
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THE FORMALISM IN ACTION(I)

But why this formalism?

Given a random variable X = (X1, . . . , Xn) ∈ X n where the Xi ’s are i.i.d according to Q and some

function g, we are interested in

P
x←Qn

( 1
n
∑n

i=1 g(xi) ≥ α
)

We introduce:

E def
=
{
P ∈ P :

∑
a∈X g(a)p(a) ≥ α

}

1
n

n∑
i=1

g(xi) ≥ α⇐⇒
∑
a∈X

g(a)Pempx (a) ≥ α

⇐⇒ Pempx ∈ E ∩ Pn

Conclusion:

PX
( 1
n
∑n

i=1 g(Xi) ≥ α
)
= Qn(E) = P

x←Qn

(
Pempx ∈ E ∩ Pn

)
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THE FORMALISM IN ACTION(II)

We are interested in

P
x←Qn

( 1
n
∑n

i=1 g(xi) ≥ α
)
= Qn(E) = P

x←Qn

(
Pempx ∈ E ∩ Pn

)

How does Qn(E) behave?
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MOTIVATION

Let us use what we already know: our alternative law of large numbers
(
see Slide 20

)

Let E ⊆ P ,

▶ Suppose that E contains a relative entropy neighbourhood of Q, i.e.,

∃ε > 0, such that {P ∈ P : DKL(P||Q) < ε} ⊆ E

Qn(E) = P
x←Qn

(
Pempx ∈ E ∩ Pn

)
≥ P

x←Qn

(
DKL
(
Pempx ||Q

)
< ε
)
≥ 1− (n + 1)♯X 2−nε −−−−−→

n→+∞
1

▶ Suppose that E does not contain Q or any element of some neighbourhood of Q, i.e.,

∃ε ≥ 0 such that {P ∈ P : DKL(P||Q) ≤ ε} ∩ E = ∅

Qn(E) = P
x←Qn

(
Pempx ∈ E ∩ Pn

)
≤ P

x←Qn

(
DKL
(
Pempx ||Q

)
≥ ε
)
≤ (n + 1)♯X 2−nε −−−−−→

n→+∞
0

It tends to zero exponentially fast, but what is the exponent?
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SANOV THEOREM

Sanov’s Theorem:

Let X1, . . . , Xn be i.i.d. according to Q. Let E ⊆ P . Then,

P
x←Qn

(
Pempx ∈ E ∩ Pn

)
= Qn(E) ≤ (n + 1)♯X 2−nDKL(P

⋆||Q) where P⋆ def
= arg min

P∈E
DKL(P||Q)

Furthermore, if E is the closure of its interior,

1
n log2 Qn(E) −−−−−→n→+∞

DKL (P⋆||Q)

Important remark:

DKL (P⋆||Q) is the exponent of the probability when E is the closure of its interior!
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PROOF (I): UPPER BOUND

Proof:

Qn(E) =
∑

P∈E∩Pn

Qn(T(P))

≤
∑

P∈E∩Pn

2−nDKL(P||Q)

≤
∑

P∈E∩Pn

max
P∈E∩Pn

2−nDKL(P||Q)

≤
∑

P∈E∩Pn

2
−n min

P∈E∩Pn
DKL(P||Q)

≤
∑

P∈E∩Pn

2−nDKL(P
⋆||Q)

≤ (n + 1)♯X 2−nDKL(P
⋆||Q)

 

−→ The last inequality shows the method of types in action: exponential probability of events

versus polynomial number of events!
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PROOF (II): LOWER BOUND

Proof:

Suppose that E is the closure of its interior. In particular, interior E◦ is not empty. As
⋃

n Pn is

dense in P , then E◦ ∩ Pn is non-empty for n large enough ≥ n0 . By using the density, it exists

Pn ∈ E◦ ∩ Pn such that DKL(Pn||Q) −−−−−→n→+∞
D (P⋆||Q). Furthermore,

Qn(E) =
∑

P∈E∩Pn

Qn(T(P))

≥ Qn(T(Pn))

≥
1

(n + 1)♯X
2−nDKL(Pn||Q) (the method of types in action!)

Therefore, combining with the upper bound,

−DKL (Pn||Q)−
♯X log2(n + 1)

n
≤

1
n
log2 Q

n(E) ≤
♯X log2(n + 1)

n
− DKL (Pn||Q)
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APPLICATIONS OF SANOV’S THEOREM



A GENERAL RESULT

We want to tightly derive an upper bound on:

∀j ∈ [1, k], P
x←Qn

(
1
n

n∑
i=1

gj(xi) ≥ αj

)

How to proceed: use Sanov theorem!

E =
{
P ∈ P : ∀j ∈ [1, k],

∑
a P(a)gj(a) ≥ αj

} (
closure of its interior

)
The optimal exponent is given by DKL (P⋆||Q) where P⋆ is given by

P⋆(a) def
=

Q(a)e
∑
i λigi(a)∑

x∈X Q(x)e
∑
i λigi(a)

where the λi ’s are chosen such that
∀j ∈ [1, k],

∑
a P

⋆(a)gj(a) = αj
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PROOF IN A SIMPLER CONTEXT: LAGRANGE MULTIPLIERS

We want to tightly derive an upper-bound on

P
x←Qn

(
1
n

n∑
i=1

g(xi) ≥ α

)

E =
{
P ∈ P :

∑
a P(a)g(a) ≥ α

}
We wan to minimize DKL(P||Q) over P ∈ E! To this aim introduce the constraint functions:

c0(p) =
∑n

i=1 pi − 1 and c1(p) def
=
∑♯X

i=1 pig(ai)− α
(
p ∈ R♯X the distribution vector of P

)

▶ First step: minimize f(p) def
= DKL(P||Q) for P ∈ Ẽ

def
= {P ∈ P :

∑
a P(a)g(a) ≥ α} ∩ R♯X

>0 ⊆ E,

c0(p) = c1(p) = 0

Use Lagrange Multiplier Theorem:

It exists λ, µ such that for all i ∈ [1, ♯X ],
∂f
∂pi

(p) = log2
pi

Q(ai)
+ 1

ln 2 = µ
∂c0
∂pi

(p) + ∂c1
∂pi

(p) = µ + λg(ai)

−→ We deduce that pi = Q(ai)2−1/ ln(2)+µ+λg(ai) is a minimum of DKL(P||Q) for P ∈ Ẽ 53



PROOF IN A SIMPLER CONTEXT: LAGRANGE MULTIPLIERS

Does pi =
Q(ai)2

λg(ai)

C where C =
∑

i Q(ai)2
λg(ai) give the minimum of DKL(P||Q) for P ∈ E as

expected?

▶ First computation:

DKL(p||Q) =
∑

i pi log2
Q(ai)2

λg(ai)

CQ(ai)
= λ

∑
i

pig(ai)︸ ︷︷ ︸
=α by def of Ẽ

− log2 C = λα− log2 C = DKL(p||Q)

▶ Second computation: for any R ∈ E,∑
i R(i) log2

pi
Q(i) ≥ λα− log2 C

▶ Conclusion:

DKL(R||Q)− DKL(p||Q) ≥ DKL(R||Q)−
∑

i R(i) log2
pi
Q(i) = DKL(R||p) ≥ 0 by Gibb’s inequality.

The pi ’s gives the minimum of DKL(P||Q) for P ∈ E!
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DICE

We toss a fair dice n times, what is the probability that the average of the throws is greater than or

equal to 4?

By Sanov’s theorem,
Qn(E) (poly)= 2−nDKL(P

⋆||Q)

where P⋆ minimizes DKL(P||Q)over all distributions P that satisfy,

∑6
i=1 iP(i) ≥ 4

∀i ∈ [1, 6], P⋆(i) =
2λi∑6
j=1 2λj

where λ such that
6∑
i=1

iP⋆(i) = 4

Solving numerically we obtain λ = 0.2519, therefore DKL (P⋆||Q) = 0.0624. After 1000 coin tosses,

the probability that the average is greater than or equal to 4 is ≈ 2−624
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COINS

We want to estimate the probability of observing more than 700 heads in a series of 1000 coin

tosses of a fair coin

P
(
Xn ≥ 0.7

) (poly)
= 2−nDKL(P

⋆||Q)

where P⋆ = (0.3, 0.7). In that case DKL(P⋆||Q) = 1− H(0.7) = 0.119. Our probability is ≈ 2−119
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MUTUAL DEPENDENCE(I)

We are given a joint distribution (X, Y)← Q(x, y). Let Q(x),Q(y) be the associated distributions

formed by the marginals

Let Q0 be the distribution product of marginals
(
“as if X and Y were independent”

)
Q0(x, y)

def
= Q(x)Q(y)

We want to estimate the probability that (xn, yn)← Qn0(·, ·) looks to be picked according to

Q(xn, yn)

Estimating the probability that Pxn,yn ∈ E ∩ Pn(X, Y) when (xn, yn)← Qn(·, ·) and where

E def
=
{
P(x, y) :

∣∣∣∣∣∣−
∑
x,y

P(x, y) log2 Q(x)− H(X)

∣∣∣∣∣∣ ≤ ε,

∣∣∣∣∣∣−
∑
x,y

P(x, y) log2 Q(y)− H(Y)

∣∣∣∣∣∣ ≤ ε,

∣∣∣∣∣∣−
∑
x,y

P(x, y) log2 Q(x, y)− H(X, Y)

∣∣∣∣∣∣ ≤ ε
}
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MUTUAL DEPENDENCE(II)

Using Sanov’s theorem,

Qn0(E) = 2−nDKL(P
⋆||Q0)

where P⋆ is the closest distribution satisfying the constraints. Then P⋆ −−−→
ε→0

Q
(
exercise

session
)
. The probability becomes:

2−nDKL(Q(x,y)||Q(x)Q(y)) = 2−nI(X,Y)
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EXERCISE SESSION
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