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MOTIVATION

Lecture 2: how to compress i.i.d sources

by crucially using the informal concept of typical sequences

• What is the essence of typical sequences?

• i.i.d. sources are not realistic e.g with languages, are there more general sources that we can

compress by using typical sequences?
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THE OBJECTIVE OF THE DAY

▶ To define formally the concept of typical sequences

▶ Showing that sources admitting typical sequences are those for which Shannon’s source

coding theorem holds
(
Lecture 2

)
▶ Exhibiting more general sources that i.i.d. distributions verifying Shannon’s theorem
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COURSE OUTLINE

1. Entropy Rate of Stochastic Processes

2. Asymptotic Equipartition Property
(
AEP
)

−→ To define formally typical sequences and showing how to reach optimal compression!

• Independent and Identically Distributed sources admit typical sequences

• More general kind of sources verifying the AEP: Markov chains
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SOME REMINDERS



SOME ABUSE OF NOTATION

Given random variables X1, . . . , XL ,

p(x1, . . . , xL)
def
= P(X1 = x1, . . . , XL = xL)

If it is clear from the context, given X and Y,

p(x) def
= P(X = x) and p(y) def

= P(Y = y)

Given a random variable X

log2 P(X) is a random variable: it is equal to log2 p(x) when x as been picked according to

the distribution (p(y))y∈X
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ENTROPY

Entropy:

Following average quantity of the source X,

H(X) = EX
(
− log2 P(X)

)
= −

∑
x
p(x) log2 p(x)

−→ ♯
{
typical set of X

}
≈ 2H(X)

Entropy and Compression:

Optimal compression rate H(X) when compressing symbols per symbols draw according to X
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CONDITIONAL ENTROPY

Conditional entropy:

H (Y | X1, . . . , XL) = −
∑

y,x1,...,xL

p(y, x1, . . . , xL) log2 p(y | x1, . . . , xL)

Proposition: conditioning reduces entropy

H (Y | X1, . . . , XL) ≤ H (Y | X1, . . . , XL−1)

−→ To remember: if we admit that entropy is the optimal compression rate, conditioning can only

help you, i.e., decreasing the needed size to compress
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CHAIN RULE

Chain rule:

H(X1, . . . , Xn) =
n∑
i=1

H(Xi | X1, . . . , Xi−1)
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ENTROPY AND STOCHASTIC PROCESSES



STOCHASTIC PROCESSES/SOURCES

Stochastic process:

A stochastic process is a discrete indexed sequence of random variables {Xi}i where the Xi ’s

take their value in the same discrete alphabet X

−→ It is characterized by the joint probability mass functions

P
(
(X1, . . . , Xn) = (x1, . . . , xn)

)
= p(x1, . . . , xn)

for all n ∈ N and (x1, . . . , xn) ∈ X n

• The Xi ’s can be dependent
(
memory process

)
• The Xi ’s don’t have necessary the same distribution
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ENTROPY RATE

Reminder: the entropy of a source outputting L symbols in X is defined as

H(X1, . . . , XL) =
∑

(x1,...,xL)∈X L
−p(x1, . . . , xL) log2 p(x1, · · · , xL)

where 0 · log2 0 = 0

Entropy rate/Entropy per symbol:

The entropy of a stochastic process {Xi}i is defined by

H(X )
def
= lim

L→+∞

1
L
H(X1, . . . , XL)

when the limit exists

An important quantity:

For instance, informally, compressing with a Huffman code L symbols for L large enough can be

done with ≈ LH(X ) bits
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SOME EXAMPLES:

• Typewriter: m equally likely output letters, hence mL equally distributed sequences,
1
L
H(X1, . . . , XL) =

1
L
log2 m

L = log2 m

• Independent and equally distributed,

1
L
H(X1, . . . , XL) =

1
L

L∑
i=1

H(Xi) = H(X)

Be careful:

H(X ) may not be defined when the Xi ’s are independent!

−→ The following example is “technical” but is insightful
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PROCESS FOR WHICH ENTROPY RATE IS NOT DEFINED (I)

N\{0, 1} =
+∞⊔
k=0

J222k , 222k+2J and J222k , 222k+2J = J222k , 222k+1J︸ ︷︷ ︸
length: 222k (222k−1)

⋃ J222k+1 , 222k+2︸ ︷︷ ︸
length: 222k+1 (222k+1−1)

J
• Each interval J222k , 222k+2J has exponential size
• Each interval is decomposed into two exponential size intervals with one exponentially bigger

than the other one
22
2k+1

(22
2k+1

− 1)
222k (222k − 1)

≈ 22
k+1

{Xi}i≥2 independent with Xi ∈ {0, 1} and pi
def
= P(Xi = 1) where

pi =

 1
2 if 22

2k
≤ i < 22

2k+1

0 if 22
k+1

≤ i < 22
2k+2

By definition:

H(Xi) =
{
1  if pi = 1/2
0 otherwise
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PROCESS FOR WHICH ENTROPY RATE IS NOT DEFINED (II)

By independence:
1
LH(X1, . . . , XL) = 1

L
∑L

i=1 H(Xi)︸ ︷︷ ︸
∈{0,1}

Define:

u2k
def
=
∑
i≤222k

H(Xi) and u2k+1
def
=

∑
i<222k+1

H(Xi)

We obtain:

u2k+1 − u2k = 22
2k
(
22
2k

− 1
)

and u2k − u2k−1 = 0

In particular,

0 ≤
u2k
222k

=
u2k−1

222k
≤

22
2(k−1)

222k
= 22

2(k−1)−22k = 22
2(k−1)(1−22) −−−−−→

k→+∞
0

1 ≥
u2k+1
222k+1

≥
22
2k
(
22
2k

− 1
)

222k+1
−−−−−→
k→+∞

1

Conclusion:
1
L H(X1, . . . , XL) cannot have a limit as two sub-series have different limits  14



SOME REMARK

The stochastic process we exhibited is highly dependent of the time of observation

Particularly: the process “is not defined” even after a sequence as long as we wish
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STATIONARY PROCESSES/SOURCES

An important class of processes/sources

Stationary process:

A stochastic process is said to be stationary if its behaviour is invariant by time observation,

P
(
X1 = x1, . . . , Xn = xn

)
= P
(
X1+ℓ = x1, . . . , Xn+ℓ = xn

)
for any n, ℓ > 0 and (x1, . . . , xn) ∈ X n

Exercise:

Show that a stochastic process independent and identically distributed is stationary

Be careful:

Stationary process is a very strong condition: it implies that Xi ’s are identically distributed
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ENTROPY RATE FOR STATIONARY SOURCES

Stationary processes are important as their entropy per symbol is defined

Theorem:

For a stationary stochastic process, the following limits exist and are equal,

H(X ) = lim
L→+∞

1
L
H(X1, . . . , XL) = lim

L→+∞
H (XL | X1, . . . , XL−1)
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PROOF(I): CONDITIONING DECREASES UNCERTAINTY

Proof:

For all L, using results of Slide 7,

H(XL | X1, . . . , XL−1) ≤ H(XL | X2, . . . , XL−1)

= H(XL−1 | X1, . . . , XL−2)

where in the equality we used that the process is stationary,

−→ lim
L→+∞

H (XL | X1, . . . , XL−1) exists as decreasing ≥ 0 series
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PROOF(II): USE THE CHAIN RULE

Proof:

By the chain rule,
1
L
H(X1, . . . , XL) =

1
L

L∑
i=1

H(Xi | X1, . . . , Xi−1)

Cesaro’s theorem:

Let (aL) ∈ CN s.t lim
L→+∞

aL = ℓ, then
1
L

L∑
i=1

ai −−−−−→L→+∞
ℓ

Proof:

To conclude, combine the result of the previous slide and the equation given by the chain rule
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ENTROPY PER SYMBOL VERSUS COMPRESSION

It is tempting to conclude that any source X1, . . . , XL, . . . for which H(X ) is defined can be

compressed at rate tending to H(X )

What do you think?

The work is not finished! Is it true that such sources concentrate over some subset

as we used in Lecture 2?

−→ No reason to be true!
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ASYMPTOTIC EQUIPARTITION PROPERTY



ASSUMPTION:

In this section: only stochastic processes {Xi} for which the entropy per symbol is defined!

H def
= H(X ) = lim

L→+∞

1
L
H(X1, . . . , XL)

(
in particular stationary processes

)
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TYPICAL SEQUENCES

Remember the following anecdote:

At the police station, is it easier to answer the following questions: what were you doing

three Monday ago? or what were you doing a typical Monday?

−→ Typical realisations: simple mean to answer hard questions!

Typical sentences are those concentrating close to the entropy rate

Typical sequences:

The ε-typical set A(n)ε is defined as
(
be careful: source for whichH is defined

)
,

A(n)ε
def
=
{
(x1, . . . , xn) ∈ X n : 2−n(H+ε) ≤ p(x1, . . . , xn) ≤ 2−n(H−ε)

}
=

{
(x1, . . . , xn) ∈ X n :

∣∣∣∣ 1n log2
1

p(x1, . . . , xn)
− H

∣∣∣∣ ≤ ε

}
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TYPICAL VERSUS PROBABILISTIC SEQUENCES

Typical sequences are not the most probable!

−→ Two dimensions in typical sequences, probability to fall in some set!

Be careful:

The most probable sequence associated to Xi ∈ {0, 1} where P(Xi = 1) = p < 1/2, is

(0, . . . , 0)

while the typical sequences associated to Xi ∈ {0, 1} where P(Xi = 1) = p, are{
x ∈ {0, 1}n : |x| ≈ np

}
where |x| def= ♯ {i : xi 6= 0}

(
Hamming weight of x

)
An important remark: one may say that considering {x : |x|≤np} can be useful as it contains

typical sequences and most probable sequences! However, it is useless. . .

♯{x : |x|≤np} ≈ ♯
{
x ∈ {0, 1}n : |x| ≈ np

}
It does not increase the size of the set of interest, it only brings negligible quantities
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ASYMPTOTIC EQUIPARTITION PROPERTY

Asymptotic Equipartition Property (AEP):

A stochastic process {Xi}i verifies the AEP if,

∀ε > 0, lim
n→+∞

P
(
(Xi)1≤i≤n ∈ A(n)ε

)
= 1 ⇐⇒

1
n
log2 P(X1, . . . , Xn)

P−−−−−→
n→+∞

H(X )

−→ The entropy per symbol is defined for stochastic processes verifying the AEP

Exercise:

Show that the i.i.d. stochastic process Xi ∈ {0, 1} where P(Xi = 1) = p verifies the AEP
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PROPERTIES OF TYPICAL SEQUENCES

Proposition:

For any source verifying the AEP, for all ε > 0,

1. P
(
(Xi)1≤i≤n ∈ A(n)ε

)
≥ 1− ε for n being sufficiently large

2. ♯A(n)ε ≤ 2n(H+ε)

3. ♯A(n)ε ≥ (1− ε)2n(H−ε) for n being sufficiently large
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PROOF

Proof
(
same thing than in Lecture 2)

)
:

1. By definition

2. We have the following computation,

1 =
∑
x
p(x)

≥
∑
x∈A(n)ε

p(x)

≥
∑
x∈A(n)ε

2−n(H+ε)

where we used the definition of typical sequences. It concludes the proof

3. Same reasoning but starting from 1− ε ≤ P
(
(Xi)1≤i≤n ∈ A(n)ε

)
instead of 1 =

∑
x p(x)
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POTATOES

X n

A(n)ε

Only an exponentially small fraction of sequences
(
♯A(n)ε � ♯X n

)
concentrates all the

distribution mass of sequences verifying the AEP

P
(
x ∈ T(n)ε

)
≈ 1
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SET WITH HIGH PROBABILITIES

Remember Lecture 2, set with high probability, i.e., δ-sufficient subset
(
for compression

)

δ-sufficient subset Sδ :

P
(
x ∈ S(n)δ

)
≥ 1− δ

Theorem:

For any δ-sufficient subset Sδ and any source verifying the AEP, for all ε > 0, for n being

sufficiently large,
1.

P
(
x ∈ S(n)δ ∩ A(n)ε

)
≥ 1− ε − δ

2.
1
n
log2 ♯S

(n)
δ > H − ε

−→ Sufficient subsets cannot be smaller than typical sets as ♯A(n)ε ≥ (1− ε)2n(H−ε)

for n being sufficiently large
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PROOF

Proof:

First, let E and F be two events such that

P(E) ≥ 1− α and P(F) ≥ 1− β

We have
P(E ∪ F) ≤ P(E) + P(F)

≤ α + β

Therefore, P(E ∩ F) = 1− P(E ∪ F) ≥ 1− α − β

1. Apply the above reasoning

2. For n being sufficiently large,
1− ε − δ ≤ P

(
x ∈ S(n)δ ∩ A(n)ε

)
=

∑
x∈S(n)

δ
∩A(n)ε

p(x)

≤
∑

x∈S(n)
δ

∩A(n)ε

2−n(H−ε)

≤ ♯S(n)δ 2−n(H−ε)

To conclude the proof use the log2 properties and 1
n log2 Cst −−−−−→n→+∞

0
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SOURCE CODING THEOREM

Asymptotic coding average length:

Given a stochastic process, {Xi}, the asymptotic expected length of a symbol code φ is defined as(
if the following limits exists

)
,

Lasympt(φ,X )
def
= lim

n→+∞
1
n
∑

x1,...,xn
ℓ(x1, . . . , xn) p(x1, . . . , xn)

where ℓ(x1, . . . , xn) bit-length of φ(x1, . . . , xn)

Shannon source coding theorem:

Given a source verifying the AEP and with entropy per symbol H(X ),

1. All unambiguous coding φ verifies Lasympt(φ,X ) ≥ H

2. It exists an unambiguous coding φ such that L(φ,X ) ≤ H + ε
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PROOF: THE COMPRESSION

Proof:

1. φ can be defined as an unambiguous code over X n , then by results of Lecture 2
(
“Shannon’s

theorem”
)
, 1

n
∑

x1,...,xn

ℓ(x1, . . . , xn) p(x1, . . . , xn) ≥
1
n
H(X1, . . . , Xn)

The right-hand term as limitH
(
when n tends to +∞

)
2. The idea is to distinguish elements according to x ∈ A(n)ε or not.

(i) Define a one-to-one mapping,

φ0 : X n → {0, 1}⌈n log2 ♯X⌉

(ii) Define a one-to-one mapping,

φ1 : A(n)ε −→ {0, 1}⌈♯A(n)ε ⌉

Define the unambiguous
(
and fixed-length

)
code φ(n)

ε ,

φ
(n)
ε (x) def

=

 0||φ0(x) if x /∈ A(n)ε

1||φ1(x) if x ∈ A(n)ε
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ENDING THE PROOF

Proof:

▶ The idea is to distinguish elements according to x ∈ A(n)ε or not

(i) Define a one-to-one mapping,

φ0 : X n → {0, 1}⌈n log2 ♯X⌉

(ii) Define a one-to-one mapping,

φ1 : A(n)ε −→ {0, 1}⌈♯A(n)ε ⌉

Define the unambiguous
(
and fixed-length

)
code φ(n)

ε ,

φ
(n)
ε (x) def

=

 0||φ0(x) if x /∈ A(n)ε

1||φ1(x) if x ∈ A(n)ε

By taking n large enough, P
(
x ∈ A(n)ε

)
≥ 1− ε and ♯A(n)ε ≤ 2n(H+ε) ,

∑
x
p(x) ℓ(x) = P

(
x ∈ A(n)ε

)
d♯A(n)ε e +

(
1− P

(
x ∈ A(n)ε

))
dn log2 ♯Xe

≤ 1 dn(H + ε) + εdn log2 ♯Xe

To conclude: n → +∞
33



WHAT ELSE?

We defined the entropy per symbol as an entropy quantity to quantify optimal compression

We defined the AEP property as a necessary condition to reach optimal compression

What else?

Which
(
interesting

)
sources have an entropy per symbol be defined and verify the AEP?
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MEMORYLESS SOURCES VERIFY AEP



MEMORYLESS SOURCES

Memoryless source:

A source {Xi}i is said to be memoryless if the Xi ’s are i.i.d.
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MEMORYLESS SOURCES AND AEP

Proposition:

Memoryless sources verify the AEP

Proof:

Let {Xi}i be a memoryless process defined as X

1. We have the following computation,

1
n
H(X1, . . . , Xn)

(indep)
=

1
n

n∑
i=1

H(Xi) = H(X)

as they are identically distributed. Therefore: the entropy rate is defined and H(X ) = H(X)

2. By independence,
log2 P(X1, . . . , Xn) =

n∑
i=1

log2 P(Xi)

By linearity of the expectation,

E (− log2 P(X1, . . . , Xn)) = E
(
−

n∑
i=1

log2 P(Xi)
)

= nH(X)

By the weak law of large number,(∣∣∣∣ 1n log2 1/P(X1, . . . , Xn) − H(X)
∣∣∣∣ ≤ ε

)
−−−−−→
n→+∞

1
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BE CAREFUL: EQUIPARTITION

Important remark:

don’t think that elements of the typical set as being exactly equiprobable

By definition of the typical set, for x ∈ A(n)ε , quantities log2 1
P(x) are within 2nε of each other

But how did we choose nε?

By the weak law of large numbers, P
(
x ∈ A(n)ε

)
≥ 1− σ

ε2n2

(
σ variance of X

)
−→ n = α 1

ε2
for some constant α

We deduce that the most probable string in the typical can be of order 2nε = 2α/ε = 2
√

αn times

greater than the least probable string in the typical set

2
√

αn is an exponential quantity!
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SOURCE CODING FOR MEMORYLESS SOURCES

Asymptotic coding average length (reminder):

Given a stochastic process, {Xi}, the asymptotic expected length of a symbol code φ is defined as(
if the following limits exists

)
,

Lasympt(φ,X )
def
= lim

n→+∞
1
n
∑

x1,...,xn
ℓ(x1, . . . , xn) p(x1, . . . , xn)

where ℓ(x1, . . . , xn) bit-length of φ(x1, . . . , xn)

Theorem: Shannon source coding for memoryless sources

For any memory less source (Xi)i , it exists an unambiguous coding φ such that

Lasympt(φ,X ) = H(X)

Furthermore, for any unambiguous coding φ, Lasympt(φ,X )/H(X) ≥ 1
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EMPIRICAL SEQUENCES AND TYPICAL SEQUENCES

Typical series:

Let X = {a1, . . . , ak}. The ε-typical series is defined as,(x1, . . . , xn) ∈ X n
,

∣∣∣∣∣∣
k∑
i=1

(
nai (x)
n

− p(ai)
)

log2 p(ai)

∣∣∣∣∣∣ ≤ ε


where nai (x) the number of times that ai occurs in x = (x1, . . . , xn)

−→ Both definitions are equivalent in the case of memoryless sources
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TYPICAL SET AND COMPRESSION: THE QUANTUM CASE

One paper about this theory of AEP and compression for memoryless sources in the quantum case

▶ Chapter 11 up to 12.3 in Quantum Computation and Quantum Information, Michael A. Nielsen

and Isaac L. Chuang

41



MARKOV: GENERAL SOURCES VERIFYING AEP



STOCHASTIC MATRIX

Stochastic matrix:

Given a finite set X , a matrix P = (p(x, y))x,y∈X is said to be stochastic if

• p(x, y) ≥ 0 for all x, y ∈ X

•
∑

y∈X p(x, y) = 1

Fundamental fact

If x = (q(x))x∈X is a distributiona and P is a stochastic matrix. Then, x⊤P is a distribution

a for all x ∈ X , q(x) ≥ 0 and
∑

x∈X q(x) = 1

▶ Let (r(y))y∈X be the distribution defined as x⊤P. We have,

r(y) =
∑
x∈X

q(x)p(x, y)

▶ r defines the distribution: pick x according to q and then pick y with probability p(x, y)
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MARKOV CHAINS

Markov chains give a rule to walk from one point to the other independently of the path we

followed in the past

Markov chain:

Let X be a finite set, (q(x))x∈X be a distribution and P = (p(x, y))x,y∈X be a stochastic matrix.

A
(
homogenous

)
Markov chain with state space X , initial distribution q and transition matrix P

is a sequence of random variables X0, . . . , Xt, . . . such that

P (X0 = x0) = q(x0) and P (Xt+1 = xt+1 | Xt = xt, . . . , X0 = x0) = p(xt, xt+1)

for all t ∈ N and x0, . . . , xt+1 ∈ X such that P (X0 = x0, . . . , Xt = xt) > 0

Remark:

The homogenous term refers to the fact that for each t the transition matrix is the same
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WALK ACCORDING TO THE MARKOV CHAIN

Proposition:

Given a Markov chain (Xt)t with initial distribution (q(x))x∈X , transition matrix P = (p(x, y))x,y∈X ,

P (Xt = xt) = q(t)(x) where
(
q(t)(x)

)
x∈X

def
=
(
q(x)

)⊤

x∈X
Pt

and, P (Xt+1 = xt+1 | Xt = xt) = p(xt, xt+1)

(
p(x, y): rule for moving from x to y, we read from left to right

)
Proof:

Exercise

Notation:

Given P =
(
p(x, y)

)
x,y∈X

, we denote Pt =
(
p(t)(x, y)

)
x,y∈X
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STATIONARY DISTRIBUTION

Starting from the distribution x = (q(x))x∈X and after t walks we are distributed as x⊤Pt

Stationary distribution:

Let P be a stochastic matrix. A stationary distribution for P is a distribution π such that

π
⊤ = π

⊤P

−→ Starting from the stationary distribution and applying the walk keeps invariant the

distribution!
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ERGODICITY AND CONVERGENCE TO EQUILIBRIUM

(
given P =

(
p(x, y)

)
x,y∈X

, we denote Pt =
(
p(t)(x, y)

)
x,y∈X

)
Ergodicity:

A stochastic matrix P is said ergodic if there exists t0 ∈ N such that

∀x, y ∈ X , p(t0)(x, y) > 0

Theorem:

A stochastic matrix P is ergodic if and only if there exists a strict probability distributiona π on X

such that
∀x, y ∈ X , p(t)(x, y) −−−−→

t→+∞
π(y)

Furthermore, when P is ergodic, the above distribution π is the unique stationary distribution

We deduce that for any Markov chain {Xt}t with ergodic matrix P,

∀y ∈ X , P(Xt = y) −−−−→
t→+∞

π(y)

where π is the unique stationary distribution of P

a π(x) > 0 for any x ∈ X
47



PROOF (I)

Proof:

Suppose that P is ergodic and ε
def
= min

x,y∈X
p(t0)(x, y) ∈ (0, 1),

M(t)(y) def
= max

x∈X
p(t)(x, y) m(t)(y) def

= min
x∈X

p(t)(x, y)
We have,

m(t)(x, y) ≤
∑
z
p(x, z)m(t)(x, y) ≤

∑
z
p(x, z)p(t)(z, y) = p(t+1)(x, y) ≤

∑
z
p(x, z)M(t)(y) = M(t)(y)

We deduce that t 7→ M(t)(x, y) and t 7→ m(t)(x, y) are decreasing and increasing. Therefore they

convergence as belonging to (0, 1). Call π1(y) and π2(y) their limits. For any r ≥ 0 we have:

p(t0+r)(x, y) =
∑
z
p(t0)(x, z)p(r)(z, y)

=
∑
z

(
p(t0)(x, z) − εp(r)(y, z)

)
p(r)(z, y) + ε ·

∑
z
pr(y, z)p(r)(z, y)

≥ m(r)(y)
∑
z

(
p(t0)(x, z) − εp(r)(y, z)

)
+ ε · p(2r)(y, y)

= (1− ε) · m(r)(y) + ε · p(2r)(y, y)≥(1− ε)m(r)(y) + ε · m(2r)(y, y)

where the inequality follows from the fact that
(
as ε ≥ p(t0)(x, z)

)
,

p(t0)(x, z) − εp(r)(y, z) ≥ p(t0)(x, z)
(
1− p(r)(y, z)

)
≥ 0
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PROOF (II)

Proof:

Similarly M(n0+r)(y) ≤ (1− ε)M(r)(y) + ε · M(2r)(y, y). We deduce that for any k,

M(kn0+r)(y) − m(kn0+r)(y) ≤ (1− ε)k
(
M(r)(y) − m(r)(y)

)
−−−−−→
k→+∞

0

Therefore π(y) def
= π1(y) = π2(y) and from above with the fact that M(t) and m(t) are decreasing

and increasing, for t = kn0 + r where 0 ≤ r ≤ n0 ,∣∣∣p(t)(x, y) − π(y)
∣∣∣ ≤ M(t)(y) − m(t)(y) ≤ (1− ε)n/n0

and therefore p(t)(x, y) −−−−→
t→+∞

π(y). Furthermore,

p(t+1)(x, y)
∑
z
p(t)(x, z)p(z, y)

we get with t → +∞,
π(y) =

∑
z

π(z)p(z, y)

which shows that π is a stationary distribution
(
it is a distribution as

∑
z p

(t)(x, z) = 1 and

p(t)(x, z) ≥ 0
)
. It is strict as m(t)(y) ≥ ε > 0.

Conversely, suppose that p(t)(x, y) −−−−→
t→+∞

π(y) > 0. We deduce easily that P is ergodic
(
a finite

number of y
)
. To prove uniqueness let π′ be another stationary distribution,

π
′(y) =

∑
x

π
′(x)p(t)(x, y) −−−−→

t→+∞

∑
x

π
′(x)π(y) = π(y)
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FIRST EXAMPLE

Two-state Markov chain with a probability transition matrix

M =

(
1− α α

β 1− β

)

1 21− α

α

1− β

β

The stationary distribution is:
(

β
α+β

α
α+β

)
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ENTROPY RATE FOR STATIONARY MARKOV CHAINS

Proposition:

The entropy rate of any ergodic Markov chain with transition matrix P exists and is equal to:

H(X ) = lim
L→+∞

H(XL | XL−1) = −
∑

x1,x2
π(x1) p(x1, x2) log2 p(x1, x2)

where π is the unique stationary distribution

Furthermore, if the initial condition of the Markov chain is its stationary distribution, then

H(X ) = H(X2 | X1)
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PROOF

Proof:

The entropy rate may not be defined as the process is not stationary. Let us first show that

lim
L→+∞

H(XL | X1, . . . , XL−1) exists. First, by definition of the Markov chain
(
it has order 1

)
,

H(XL | X1, . . . , XL−1) = H(XL | XL−1)

We have now the following computation,

H(XL | XL−1) = −
∑
x,y

P(XL = y | XL−1 = x)P(XL−1 = x) log2 P(XL = y | XL−1 = x)

= −
∑
x,y

p(x, y) P(XL−1 = x)︸ ︷︷ ︸
−−−−−→
L→+∞

π(x)

log2 p(x, y)

Therefore lim
L→+∞

H(XL | X1, . . . , XL−1) exists and as we did using Cesaro Theorem
(
see Slide 19

)
,

H(X ) exists and
H(X ) = lim

L→+∞
H(XL | XL−1) = −

∑
x,y π(x)p(x, y) log2 p(x, y)

Furthermore, if the initial condition is the stationary distribution π, then

π(x)p(x, y) = P(X1 = x) P(X2 = y | X1 = x) = P(X2 = y, X1 = x)

Therefore
(
see Proposition given in Slide 45

)
,

H(X ) = −
∑
x,y

P(X2 = y, X1 = x) log2 P(X2 = y | X1 = x) = H(X2 | X1)
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AEP AND STATIONARY MARKOV SOURCES

Proposition:

Any stationary and ergodic Markov chain with transition matrix P verifies the AEP and,

1
n log2 P(X1, . . . , Xn)

P−−−−−→
n→+∞

H(X ) = −H(X2 | X1)

where π denotes the unique stationary distribution

Exercise:

Show that an ergodic Markov chain is stationary if and only its initial distribution is the unique

stationary distribution
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PROOF(I)

Proof:

P(x1, . . . , xn) = P(X1)P(X2 | X1)P(X3 | X2, X1) · · · P(Xn | Xn−1, . . . , X1)
= P(X1)P(X2 | X1)P(X3 | X2) · · · P(Xn | Xn−1)

because Markov. Therefore,
1
n
log2 P(X1, . . . , Xn) =

1
n
log2 P(X1)︸ ︷︷ ︸
−−−−−→
n→+∞

0

+
1
n

(
log2 P(X2 | X1) + · · · + log2 P(Xn | Xn−1)

)

Weak law of large number for weak dependency
(
proof exercise session

)
:

Let Y1, . . . , Yn be identically random variables such that

1
n2

n∑
i,j=1

Cov
(
Yi, Yj

)
−→

n→+∞
0 where Cov(Yi, Yj)

def
= E(YiYj) − E(Yi)E(Yj)

Then, 1
n

n∑
i=1

Yi
P−→

n→+∞
E(Y1)
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PROOF(II)

Proof:

1
n
log2 P(X1, . . . , Xn) = ε(n) +

1
n
∑
j

Yj

• ε(n) = 1
n log2 P(X1)

P−→
n→+∞

0

• Yj
def
= − log2 P

(
Xj+1 | Xj

)
are identically random variable as the Markov chain is stationary

We have,
E(Yj) = H(Xj+1 | Xj) = H(X2 | X1) = H(X )

Now,
(
only 3n Covariances are non-zero and they are independent of n

)
1
n2

n2∑
i,j=1

Cov
(
Yi, Yj

)
−→

n→+∞
0

To conclude we apply the weak law of large number for weak dependency
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SOURCE CODING FOR MEMORYLESS SOURCES

Asymptotic coding average length:

Given a stochastic process, {Xi}, the asymptotic expected length of a symbol code φ is defined as(
if the following limits exists

)
,

Lasympt(φ,X )
def
= lim

n→+∞

1
n
∑

x1,...,xn

ℓ(x1, . . . , xn) p(x1, . . . , xn)

where ℓ(x1, . . . , xn) bit-length of φ(x1, . . . , xn)

Theorem: Shannon source coding for Markov chains

For any ergodic and stationary Markov chain (Xi)i , it exists an unambiguous coding φ such that

Lasympt(φ,X ) = H(X2 | X1)

Furthermore, for any unambiguous coding φ, Lasympt(φ,X )/H(X2 | X1) ≥ 1
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MORE GENERALITY: ERGODIC PROCESSES

There is more general processes for Shannon’s theorem to be verified: ergodic processes

Intuitively:

Ergodic process: we can determine the distribution by observing a sufficiently long sequence

−→ There is an average behaviour that we can determine, i.e., the law of large number is “verified”
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THE ENGLISH LANGUAGE(I)

• Approximation of order 0
(
all symbols, don’t forget the “space”, are i.i.d.

)
:

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD
H0 = log2 27 ≈ 4.76

• Approximation of order 1
(
the letters are chosen according to their frequency in English

)
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL

H1 ≈ 4.03

• Approximation of order 2 : same distribution of the pairs as in English

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMMY ACHIN D ILONASIVE TUCOOWE AT
TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

• Approximation of order 3 : same frequency of the triplets as in English

IN NO IST LAT WHEY CRATICT FROURE BERS GROCID PONDENOME OF DEMONSTURES OF THE
REPTAGIN IS REGOACTIONA OF CRE

Any idea to generate correctly some English test?
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THE ENGLISH LANGUAGE(II)

• Markov model of order 3 of English
(
the frequency of quadruplets of letters matches English

text. Each letter depends on the previous three letters
)

THE GENERATED JOB PRIVIDUAL BETTER TRAND THE DIPLAYED CODE, ABOVERY UPONDULTS
WELL THE CODERST IN THESTICAL IT DO HOCK BOTH MERG. (INSTATES CONS ERATION.
NEVER ANY OF PUBLE AND TO THEORY. EVENTIAL CALLEGAND TO ELAST BENERATED IN

WITH PIES AS WITH THE)

• Markov model of order 1 on the words
(
the word transition probabilities match English text

)
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF

THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO
EVER TOLD THE PROBLEM FOR AN UNEXPECTED
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PROGRAMMING PROJECT

Generate some English language by using the Markov chain model. Give an estimation of the

entropy rate of the English
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ABOUT HUFFMAN CODING(I)

We know that:

lim
L→+∞

1
L
H(X1, . . . , XL) = lim

L→+∞
H(XL | X1, . . . , XL−1) = H(X )

−→ Using Huffman encoding with packing of L
(
large

)
letters, i.e., using X L as source alphabet

instead of X , enables to optimally compress for instance the English

Issue:

Memory complexity in Huffman encoding is O(♯Y) where Y is the source alphabet. . .

Overcoming this issue: Lecture 4
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ABOUT HUFFMAN CODING(II)

Another issue with Huffman coding: we need to know the probabilities to compress(
in order to build the tree

)

−→ There are optimal compression even when nothing is known about the source!

▶ Lempel-Ziv compression algorithm in Elements of Information Theory, Chapter 13, Thomas M.

Cover and Joy A. Thomas
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EXERCISE SESSION
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