LECTURE 4
COMPRESSION: ARITHMETIC CODING

Information Theory

Thomas Debris-Alazard

Inria, Ecole Polytechnique

MOTIVATION

Huffman algorithm is optimal when compressing symbols of the alphabet X

— Don't forget: a memory-cost O(§X’) to store the underlying tree

Though optimal, Huffman coding has issues

MOTIVATION

Huffman algorithm is optimal when compressing symbols of the alphabet X

— Don't forget: a memory-cost O(§X’) to store the underlying tree

Though optimal, Huffman coding has issues

» If L successive outputs of X are independent, and if compressing successively to avoid

memory issues, then average-length will belong to
[LH(X), LH(X) + L) (H (X®L) = LH(X))

— It may happen that the 4L term is an overkill! (see Slide 28)

MOTIVATION

Huffman algorithm is optimal when compressing symbols of the alphabet X

— Don't forget: a memory-cost O(§X’) to store the underlying tree

Though optimal, Huffman coding has issues

» If L successive outputs of X are independent, and if compressing successively to avoid

memory issues, then average-length will belong to
[LH(X), LH(X) + L) (H (X®L) = LH(X))
— It may happen that the 4L term is an overkill! (see Slide 28)

» If L successive outputs of X are dependent, then
e we loose a lot by compressing successively symbols, example of the language
— The last z-letter of buzz asks a lot while we know it will be z after reading buz
e we could pack symbols within blocks of size L large enough

— But memory cost becomes O(#X") ...

MOTIVATION

Huffman algorithm is optimal when compressing symbols of the alphabet X

— Don't forget: a memory-cost O(§X’) to store the underlying tree

Though optimal, Huffman coding has issues

» If L successive outputs of X are independent, and if compressing successively to avoid

memory issues, then average-length will belong to
[LH(X), LH(X) + L) (H (X®L) = LH(X))
— It may happen that the 4L term is an overkill! (see Slide 28)

» If L successive outputs of X are dependent, then
e we loose a lot by compressing successively symbols, example of the language
— The last z-letter of buzz asks a lot while we know it will be z after reading buz
e we could pack symbols within blocks of size L large enough

— But memory cost becomes O(#X") ...

We need an alternative to Huffman coding!

THE OBJECTIVE OF THE DAY

To present arithmetic coding and to implement it!

— To understand where it is coming from we will come back “to the origin” of compression

COURSE OUTLINE

1. Some Reminders: Huffman Coding and Shannon Source Coding Theorem
2. Coding with Intervals: Shannon-Fano-Elias and Shannon

3. Arithmetic Coding

HUFFMAN AND SHANNON SOURCE CODING

PREFIX CODES: DECODING WITH A TREE

Coding: use a table indexed by the letters to compress
Decoding: use the associated binary tree

e Start at the root

e For each bit turn left or right

e When a leaf is attained, the corresponding letter is output and go back to the root

e
A

For tree representation: need to use a prefix code, otherwise codewords could be on a edge

Consider

Be careful:

(decoding fails)

OPTIMAL CODE

Expected length:
Given a distribution of symbols X : Q — {0, 1}, the expected length of a symbol code
p: X — {0,1}Tis

Lp, &) & T, 2 £09) p(x) where p(x) € P(X = x)

— Expected length: measure of efficiency! We want it to be small

Optimal code:
A uniquely decodable code of a source X is optimal if there exists no other uniquely decodable

code with a smaller expected length

HUFFMAN CODING: OPTIMAL CODE

Proposition: optimality of Huffman code

The Huffman code ¢y is a prefix code and it is optimal. Furthermore,

L(pn, X) € [H(X), H(X) + 1)

Be careful: to build the Huffman code
e we need to know the distribution of the source X : Q@ — X
e itrequires O(#X) memory

e when compressing > 2 letters in X, we don't take into account the possible dependences

DISADVANTAGE OF HUFFMAN CODING

e Need to know beforehand the source statistics: wrong probability distribution g instead of p:
H(X) + Dxc(plla) < L(X, wuurr) < H(X) + Dru(pl]g) +1
(can be dealt with adaptative algorithm adapting statistics on the fly during the coding)

e Based on a memoryless source model

e To overcome the issue with non-memoryless channel: pack letters in block of size L (realistic

if L large enough)

Coding efficiency P&Lf'x)) = 1 But memory complexity O (ﬁXL>
,,,,, N

How could we avoid these issues? Let us come back to Shannon source coding theorem for

symbol codes. . .

SHANNON SOURCE CODING THEOREM FOR SYMBOL CODES

Shannon'’s source coding theorem for symbol codes:
For any distribution X : Q — X, there exists a prefix code ¢ with expected length satisfying
L(, X) < H(X) +1
Furthermore, for any prefix code,
H(X) < L(g, X)

To prove the upper-bound (existential result), we used code-lengths

£(x) < Tlog, 1/p(x)]

Historically it was the first idea to design compression scheme! Huffman thought differently

Historical ideas have an advantage: it leads to arithmetic coding

STARTING IDEA

Historical idea for compression:

Designing a scheme such that £(x) is a
close as possible to log, 1/p(x) to ensure L(¢, X) as close as possible to H(X)

as in proof of Shannon’s theorem!

INTERVAL CODING

BINARY DECOMPOSITION

Any numbers in x € [0, 1] can be written as,
DR 227" where ¢; € {0,1}

We write 0.dqd; . . .

Forany £ > 0 and x € [0,1),
De(x) = (dh,...,d¢) denotes its first £-bits in its binary decomposition J

For instance:

0.25 — 0.01 0.43 — 0.0110111000.. . .
0.125 — 0.001 0.71 — 0.1011010111 . . .
0.625 — 0.101 1/\ﬁ — 0.1011010100. . .
Be careful:
Some numbers have many 2-adic representations, e.g. 0.25 — 0.01and 0.25 — 0.00111. .. J

— We will restrict to finite representations!

2-ADIC NUMBERS

2-adic numbers:

All the x € [0, 1) for which it exists £ > 0 such that
x=3E, 627" where ¢; € {0,1} |
An important property:
For any 2-adic numbers u, v, if Dg(u) = D¢(v) for some ¢, then
lu—v| <27
Or equivalently, if two 2-adic numbers u, v verify |u — v| > 27, then Dy (u) # De(v))

Proof:

lu—vl= S —vi)2 | < S lui —vil2™ < S 27 =27t

This inequality is strict as Vi > £, |u; — v;| = 1implies that one of the sequence terminates

by 111...: impossible as 2-adic numbers

SHANNON-FANO-ELIAS CODING: USE INTERVAL REPRESENTATION

< atotal order on X

def

S(x) = 22, PY))
1
pO) + -+ +p(x)
[I I
[I I
p(xa) + p(x2)
[I I
p(x1)
L1 1
0
The interval width is p(x;) and this width necessitates ~ log, p(X;) bits
— Each x; is encoded by its interval given by p(x;) J

14

SHANNON-FANO-ELIAS CODING

500 &2 4y p(y) J

— S(x) is the middle of the interval [ZKX P, 2o, <« p(y)]

Shannon-Fano-Elias coding:

i [log, 1/p(x)]. Then s is a coding

Let sre(x) = Do (S(x)) where d(x)
e prefix

o L(ipsre, X) < H(X) +2

FIRST EXAMPLE

xi | p(a) | [log,1/p(x) | S(xi) | osre(x) | enur(9 |
a 0.43 3 0.215 0.0011011. .. 001 0

b 0.17 4 0.515 0.1000001. .. 1000 100

C 0.15 4 0.675 0.1010110. .. 1010 101

d 0.1 5 0.805 0.1100111. . . 11001 110

e 0.09 5 0.905 0.1110011. .. 11100 1110

f 0.05 6 0.975 0.1111100. . . 111110 1M

— Sannon-Fano-Elias coding is not optimal. . .

16

SHANNON-FANO-ELIAS CODING IS PREFIX

500 €8+, p(y), d(x) = [log, 1/p(9)] and wsse(x) = Doy (S()) J

Proof: wsee is prefix

Let x # y such that £(x) < £(y),

o Ifx<y,
500 -500 = 2 1+ 3500 -3 00)
z<y z<x
_PW D + S p2)
2 x<z<y
_ Py D(X 3 b0
2 2 x<z<y

P(y) D
xEZd 71 >d(y)

2(x)—1

e Same result forif y < x

Therefore, S(y), S(x) differs on their first (d(x) 4 1)-bits and ese(x) cannot be a prefix of psre ())

SHANNON-FANO-ELIAS: EXPECTED LENGTH

500 E B 4+ 3, p(y), d(x) = [log, 1/p()] and @se(x) = Dageysr (S(x)) J

Proof: L(WSFEy X)

By definition
L(epsre, X) = > p(0)&(x)
X

= P()([log; 1/p(x)] +1)
<> P(0) logy(1/p(x)) + 2p(x)

= H(X) + 2

SHANNON CODING

Shannon coding: defined as Shannon-Fano-Elias coding, at the exception:
e The symbols are ordered by their decreasing probability, i.e, x <y <= p(x) > p(V).

e We compress x with the first d(x) & [—log, p(x)] bits of S(x) &f 2y<x PY)

Shannon Coding:

def def

Let g5 (x) £ Dy (5(x)) where d(x) €' Tlog, 1/p(x)] and S(x) £ 3=, _, p(y). Then ps; is a

coding

e prefix

o L(psh, X) < H(X) +1

(Notice that £(x) = d(x) in Shannon coding)

19

SHANNON CODING IS PREFIX

S0 LY, pY), d(x) = Mlog,1/p(x)] and wsn(x) = Dage) (S(X))]

Proof: sy, is prefix

Let x # y with £(x) = [log, 1/p(x)] < £(y) = [logy 1/p(y)] <= p(x) = p(y) <= x <.

S) =S =D _p@) = > p2)

<y z<x

> p@)

x<z<y

P+ > p2)

x<z<y

> p(x)
>27fW

Therefore, S(y), S(x) differs on their first £(x)-bits and ¢sp(x) cannot be a prefix of sy (v)

20

SHANNON CODING: EXPECTED LENGTH

500 €5, p(Y), d(x) = [log, 1/p(x)] and @sh(x) = Daey(S(x)) J

Proof: L(psh, X)

By definition,
L(spsn, X) = > p(x)€(x)
X

= p()([log; 1/p()1)
< > P(0) logy(1/p(x)) + 2p(x)

= H(X) +1

21

OPTIMALITY OF SHANNON CODING FOR DYADIC DISTRIBUTION

Dyadic case: V¥x, p(x) = 27/® which implies that p(x) = 2~ &2 PX1

In this case: lengths of encoding satisfy: £(x) = —[log, p(x)] = — log, p(x) and the average,
L(psn, &) = H(X)

which is optimal by Shannon source coding theorem!

22

NON-OPTIMALITY OF SHANNON CODING

Consider the following source: a with probability 1 — 27'° and b with probability 2~

lsn(a)l =10 and |isn(b)| = [log,(1 — 27°)] = [0.0014] = 1

But Huffman coding uses 1 bit to compress a and 1 bit to compress b

— Shannon’s code is not optimal!

23

ARITHMETIC CODING

ARITHMETIC CODING

P> Main drawback of Huffman: compressing blocks of size L has memory cost Mem = O (uXL>

and,

®L
) L(pnur, &) M (X) +1 1 L L
ffi = ~ ~1 = 1 -] =1
emceny = —pxen H (x®0) T T TOL O e e

— We need Mem to be huge (L = log Mem to be large) for an efficiency ~ 1

P Arithmetic coding allows to work on blocks of arbitrary sizes L with acceptable algorithmic

cost depending of the distribution model. Furthermore, efficiency remains the same
. 1
efficiency =1+ 0 <[)

— But it relies on the ability to perform computations with arbitrary large precision!

25

< atotal order on X

def
SORE=D NI)
1
pO) + -+ P(x)
[I I
[I I
p(xa) + p(x2)
[I I
p(x1)
L1 1
0
The interval width is p(x;) and this width necessitates ~ log, p(X;) bits
— Fundamental idea: to encode x; identify the interval coming from +p(x;) with its length J

26

Instead of encoding symbols of X, work directly on X" equipped with lexicographical order J

To encode (X1, ..., X.),

1. Compute the interval

|:S(X17 . 7XL)7S(X17 . 7XL) +p(X1,. .. ,XL):|

where S(xq, ..., x) & > PO, -5 VL)
(2 VI)<(X,-e0s X))
2. Encode (xi,...,x.) with an element of the interval whose 2-adic representation length is
[log, p(X1, ..., X0)] (more precisely, we can use < log, p(X1, ..., X.) +2 bits)
Identifying the interval = deduce x4, . . ., X, at the decoding step!

27

ADVANTAGE OF ARITHMETIC ENCODING

I‘PAC(XN OO 7XL)| = —log, D(X1, OO aXL) + 0(1)
Therefore,

L(pac, XY) = H (X1, ..., X)L+ 0(1)

— 0(1) additional bits are wasted to encode L symbols and not O(L) as with L-repetitions of

Huffman!

When the +1in Huffman coding is an overkill:

Consider the source: a with probability 1 — 2" and b with probability 27,
L(en, {a,b}) =1
Consider L independent outputs of the source and compress them successively with Huffman:
V(X1 x) € XY Jen(X, .. x)| =L

Arithmetic coding outperforms Huffman:

L (gaAc, {a, b}L) =h(27°) L+ 0(1) ~ 0.11L + 0(1)

28

THE MAJOR DIFFICULTY WHEN IMPLEMENTING ARITHMETIC CODING

Given the order < on X, we have the lexicographical order on x*

Issue:

We need to compute the interval,

[5()(1,...,XL),S(XW,...,XL)+D(X1,...,XL)]

where S(xi, . .., x) & Z p(ya, ...y W1)

V15- Y1)< (X755 X1)

with a precision of [log, p(x1, . .., x.)]-bits!

— To implement arithmetic code: need to perform computations with arbitrary large

precision. . .

29

EFFICIENT COMPUTATION FOR ARITHMETIC CODING

By supposing that we can perform computation with arbitrary length, we also need to compute

efficiently

> P, - -y) and plxi, ..., x)

W15 yI<(,.--, XL)

30

THE KEY IDEA ALLOWING TO WORK WITH PACKETS OF SIZE L

Instead of encoding symbols of X, work directly on X! by identifying (x, . . ., x.) to a sequence of

sub-intervals decomposed via the conditional probabilities

pea) = p(a)p(xa | x2) = (P(a)P(xa | x2)) p(X3 | X2, %1) — - -

— We can identify iteratively the inverval

An example: a fractal phenomenon when the outputs are independent
Suppose p(a) = 3, p(b) = £ and p(c) = 3,

0 1

/N/&/&

ab ba bb bc ca cb

31

ARITHMETIC CODING: THE PROCEDURE

X ={ai,...,ax, L} where L is a special symbol notifying the “end of file”
(before we fixed an order < on X, it is here implicitly given by the indexes)

We will work on X" with lexicographical order

1. We divide the real line [0, 1) into K intervals of lengths equal to the probabilities P(x; = a;)

2. Then, we take each interval a; and subdivide it into intervals a;as, a;a, . . ., a;ax s.t a;a; has

length p(x2 = q; | a;) relatively to a;,
p(xi = ap(x. = a; [x1 = a;) = p(xi = a;, X2 =)

3. We iterate this procedure

32

ITERATIVE COMPUTATION
Iterative procedure to find [u, v) for the input string
m_ut: (X'\,...,XL) \

u:=0
v:=1
p:=v—u

forn=1toL{
Compute the cumulative probabilities Q, and Rp,
Vi=U+4 pRa(Xn | X1, ...y Xn—1)
U= U+pQn(Xn | X1, -« s Xn—1)

N /

def —i—
Qn(@i | X1, - -+ Xn=1) = S0 P = Ak | X1, -+, Xn—1)
def i
Ra(ai | X1,y Xn—1) = 204 P(Xn = Gk | X1, -+ s Xn—1))
Encoding:
To encode Xq, . .., Xy use the above procedure to compute [u, v) and return a binary string whose
interval lies within that interval
< 33

CORRECTNESS

Qna | %1, -+ Xnm1) = T2 P(Xn = Ak | X, -+ Xo—1)
Ro(@; | X1, Xn—1) = Skey POn = Gk | X, - -+, Xn—1))
Proposition:
Ifp=p(x,...,Xxn—1), then
PQn(Xn | X1, .-, Xn—1) = PRa(Xn | X1, - .., Xn—1) = p(X1, - . ., Xn) y
— At step n, the width [u, v) has length p(x, . .., Xn)

In the following proposition we use the lexicographical order on X" given the order over

X ={a,...,aq}twitha <---<aq
Proposition:
IFp=p0a,. . Xo—1) U=320, 0)<(ase.ng_q) PO+ Yn1) and
V= Z(M ----- Yn—1)<(Xq5--Xp 1) D()/1, e ,)/n_w) then,

Vn)<(X11-«-Xn)p(y1""’y”) and V+DR”:Z(yh‘.‘,y”)g(xw,“xn)p(y“"'vyﬂ)

— At each step we are in the right interval 34

THE DECODING

r = @ac(X, ..., x.) be the real number whose 2-adic representation encodes (x1, . .

The letters xq, . .., x, are the only ones for which

>

>)

y1<x1

(1,¥2)<(x1,%2)

>

W1s---Yn)<(Xq,---Xn)

pas .-

py1,¥2)

7))

<r< > pn)

y<x

<r< >So 0 ply)

1,¥2) < (x1,%)

<r< > POy, - -

(15--5Yn) (X952 Xn)

.,XL) S Xt

2 Yn)

85

THE BIG PICTURE

To communicate L letters: both the encoder and decoder need to compute O(L§X)

conditional probabilities

In Huffman coding; all the §X*-sequences have to be considered!

Be careful:

How can we compute the conditional probabilities? Do we need to store them? J

36

THE ISSUE OF THE CONDITIONAL PROBABILITIES

P If the outputs source are independent: only need to store p(as), . .., p(a;)

» Markov chain (under the right hypotheses): only need to store initial distribution and

transition matrix

— In arithmetic coding we need to model our data. It fits well with adaptative Bayesian model

Bayesian Model: J

Probabilities are used both for uncertainty of outputs but also on the parameter of the model!

Suppose that Bill (your bestfr)’end), send N times a coin observing a sequence of n, heads. We

don’t know the probability f, of the coin to be head. But we know that Bob has previously chosen
a coin such that f, follows a known distribution. What is the probability that the N + 1-outcome is

head?

37

A SIMPLE BAYESIAN MODEL FOR PREDICTIVE PROBABILITIES

X ={a,b}

Fat1] ;
pa| X, ..., Xn—1) = il where Fy: number of times that x has occurred in xy, ..., Xp_1
Fa+Fp +2

— This “adaptative” model follows from simple assumptions!

Arithmetic Coding really appreciates this model to compute iteratively

Qn(ai | X,y Xn—1) = S04 1 p(Xn = e | X1, - . Xn—1)

Rn(aj | X1, -, Xn1) = Yopqy P(Xn = Qe | X2, .oy Xn—1)

38

EXERCISE SESSION

	Huffman and Shannon source coding
	Interval Coding
	Arithmetic Coding
	Exercise session

