
LECTURE 4
COMPRESSION: ARITHMETIC CODING
Information Theory

Thomas Debris-Alazard

Inria, École Polytechnique

MOTIVATION

Huffman algorithm is optimal when compressing symbols of the alphabet X

−→ Don’t forget: a memory-cost O(♯X) to store the underlying tree

Though optimal, Huffman coding has issues

▶ If L successive outputs of X are independent, and if compressing successively to avoid

memory issues, then average-length will belong to[
LH(X), LH(X) + L

) (
H
(
X⊗L

)
= LH(X)

)
−→ It may happen that the +L term is an overkill!

(
see Slide 28

)
▶ If L successive outputs of X are dependent, then

• we loose a lot by compressing successively symbols, example of the language

−→ The last z-letter of buzz asks a lot while we know it will be z after reading buz

• we could pack symbols within blocks of size L large enough

−→ But memory cost becomes O(♯X L) . . .

We need an alternative to Huffman coding!

1

MOTIVATION

Huffman algorithm is optimal when compressing symbols of the alphabet X

−→ Don’t forget: a memory-cost O(♯X) to store the underlying tree

Though optimal, Huffman coding has issues

▶ If L successive outputs of X are independent, and if compressing successively to avoid

memory issues, then average-length will belong to[
LH(X), LH(X) + L

) (
H
(
X⊗L

)
= LH(X)

)
−→ It may happen that the +L term is an overkill!

(
see Slide 28

)

▶ If L successive outputs of X are dependent, then

• we loose a lot by compressing successively symbols, example of the language

−→ The last z-letter of buzz asks a lot while we know it will be z after reading buz

• we could pack symbols within blocks of size L large enough

−→ But memory cost becomes O(♯X L) . . .

We need an alternative to Huffman coding!

1

MOTIVATION

Huffman algorithm is optimal when compressing symbols of the alphabet X

−→ Don’t forget: a memory-cost O(♯X) to store the underlying tree

Though optimal, Huffman coding has issues

▶ If L successive outputs of X are independent, and if compressing successively to avoid

memory issues, then average-length will belong to[
LH(X), LH(X) + L

) (
H
(
X⊗L

)
= LH(X)

)
−→ It may happen that the +L term is an overkill!

(
see Slide 28

)
▶ If L successive outputs of X are dependent, then

• we loose a lot by compressing successively symbols, example of the language

−→ The last z-letter of buzz asks a lot while we know it will be z after reading buz

• we could pack symbols within blocks of size L large enough

−→ But memory cost becomes O(♯X L) . . .

We need an alternative to Huffman coding!

1

MOTIVATION

Huffman algorithm is optimal when compressing symbols of the alphabet X

−→ Don’t forget: a memory-cost O(♯X) to store the underlying tree

Though optimal, Huffman coding has issues

▶ If L successive outputs of X are independent, and if compressing successively to avoid

memory issues, then average-length will belong to[
LH(X), LH(X) + L

) (
H
(
X⊗L

)
= LH(X)

)
−→ It may happen that the +L term is an overkill!

(
see Slide 28

)
▶ If L successive outputs of X are dependent, then

• we loose a lot by compressing successively symbols, example of the language

−→ The last z-letter of buzz asks a lot while we know it will be z after reading buz

• we could pack symbols within blocks of size L large enough

−→ But memory cost becomes O(♯X L) . . .

We need an alternative to Huffman coding!

1

THE OBJECTIVE OF THE DAY

To present arithmetic coding and to implement it!

−→ To understand where it is coming from we will come back “to the origin” of compression

2

COURSE OUTLINE

1. Some Reminders: Huffman Coding and Shannon Source Coding Theorem

2. Coding with Intervals: Shannon-Fano-Elias and Shannon

3. Arithmetic Coding

3

HUFFMAN AND SHANNON SOURCE CODING

PREFIX CODES: DECODING WITH A TREE

Coding: use a table indexed by the letters to compress

Decoding: use the associated binary tree

• Start at the root

• For each bit turn left or right

• When a leaf is attained, the corresponding letter is output and go back to the root

Consider

X φ(xi)
x1 1
x2 01
x3 00

, then

x3 x2

1

x1

10

0

Be careful:

For tree representation: need to use a prefix code, otherwise codewords could be on a edge(
decoding fails

)
5

OPTIMAL CODE

Expected length:

Given a distribution of symbols X : Ω → {0, 1}+ , the expected length of a symbol code

φ : X → {0, 1}+ is

L(φ,X)
def
=

∑
x∈X ℓ(x) p(x) where p(x) def

= P(X = x)

−→ Expected length: measure of efficiency! We want it to be small

Optimal code:

A uniquely decodable code of a source X is optimal if there exists no other uniquely decodable

code with a smaller expected length

6

HUFFMAN CODING: OPTIMAL CODE

Proposition: optimality of Huffman code

The Huffman code φH is a prefix code and it is optimal. Furthermore,

L (φH,X) ∈ [H(X),H(X) + 1)

Be careful: to build the Huffman code

• we need to know the distribution of the source X : Ω → X

• it requires O(♯X) memory

• when compressing ≥ 2 letters in X , we don’t take into account the possible dependences

7

DISADVANTAGE OF HUFFMAN CODING

• Need to know beforehand the source statistics: wrong probability distribution q instead of p:

H(X) + DKL(p||q) ≤ L(X , φHuff) ≤ H(X) + DKL(p||q) + 1

(
can be dealt with adaptative algorithm adapting statistics on the fly during the coding

)
• Based on a memoryless source model

• To overcome the issue with non-memoryless channel: pack letters in block of size L
(
realistic

if L large enough
)

Coding efficiency L(φHuff,X
L)

H(X1,...,XL)
−−−−−→
L→+∞

1. But memory complexity O
(
♯X L

)

How could we avoid these issues? Let us come back to Shannon source coding theorem for

symbol codes. . .

8

SHANNON SOURCE CODING THEOREM FOR SYMBOL CODES

Shannon’s source coding theorem for symbol codes:

For any distribution X : Ω → X , there exists a prefix code φ with expected length satisfying

L(φ,X) < H(X) + 1
Furthermore, for any prefix code,

H(X) ≤ L(φ,X)

To prove the upper-bound
(
existential result

)
, we used code-lengths

ℓ(x) def
= ⌈log2 1/p(x)⌉

Historically it was the first idea to design compression scheme! Huffman thought differently

Historical ideas have an advantage: it leads to arithmetic coding

9

STARTING IDEA

Historical idea for compression:

Designing a scheme such that ℓ(x) is a

close as possible to log2 1/p(x) to ensure L(φ,X) as close as possible to H(X)

as in proof of Shannon’s theorem!

10

INTERVAL CODING

BINARY DECOMPOSITION

Any numbers in x ∈ [0, 1] can be written as,∑
i≥0 ℓi2

−i where ℓi ∈ {0, 1}

We write 0.d1d2 . . .

For any ℓ > 0 and x ∈ [0, 1),

Dℓ(x) = (d1, . . . , dℓ) denotes its first ℓ-bits in its binary decomposition

For instance:

0.25 → 0.01 0.43 → 0.0110111000 . . .
0.125 → 0.001 0.71 → 0.1011010111 . . .
0.625 → 0.101 1/

√
2 → 0.1011010100 . . .

Be careful:

Some numbers have many 2-adic representations, e.g. 0.25 → 0.01 and 0.25 → 0.00111 . . .

−→ We will restrict to finite representations!
12

2-ADIC NUMBERS

2-adic numbers:

All the x ∈ [0, 1) for which it exists ℓ > 0 such that

x =
∑ℓ

i=1 ℓi2
−i where ℓi ∈ {0, 1}

An important property:

For any 2-adic numbers u, v, if Dℓ(u) = Dℓ(v) for some ℓ, then

|u− v| < 2−ℓ

Or equivalently, if two 2-adic numbers u, v verify |u− v| ≥ 2−ℓ , then Dℓ(u) ̸= Dℓ(v)

Proof:

|u− v| =
∣∣∣∑+∞

i=0 (ui − vi)2−i
∣∣∣ ≤ ∑∞

i=0 |ui − vi|2−i <
∑+∞

i=ℓ+1 2
−i = 2−ℓ

This inequality is strict as ∀i > ℓ, |ui − vi| = 1 implies that one of the sequence terminates

by 111 . . . : impossible as 2-adic numbers

13

SHANNON-FANO-ELIAS CODING: USE INTERVAL REPRESENTATION

< a total order on X

S(x) def
=

∑
y<x p(y)

p(x1) + · · · + p(xi)

p(x1) + p(x2)

p(x1)

0

The interval width is p(xi) and this width necessitates ≈ log2 p(xi) bits

−→ Each xi is encoded by its interval given by p(xi)

14

SHANNON-FANO-ELIAS CODING

S(x) def
= p(x)

2 +
∑

y<x p(y)

−→ S(x) is the middle of the interval
[∑

y<x p(y),
∑

y≤x p(y)
]

Shannon-Fano-Elias coding:

Let φSFE(x)
def
= Dd(x)+1

(
S(x)

)
where d(x) def

= ⌈log2 1/p(x)⌉. Then φSFE is a coding

• prefix

• L(φSFE,X) < H(X) + 2

15

FIRST EXAMPLE

xi p(xi) ⌈log2 1/p(xi) S(xi) φSFE(xi) φHuff(x)
a 0.43 3 0.215 0.0011011 . . . 001 0
b 0.17 4 0.515 0.1000001 . . . 1000 100
c 0.15 4 0.675 0.1010110 . . . 1010 101
d 0.11 5 0.805 0.1100111 . . . 11001 110
e 0.09 5 0.905 0.1110011 . . . 11100 1110
f 0.05 6 0.975 0.1111100 . . . 111110 1111

−→ Sannon-Fano-Elias coding is not optimal. . .

16

SHANNON-FANO-ELIAS CODING IS PREFIX

S(x) def
= p(x)

2 +
∑

y<x p(y), d(x) = ⌈log2 1/p(x)⌉ and φSFE(x) = Dd(x)+1
(
S(x)

)

Proof: φSFE is prefix

Let x ̸= y such that ℓ(x) ≤ ℓ(y),
• If x < y,

S(y) − S(x) =
p(y)
2

+
∑
z<y

p(z) −
p(x)
2

−
∑
z<x

p(z)

=
p(y)
2

−
p(x)
2

+
∑
x≤z<y

p(z)

=
p(y)
2

+
p(x)
2

+
∑
x<z<y

p(z)

> max

(p(y)
2

,
p(x)
2

)
≥ max

(
2−d(x)−1

, 2−d(y)−1
)

= 2−ℓ(x)−1

• Same result for if y < x

Therefore, S(y), S(x) differs on their first (d(x) + 1)-bits and φSFE(x) cannot be a prefix of φSFE(y)
17

SHANNON-FANO-ELIAS: EXPECTED LENGTH

S(x) def
= p(x)

2 +
∑

y<x p(y), d(x) = ⌈log2 1/p(x)⌉ and φSFE(x) = Dd(x)+1
(
S(x)

)

Proof: L(φSFE,X)

By definition
L(φSFE,X) =

∑
x
p(x)ℓ(x)

=
∑
x
p(x)(⌈log2 1/p(x)⌉ + 1)

≤
∑
x
p(x) log2(1/p(x)) + 2p(x)

= H(X) + 2

18

SHANNON CODING

Shannon coding: defined as Shannon-Fano-Elias coding, at the exception:

• The symbols are ordered by their decreasing probability, i.e., x < y ⇐⇒ p(x) ≥ p(y).

• We compress x with the first d(x) def
= ⌈− log2 p(x)⌉ bits of S(x)

def
=

∑
y<x p(y)

Shannon Coding:

Let φSh(x)
def
= Dd(x)

(
S(x)

)
where d(x) def

= ⌈log2 1/p(x)⌉ and S(x)
def
=

∑
y<x p(y). Then φSh is a

coding

• prefix

• L(φSh,X) < H(X) + 1

(
Notice that ℓ(x) = d(x) in Shannon coding

)

19

SHANNON CODING IS PREFIX

S(x) def
=

∑
y<x p(y), d(x) = ⌈log2 1/p(x)⌉ and φSh(x) = Dd(x)(S(x))

Proof: φSh is prefix

Let x ̸= y with ℓ(x) = ⌈log2 1/p(x)⌉ ≤ ℓ(y) = ⌈log2 1/p(y)⌉ ⇐⇒ p(x) ≥ p(y) ⇐⇒ x < y.

S(y) − S(x) =
∑
z<y

p(z) −
∑
z<x

p(z)

=
∑
x≤z<y

p(z)

= p(x) +
∑
x<z<y

p(z)

≥ p(x)

≥ 2−ℓ(x)

Therefore, S(y), S(x) differs on their first ℓ(x)-bits and φSh(x) cannot be a prefix of φSh(y)

20

SHANNON CODING: EXPECTED LENGTH

S(x) def
=

∑
y<x p(y), d(x) = ⌈log2 1/p(x)⌉ and φSh(x) = Dd(x)(S(x))

Proof: L(φSh,X)

By definition,
L(φSh,X) =

∑
x
p(x)ℓ(x)

=
∑
x
p(x)(⌈log2 1/p(x)⌉)

≤
∑
x
p(x) log2(1/p(x)) + 2p(x)

= H(X) + 1

21

OPTIMALITY OF SHANNON CODING FOR DYADIC DISTRIBUTION

Dyadic case: ∀x, p(x) = 2−j(x) which implies that p(x) = 2−⌈log2 p(x)⌉

In this case: lengths of encoding satisfy: ℓ(x) = −⌈log2 p(x)⌉ = − log2 p(x) and the average,

L(φSh,X) = H(X)

which is optimal by Shannon source coding theorem!

22

NON-OPTIMALITY OF SHANNON CODING

Consider the following source: a with probability 1− 2−10 and b with probability 2−10

|φSh(a)| = 10 and |φSh(b)| = ⌈− log2(1− 2−10)⌉ = ⌈0.0014⌉ = 1

But Huffman coding uses 1 bit to compress a and 1 bit to compress b

−→ Shannon’s code is not optimal!

23

ARITHMETIC CODING

ARITHMETIC CODING

▶ Main drawback of Huffman: compressing blocks of size L has memory cost Mem = O
(
♯X L

)
and,

efficiency =
L(φHuff,X L)

H(X⊗L)
≈

H
(
X⊗L

)
+ 1

H (X⊗L)
≈ 1 +

1
LH(X)

= 1 + O
(1
L

)
= 1 + O

(1
logMem

)

−→ We need Mem to be huge
(
L = logMem to be large

)
for an efficiency ≈ 1

▶ Arithmetic coding allows to work on blocks of arbitrary sizes L with acceptable algorithmic

cost depending of the distribution model. Furthermore, efficiency remains the same

efficiency = 1 + O
(1
L

)

−→ But it relies on the ability to perform computations with arbitrary large precision!

25

FUNDAMENTAL IDEA (I)

< a total order on X

S(x) def
=

∑
y<x p(y)

p(x1) + · · · + p(xi)

p(x1) + p(x2)

p(x1)

0

The interval width is p(xi) and this width necessitates ≈ log2 p(xi) bits

−→ Fundamental idea: to encode xi identify the interval coming from +p(xi) with its length

26

FUNDAMENTAL IDEA (II)

Instead of encoding symbols of X , work directly on X L equipped with lexicographical order

To encode (x1, . . . , xL),

1. Compute the interval [
S(x1, . . . , xL), S(x1, . . . , xL) + p(x1, . . . , xL)

]
where S(x1, . . . , xL)

def
=

∑
(y1,...,yL)<(x1,...,xL)

p(y1, . . . , yL)

2. Encode (x1, . . . , xL) with an element of the interval whose 2-adic representation length is

⌈log2 p(x1, . . . , xL)⌉
(
more precisely, we can use ≤ log2 p(x1, . . . , xL) + 2 bits

)

Identifying the interval =⇒ deduce x1, . . . , xL at the decoding step!

27

ADVANTAGE OF ARITHMETIC ENCODING

|φAC(x1, . . . , xL)| = − log2 p(x1, . . . , xL) + O(1)
Therefore,

L(φAC,X L) = H (X1, . . . , XL) L + O(1)

−→ O(1) additional bits are wasted to encode L symbols and not O(L) as with L-repetitions of

Huffman!

When the +1 in Huffman coding is an overkill:

Consider the source: a with probability 1− 2−10 and b with probability 2−10 ,

L (φH, {a, b}) = 1

Consider L independent outputs of the source and compress them successively with Huffman:

∀(x1, . . . , xL) ∈ X L, |φH(x1, . . . , xL)| = L

Arithmetic coding outperforms Huffman:

L
(
φAC, {a, b}L

)
= h

(
2−10) L + O(1) ≈ 0.11L + O(1)

28

THE MAJOR DIFFICULTY WHEN IMPLEMENTING ARITHMETIC CODING

Given the order < on X , we have the lexicographical order on X L

Issue:

We need to compute the interval,[
S(x1, . . . , xL), S(x1, . . . , xL) + p(x1, . . . , xL)

]
where S(x1, . . . , xL)

def
=

∑
(y1,...,yL)<(x1,...,xL)

p(y1, . . . , yL)

with a precision of ⌈log2 p(x1, . . . , xL)⌉-bits!

−→ To implement arithmetic code: need to perform computations with arbitrary large

precision. . .

29

EFFICIENT COMPUTATION FOR ARITHMETIC CODING

By supposing that we can perform computation with arbitrary length, we also need to compute

efficiently

∑
(y1,...,yL)<(x1,...,xL)

p(y1, . . . , yL) and p(x1, . . . , xL)

30

THE KEY IDEA ALLOWING TO WORK WITH PACKETS OF SIZE L

Instead of encoding symbols of X , work directly on X L by identifying (x1, . . . , xL) to a sequence of

sub-intervals decomposed via the conditional probabilities

p(x1) → p(x1)p(x1 | x2) → (p(x1)p(x1 | x2)) p(x3 | x2, x1) → · · ·

−→ We can identify iteratively the inverval

An example: a fractal phenomenon when the outputs are independent

Suppose p(a) = 1
2 , p(b) =

1
6 and p(c) =

1
3 ,

0 1a b c

aa ab ac ba bb bc ca cb cc

31

ARITHMETIC CODING: THE PROCEDURE

X = {a1, . . . , aK,⊥} where ⊥ is a special symbol notifying the “end of file”

(
before we fixed an order < on X , it is here implicitly given by the indexes

)
We will work on X L with lexicographical order

1. We divide the real line [0, 1) into K intervals of lengths equal to the probabilities P(x1 = ai)

2. Then, we take each interval ai and subdivide it into intervals aia1, aia2, . . . , aiaK s.t aiaj has

length p(x2 = aj | ai) relatively to ai ,

p(x1 = ai)p(x2 = aj | x1 = ai) = p(x1 = ai, x2 = aj)

3. We iterate this procedure

32

ITERATIVE COMPUTATION

'

&

$

%

Input: (x1, . . . , xL)
u := 0
v := 1
p := v− u
for n = 1 to L {

Compute the cumulative probabilities Qn and Rn
v := u + pRn(xn | x1, . . . , xn−1)

u := u + pQn(xn | x1, . . . , xn−1)

p := v− u
}

Iterative procedure to find [u, v) for the input string

Qn(ai | x1, . . . , xn−1)
def
=

∑i−1
K=1 p(xn = aK | x1, . . . , xn−1)

Rn(ai | x1, . . . , xn−1)
def
=

∑i
K=1 p(xn = aK | x1, . . . , xn−1)

Encoding:

To encode x1, . . . , xN use the above procedure to compute [u, v) and return a binary string whose

interval lies within that interval
33

CORRECTNESS

Qn(ai | x1, . . . , xn−1) =
∑i−1

K=1 p(xn = aK | x1, . . . , xn−1)

Rn(ai | x1, . . . , xn−1) =
∑i

K=1 p(xn = aK | x1, . . . , xn−1)

Proposition:

If p = p(x1, . . . , xn−1), then

pQn(xn | x1, . . . , xn−1) − pRn(xn | x1, . . . , xn−1) = p(x1, . . . , xn)

−→ At step n, the width [u, v) has length p(x1, . . . , xn)

In the following proposition we use the lexicographical order on X n given the order over

X = {a1, . . . , aI} with a1 ≤ · · · ≤ aI

Proposition:

If p = p(x1, . . . , xn−1), u =
∑

(y1,...,yn−1)<(x1,...xn−1)
p(y1, . . . , yn−1) and

v =
∑

(y1,...,yn−1)≤(x1,...xn−1)
p(y1, . . . , yn−1) then,

u+pQn =
∑

(y1,...,yn)<(x1,...xn)
p(y1, . . . , yn) and v+pRn =

∑
(y1,...,yn)≤(x1,...xn)

p(y1, . . . , yn)

−→ At each step we are in the right interval 34

THE DECODING

r = φAC(x1, . . . , xL) be the real number whose 2-adic representation encodes (x1, . . . , xL) ∈ X L .

The letters x1, . . . , xL are the only ones for which

∑
y1<x1

p(y1) < r <
∑
y≤x1

p(y1)

∑
(y1,y2)<(x1,x2)

p(y1, y2) < r <
∑

(y1,y2)≤(x1,x2)
p(y1, y2)

...∑
(y1,...,yn)<(x1,...xn)

p(y1, . . . , yn) < r <
∑

(y1,...,yn)≤(x1,...xn)
p(y1, . . . , yn)

35

THE BIG PICTURE

To communicate L letters: both the encoder and decoder need to compute O(L♯X)

conditional probabilities

In Huffman coding: all the ♯X L-sequences have to be considered!

Be careful:

How can we compute the conditional probabilities? Do we need to store them?

36

THE ISSUE OF THE CONDITIONAL PROBABILITIES

▶ If the outputs source are independent: only need to store p(a1), . . . , p(aI)

▶ Markov chain
(
under the right hypotheses

)
: only need to store initial distribution and

transition matrix

−→ In arithmetic coding we need to model our data. It fits well with adaptative Bayesian model

Bayesian Model:

Probabilities are used both for uncertainty of outputs but also on the parameter of the model!

Suppose that Bill
(
your best friend

)
, send N times a coin observing a sequence of nh heads. We

don’t know the probability fh of the coin to be head. But we know that Bob has previously chosen

a coin such that fh follows a known distribution. What is the probability that the N + 1-outcome is

head?

37

A SIMPLE BAYESIAN MODEL FOR PREDICTIVE PROBABILITIES

X = {a, b}

p(a | x1, . . . , xn−1) =
Fa + 1

Fa + Fb + 2
where Fx : number of times that x has occurred in x1, . . . , xn−1

−→ This “adaptative” model follows from simple assumptions!

Arithmetic Coding really appreciates this model to compute iteratively

Qn(ai | x1, . . . , xn−1) =
∑i−1

k=1 p(xn = ak | x1, . . . , xn−1)

Rn(ai | x1, . . . , xn−1) =
∑i

k=1 p(xn = ak | x1, . . . , xn−1)

38

EXERCISE SESSION

	Huffman and Shannon source coding
	Interval Coding
	Arithmetic Coding
	Exercise session

