LECTURE 4 COMPRESSION: ARITHMETIC CODING

Information Theory

Thomas Debris-Alazard

Inria, École Polytechnique

 \longrightarrow Don't forget: a memory-cost $O(\sharp \mathcal{X})$ to store the underlying tree

Though optimal, Huffman coding has issues

 \longrightarrow Don't forget: a memory-cost $O(\sharp \mathcal{X})$ to store the underlying tree

Though optimal, Huffman coding has issues

If L successive outputs of X are independent, and if compressing successively to avoid memory issues, then average-length will belong to

$$\Big[LH(X), LH(X) + L \Big) \qquad \Big(H\left(X^{\otimes L} \right) = LH(X) \Big)$$

 \rightarrow It may happen that the +*L* term is an overkill! (see Slide 28)

 \longrightarrow Don't forget: a memory-cost $O(\sharp \mathcal{X})$ to store the underlying tree

Though optimal, Huffman coding has issues

If L successive outputs of X are independent, and if compressing successively to avoid memory issues, then average-length will belong to

$$\left[LH(X), LH(X) + L \right) \qquad \left(H\left(X^{\otimes L} \right) = LH(X) \right)$$

 \rightarrow It may happen that the +L term is an overkill! (see Slide 28)

- If L successive outputs of X are dependent, then
 - we loose a lot by compressing successively symbols, example of the language

 \longrightarrow The last z-letter of <code>buzz</code> asks a lot while we know it will be z after reading <code>buz</code>

• we could pack symbols within blocks of size L large enough

 \longrightarrow But memory cost becomes $O(\sharp \mathcal{X}^{L}) \dots$

 \longrightarrow Don't forget: a memory-cost $O(\sharp \mathcal{X})$ to store the underlying tree

Though optimal, Huffman coding has issues

If L successive outputs of X are independent, and if compressing successively to avoid memory issues, then average-length will belong to

$$\left[LH(X), LH(X) + L \right) \qquad \left(H\left(X^{\otimes L} \right) = LH(X) \right)$$

 \rightarrow It may happen that the +L term is an overkill! (see Slide 28)

- If L successive outputs of X are dependent, then
 - we loose a lot by compressing successively symbols, example of the language

 \longrightarrow The last z-letter of buzz asks a lot while we know it will be z after reading buz

• we could pack symbols within blocks of size L large enough

 \longrightarrow But memory cost becomes $O(\sharp \mathcal{X}^{L}) \dots$

We need an alternative to Huffman coding!

To present arithmetic coding and to implement it!

 \longrightarrow To understand where it is coming from we will come back "to the origin" of compression

- 1. Some Reminders: Huffman Coding and Shannon Source Coding Theorem
- 2. Coding with Intervals: Shannon-Fano-Elias and Shannon
- 3. Arithmetic Coding

HUFFMAN AND SHANNON SOURCE CODING

PREFIX CODES: DECODING WITH A TREE

Coding: use a table indexed by the letters to compress

Decoding: use the associated binary tree

- Start at the root
- For each bit turn left or right
- When a leaf is attained, the corresponding letter is output and go back to the root

Be careful:

For tree representation: need to use a prefix code, otherwise codewords could be on a edge

(decoding fails)

Expected length:

Given a distribution of symbols $X:\Omega\to\{0,1\}^+,$ the expected length of a symbol code

 $\varphi: \mathcal{X} \to \{0,1\}^+$ is

 $L(\varphi, \mathcal{X}) \stackrel{\text{def}}{=} \sum_{x \in \mathcal{X}} \ell(x) p(x) \text{ where } p(x) \stackrel{\text{def}}{=} \mathbb{P}(\mathbf{X} = x)$

 \longrightarrow Expected length: measure of efficiency! We want it to be small

Optimal code:

A uniquely decodable code of a source **X** is optimal if there exists no other uniquely decodable code with a smaller expected length

Proposition: optimality of Huffman code

The Huffman code $\varphi_{\rm H}$ is a prefix code and it is optimal. Furthermore,

 $L(\varphi_H, \mathcal{X}) \in [H(X), H(X) + 1)$

Be careful: to build the Huffman code

- we need to know the distribution of the source $X:\Omega\to \mathcal{X}$
- it requires O(♯𝒴) memory
- when compressing \geq 2 letters in \mathcal{X} , we don't take into account the possible dependences

DISADVANTAGE OF HUFFMAN CODING

• Need to know beforehand the source statistics: wrong probability distribution q instead of p:

$$H(\mathbf{X}) + D_{\mathsf{KL}}(p||q) \le L(\mathcal{X}, \varphi_{\mathsf{Huff}}) \le H(\mathbf{X}) + D_{\mathsf{KL}}(p||q) + 1$$

(can be dealt with adaptative algorithm adapting statistics on the fly during the coding)

- Based on a memoryless source model
- To overcome the issue with non-memoryless channel: pack letters in block of size *L* (realistic if *L* large enough) Coding efficiency $\frac{L(\varphi_{\text{Huff}}, \mathcal{X}^L)}{H(X_1, \dots, X_l)} \xrightarrow{L \to L \cong} 1$. But memory complexity $O\left(\sharp \mathcal{X}^L\right)$

How could we avoid these issues? Let us come back to Shannon source coding theorem for symbol codes. . .

Shannon's source coding theorem for symbol codes:

For any distribution $X:\Omega o \mathcal{X}$, there exists a prefix code φ with expected length satisfying

 $L(\varphi, \mathcal{X}) < H(\mathbf{X}) + 1$

Furthermore, for any prefix code,

 $H(X) \leq L(\varphi, \mathcal{X})$

To prove the upper-bound (existential result), we used code-lengths

$$\ell(x) \stackrel{\text{def}}{=} \lceil \log_2 1/p(x) \rceil$$

Historically it was the first idea to design compression scheme! Huffman thought differently Historical ideas have an advantage: it leads to arithmetic coding Historical idea for compression:

Designing a scheme such that $\ell(x)$ is a

close as possible to $\log_2 1/p(x)$ to ensure $L(\varphi, \mathcal{X})$ as close as possible to H(X)

as in proof of Shannon's theorem!

INTERVAL CODING

Any numbers in $x \in [0, 1]$ can be written as,

$$\sum_{i\geq 0} \ell_i 2^{-i}$$
 where $\ell_i \in \{0, 1\}$

We write $0.d_1d_2...$

For any $\ell > 0$ and $x \in [0, 1)$,

 $D_{\ell}(x) = (d_1, \ldots, d_{\ell})$ denotes its first ℓ -bits in its binary decomposition

For instance:							
	0.25 0.125 0.625	ightarrow ightarrow	0.01 0.001 0.101	0.43 0.71 $1/\sqrt{2}$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	0.0110111000 0.1011010111 0.1011010100	

Be careful:

Some numbers have many 2-adic representations, e.g. $0.25 \rightarrow 0.01$ and $0.25 \rightarrow 0.00111...$

→ We will restrict to finite representations!

2-adic numbers:

All the $x \in [0, 1)$ for which it exists $\ell > 0$ such that

$$x = \sum_{i=1}^{\ell} \ell_i 2^{-i} \quad \text{where } \ell_i \in \{0, 1\}$$

An important property:

For any 2-adic numbers u, v, if $D_{\ell}(u) = D_{\ell}(v)$ for some ℓ , then

 $|u - v| < 2^{-\ell}$

Or equivalently, if two 2-adic numbers u, v verify $|u - v| \ge 2^{-\ell}$, then $D_{\ell}(u) \neq D_{\ell}(v)$

Proof:

$$|u - v| = \left| \sum_{i=0}^{+\infty} (u_i - v_i) 2^{-i} \right| \le \sum_{i=0}^{\infty} |u_i - v_i| 2^{-i} < \sum_{i=\ell+1}^{+\infty} 2^{-i} = 2^{-\ell}$$

This inequality is strict as $\forall i > \ell$, $|u_i - v_i| = 1$ implies that one of the sequence terminates by 111...: impossible as 2-adic numbers

SHANNON-FANO-ELIAS CODING: USE INTERVAL REPRESENTATION

< a total order on ${\cal X}$

The interval width is $p(x_i)$ and this width necessitates $\approx \log_2 p(x_i)$ bits

 \longrightarrow Each x_i is encoded by its interval given by $p(x_i)$

$$\overline{S}(x) \stackrel{\text{def}}{=} \frac{p(x)}{2} + \sum_{y < x} p(y)$$

$$\longrightarrow \overline{S}(x)$$
 is the middle of the interval $\left[\sum_{y < x} p(y), \sum_{y \leq x} p(y)\right]$

Shannon-Fano-Elias coding:

Let
$$\varphi_{\text{SFE}}(x) \stackrel{\text{def}}{=} D_{d(x)+1}(\overline{S}(x))$$
 where $d(x) \stackrel{\text{def}}{=} \lceil \log_2 1/p(x) \rceil$. Then φ_{SFE} is a coding

- prefix
- $L(\varphi_{SFE}, \mathcal{X}) < H(\mathbf{X}) + 2$

Xi	p(x _i)	$\lceil \log_2 1/p(x_i) \rceil$		$\overline{S}(x_i)$	$\varphi_{\rm SFE}(X_i)$	$\varphi_{\text{Huff}}(X)$
a	0.43	3	0.215	0.0011011	001	0
b	0.17	4	0.515	0.1000001	1000	100
С	0.15	4	0.675	0.1010110	1010	101
d	0.11	5	0.805	0.1100111	11001	110
е	0.09	5	0.905	0.1110011	11100	1110
f	0.05	6	0.975	0.1111100	111110	1111

 \longrightarrow Sannon-Fano-Elias coding is not optimal. . .

$$\overline{S}(x) \stackrel{\text{def}}{=} \frac{p(x)}{2} + \sum_{y < x} p(y), \quad d(x) = \lceil \log_2 1/p(x) \rceil \quad \text{and} \quad \varphi_{\mathsf{SFE}}(x) = D_{d(x)+1}\left(\overline{S}(x)\right)$$

Proof: $\varphi_{\rm SFE}$ is prefix

Let $x \neq y$ such that $\ell(x) \leq \ell(y)$,

• If *x* < *y*,

$$\overline{S}(y) - \overline{S}(x) = \frac{p(y)}{2} + \sum_{z < y} p(z) - \frac{p(x)}{2} - \sum_{z < x} p(z)$$
$$= \frac{p(y)}{2} - \frac{p(x)}{2} + \sum_{x \le z < y} p(z)$$
$$= \frac{p(y)}{2} + \frac{p(x)}{2} + \sum_{x < z < y} p(z)$$
$$> \max\left(\frac{p(y)}{2}, \frac{p(x)}{2}\right)$$
$$\ge \max\left(2^{-d(x)-1}, 2^{-d(y)-1}\right)$$
$$= 2^{-\ell(x)-1}$$

• Same result for if *y* < *x*

Therefore, $\overline{S}(y)$, $\overline{S}(x)$ differs on their first (d(x) + 1)-bits and $\varphi_{SFE}(x)$ cannot be a prefix of $\varphi_{SFE}(y)$

$\overline{S}(x) \stackrel{\text{def}}{=} \frac{p(x)}{2} + \sum_{y < x} p(y), \quad d(x) = \lceil \log_2 1/p(x) \rceil \quad \text{and} \quad \varphi_{\text{SFE}}(x) = D_{d(x)+1}\left(\overline{S}(x)\right)$

Proof: $L(\varphi_{SFE}, \mathcal{X})$

By definition

$$\begin{aligned} (\varphi_{\text{SFE}}, \mathcal{X}) &= \sum_{x} p(x)\ell(x) \\ &= \sum_{x} p(x)(\lceil \log_2 1/p(x) \rceil + 1) \\ &\leq \sum_{x} p(x) \log_2(1/p(x)) + 2p(x) \\ &= H(\mathbf{X}) + 2 \end{aligned}$$

Shannon coding: defined as Shannon-Fano-Elias coding, at the exception:

- The symbols are ordered by their decreasing probability, *i.e.*, $x < y \iff p(x) \ge p(y)$.
- We compress x with the first $d(x) \stackrel{\text{def}}{=} \left[-\log_2 p(x) \right]$ bits of $S(x) \stackrel{\text{def}}{=} \sum_{y < x} p(y)$

Shannon Coding:

Let $\varphi_{Sh}(x) \stackrel{\text{def}}{=} D_{d(x)}(S(x))$ where $d(x) \stackrel{\text{def}}{=} \lceil \log_2 1/p(x) \rceil$ and $S(x) \stackrel{\text{def}}{=} \sum_{y < x} p(y)$. Then φ_{Sh} is a coding

- prefix
- L(φ_{Sh}, X) < H(X) + 1

(Notice that $\ell(x) = d(x)$ in Shannon coding)

$$S(x) \stackrel{\text{def}}{=} \sum_{y < x} p(y), \quad d(x) = \lceil \log_2 1/p(x) \rceil \text{ and } \varphi_{\text{Sh}}(x) = D_{d(x)}(S(x))$$

Proof: φ_{Sh} is prefix Let $x \neq y$ with $\ell(x) = \lceil \log_2 1/p(x) \rceil \leq \ell(y) = \lceil \log_2 1/p(y) \rceil \iff p(x) \geq p(y) \iff x < y$. $S(y) - S(x) = \sum_{z < y} p(z) - \sum_{z < x} p(z)$ $= \sum_{x \leq z < y} p(z)$ $= p(x) + \sum_{x < z < y} p(z)$ $\geq p(x)$ $> 2^{-\ell(x)}$

Therefore, S(y), S(x) differs on their first $\ell(x)$ -bits and $\varphi_{Sh}(x)$ cannot be a prefix of $\varphi_{Sh}(y)$

$S(x) \stackrel{\text{def}}{=} \sum_{y < x} p(y), \quad d(x) = \lceil \log_2 1/p(x) \rceil \text{ and } \varphi_{\text{Sh}}(x) = D_{d(x)}(S(x))$

Proof: $L(\varphi_{Sh}, \mathcal{X})$ By definition, $L(\varphi_{Sh}, \mathcal{X}) = \sum_{x} p(x)\ell(x)$ $= \sum_{x} p(x)(\lceil \log_2 1/p(x) \rceil)$ $\leq \sum_{x} p(x) \log_2(1/p(x)) + 2p(x)$ $= H(\mathbf{X}) + 1$ **Dyadic case**: $\forall x, p(x) = 2^{-j(x)}$ which implies that $p(x) = 2^{-\lceil \log_2 p(x) \rceil}$

In this case: lengths of encoding satisfy: $\ell(x) = -\lceil \log_2 p(x) \rceil = -\log_2 p(x)$ and the average,

$$L(\varphi_{Sh}, \mathcal{X}) = H(X)$$

which is optimal by Shannon source coding theorem!

Consider the following source: **a** with probability $1 - 2^{-10}$ and **b** with probability 2^{-10}

 $|\varphi_{Sh}(\mathbf{a})| = 10$ and $|\varphi_{Sh}(\mathbf{b})| = \lceil -\log_2(1-2^{-10})\rceil = \lceil 0.0014\rceil = 1$

But Huffman coding uses 1 bit to compress a and 1 bit to compress b

 \longrightarrow Shannon's code is not optimal!

ARITHMETIC CODING

Main drawback of Huffman: compressing blocks of size *L* has memory cost Mem = $O\left(\#X^{L}\right)$ and, efficiency = $\frac{L(\varphi_{\text{Huff}}, X^{L})}{H(X^{\otimes L})} \approx \frac{H\left(X^{\otimes L}\right) + 1}{H(X^{\otimes L})} \approx 1 + \frac{1}{LH(X)} = 1 + O\left(\frac{1}{L}\right) = 1 + O\left(\frac{1}{\log \text{Mem}}\right)$

$$\longrightarrow$$
 We need Mem to be huge (L = log Mem to be large) for an efficiency ≈ 1

Arithmetic coding allows to work on blocks of arbitrary sizes L with acceptable algorithmic cost depending of the distribution model. Furthermore, efficiency remains the same

efficiency =
$$1 + O\left(\frac{1}{L}\right)$$

---- But it relies on the ability to perform computations with arbitrary large precision!

The interval width is $p(x_i)$ and this width necessitates $\approx \log_2 p(x_i)$ bits

 \rightarrow Fundamental idea: to encode x_i identify the interval coming from $+p(x_i)$ with its length

Instead of encoding symbols of \mathcal{X} , work directly on \mathcal{X}^{L} equipped with lexicographical order

To encode $(x_1, ..., x_L)$,

1. Compute the interval

$$\left[S(x_1,\ldots,x_L),S(x_1,\ldots,x_L)+p(x_1,\ldots,x_L)\right]$$

where
$$S(x_1, ..., x_L) \stackrel{\text{def}}{=} \sum_{(y_1, ..., y_L) < (x_1, ..., x_L)} p(y_1, ..., y_L)$$

2. Encode (x_1, \ldots, x_L) with an element of the interval whose 2-adic representation length is

$$\lceil \log_2 p(x_1, \ldots, x_L) \rceil$$
 (more precisely, we can use $\leq \log_2 p(x_1, \ldots, x_L) + 2$ bits)

Identifying the interval \implies deduce x_1, \ldots, x_L at the decoding step!

$$|\varphi_{AC}(x_1,\ldots,x_L)| = -\log_2 p(x_1,\ldots,x_L) + O(1)$$

Therefore,

$$L(\varphi_{AC}, \mathcal{X}^{L}) = H(X_{1}, \ldots, X_{L})L + O(1)$$

 \longrightarrow O(1) additional bits are wasted to encode L symbols and not O(L) as with L-repetitions of

Huffman!

When the +1 in Huffman coding is an overkill:

Consider the source: **a** with probability $1 - 2^{-10}$ and **b** with probability 2^{-10} ,

 $L(\varphi_H, \{a, b\}) = 1$

Consider *L* independent outputs of the source and compress them successively with Huffman:

$$\forall (x_1,\ldots,x_L) \in \mathcal{X}^L, \quad |\varphi_H(x_1,\ldots,x_L)| = L$$

Arithmetic coding outperforms Huffman:

$$L\left(\varphi_{AC}, \{a, b\}^{L}\right) = h\left(2^{-10}\right)L + O(1) \approx 0.11L + O(1)$$

Given the order < on \mathcal{X} , we have the lexicographical order on \mathcal{X}^{L}

Issue:

We need to compute the interval,

$$\left[S(x_1,\ldots,x_L),S(x_1,\ldots,x_L)+p(x_1,\ldots,x_L)\right]$$

where
$$S(x_1, ..., x_L) \stackrel{\text{def}}{=} \sum_{(y_1, ..., y_L) < (x_1, ..., x_L)} p(y_1, ..., y_L)$$

with a precision of $\lceil \log_2 p(x_1, \ldots, x_L) \rceil$ -bits!

→ To implement arithmetic code: need to perform computations with arbitrary large precision... By supposing that we can perform computation with arbitrary length, we also need to compute efficiently

$$\sum_{(y_1,...,y_L)<(x_1,...,x_L)} p(y_1,...,y_L) \text{ and } p(x_1,...,x_L)$$

Instead of encoding symbols of \mathcal{X} , work directly on \mathcal{X}^L by identifying (x_1, \ldots, x_L) to a sequence of

sub-intervals decomposed via the conditional probabilities

 $p(x_1) \rightarrow p(x_1)p(x_1 \mid x_2) \rightarrow (p(x_1)p(x_1 \mid x_2))p(x_3 \mid x_2, x_1) \rightarrow \cdots$

 \longrightarrow We can identify iteratively the inverval

 $\mathcal{X} = \{a_1, \ldots, a_K, \bot\}$ where \bot is a special symbol notifying the "end of file"

(before we fixed an order < on \mathcal{X} , it is here implicitly given by the indexes)

We will work on \mathcal{X}^{L} with lexicographical order

- 1. We divide the real line [0, 1) into K intervals of lengths equal to the probabilities $\mathbb{P}(x_1 = a_i)$
- 2. Then, we take each interval a_i and subdivide it into intervals $a_ia_1, a_ia_2, \ldots, a_ia_K$ s.t a_ia_j has length $p(x_2 = a_j | a_i)$ relatively to a_i ,

$$p(x_1 = a_i)p(x_2 = a_j | x_1 = a_i) = p(x_1 = a_i, x_2 = a_j)$$

3. We iterate this procedure

ITERATIVE COMPUTATION

Input: $(x_1, ..., x_L)$ u := 0 v := 1 p := v - ufor n = 1 to L { Compute the cumulative probabilities Q_n and R_n $v := u + pR_n(x_n | x_1, ..., x_{n-1})$ $u := u + pQ_n(x_n | x_1, ..., x_{n-1})$ p := v - u}

$$Q_n(a_i \mid x_1, \dots, x_{n-1}) \stackrel{\text{def}}{=} \sum_{K=1}^{i-1} p(x_n = a_K \mid x_1, \dots, x_{n-1})$$
$$R_n(a_i \mid x_1, \dots, x_{n-1}) \stackrel{\text{def}}{=} \sum_{K=1}^i p(x_n = a_K \mid x_1, \dots, x_{n-1})$$

Encoding:

To encode x_1, \ldots, x_N use the above procedure to compute [u, v) and return a binary string whose

interval lies within that interval

CORRECTNESS

$$Q_n(a_i \mid x_1, \dots, x_{n-1}) = \sum_{K=1}^{i-1} p(x_n = a_K \mid x_1, \dots, x_{n-1})$$

$$R_n(a_i \mid x_1, \dots, x_{n-1}) = \sum_{K=1}^{i} p(x_n = a_K \mid x_1, \dots, x_{n-1})$$

Proposition:

If $p = p(x_1, ..., x_{n-1})$, then

$$pQ_n(x_n | x_1, ..., x_{n-1}) - pR_n(x_n | x_1, ..., x_{n-1}) = p(x_1, ..., x_n)$$

 \longrightarrow At step *n*, the width [*u*, *v*) has length $p(x_1, \ldots, x_n)$

In the following proposition we use the lexicographical order on \mathcal{X}^n given the order over

$$\mathcal{X} = \{a_1, \ldots, a_l\}$$
 with $a_1 \leq \cdots \leq a_l$

Proposition:

If
$$p = p(x_1, \dots, x_{n-1}), u = \sum_{(y_1, \dots, y_{n-1}) < (x_1, \dots, x_{n-1})} p(y_1, \dots, y_{n-1})$$
 and
 $v = \sum_{(y_1, \dots, y_{n-1}) \le (x_1, \dots, x_{n-1})} p(y_1, \dots, y_{n-1})$ then,

 $u + pQ_n = \sum_{(y_1,...,y_n) < (x_1,...,x_n)} p(y_1,...,y_n)$ and $v + pR_n = \sum_{(y_1,...,y_n) \le (x_1,...,x_n)} p(y_1,...,y_n)$

 \longrightarrow At each step we are in the right interval

 $r = \varphi_{AC}(x_1, \dots, x_L)$ be the real number whose 2-adic representation encodes $(x_1, \dots, x_L) \in \mathcal{X}^L$. The letters x_1, \dots, x_L are the only ones for which

$$\sum_{y_1 < x_1} p(y_1) < r < \sum_{y \le x_1} p(y_1)$$

$$\sum_{(y_1, y_2) < (x_1, x_2)} p(y_1, y_2) < r < \sum_{(y_1, y_2) \le (x_1, x_2)} p(y_1, y_2)$$

$$\vdots$$

$$\sum_{(y_1, \dots, y_n) < (x_1, \dots, x_n)} p(y_1, \dots, y_n) < r < \sum_{(y_1, \dots, y_n) \le (x_1, \dots, x_n)} p(y_1, \dots, y_n)$$

To communicate *L* letters: both the encoder and decoder need to compute $O(L \sharp X)$

conditional probabilities

In Huffman coding: all the $\sharp \mathcal{X}^{l}$ -sequences have to be considered!

Be careful:

How can we compute the conditional probabilities? Do we need to store them?

THE ISSUE OF THE CONDITIONAL PROBABILITIES

- If the outputs source are independent: only need to store $p(a_1), \ldots, p(a_l)$
- Markov chain (under the right hypotheses): only need to store initial distribution and transition matrix
- ---> In arithmetic coding we need to model our data. It fits well with adaptative Bayesian model

Bayesian Model:

Probabilities are used both for uncertainty of outputs but also on the parameter of the model!

Suppose that Bill (your best friend), send N times a coin observing a sequence of n_h heads. We don't know the probability f_h of the coin to be head. But we know that Bob has previously chosen a coin such that f_h follows a known distribution. What is the probability that the N + 1-outcome is head?

 $\mathcal{X} = \{a, b\}$

 $p(\mathbf{a} \mid x_1, \dots, x_{n-1}) = \frac{F_{\mathbf{a}} + 1}{F_{\mathbf{a}} + F_{\mathbf{b}} + 2} \quad \text{where } F_{\mathbf{x}}: \text{ number of times that } \mathbf{x} \text{ has occurred in } x_1, \dots, x_{n-1}$

→ This "adaptative" model follows from simple assumptions!

Arithmetic Coding really appreciates this model to compute iteratively

$$Q_n(a_i \mid x_1, \dots, x_{n-1}) = \sum_{k=1}^{i-1} p(x_n = a_k \mid x_1, \dots, x_{n-1})$$

$$R_n(a_i \mid x_1, \dots, x_{n-1}) = \sum_{k=1}^{i} p(x_n = a_k \mid x_1, \dots, x_{n-1})$$

EXERCISE SESSION