LECTURE 2
SOURCE CODING THEOREM AND FIRST EFFICIENT

COMPRESSION ALGORITHMS
Information Theory

Thomas Debris-Alazard

Inria, Ecole Polytechnique

THE OBJECTIVE OF THE DAY

How to compress data?

» Ultimate data compression (source coding theorem)

P> An algorithmic way to reach it (Huffman encoding)

FROM MEASUREMENT TO INFORMATION

How many bits are needed to describe the outcome of an experiment?

Compressing data from a source into L bits and recover the data reliably:

the source is at most L bits per symbol (in average)

COURSE OUTLINE

1. Optimal compression when small errors are allowed

e Showing the possibility of non-trivial compression

e First intuition/rigorous definition about the Asymptotic Equipartition Principle (AEP)
— AEP pursued in Lecture 3
2. Afirst efficient algorithm to reach optimal compression: Huffman encoding

— It appears almost everywhere (gzip, pkzip, winzip, bzip2, jpeg, png, mp3)

SOURCE CODING THEOREM

TO COMPRESS, WHY NOT?

How to compress outputs of X : Q — X7

— Write elements of X with bit-strings! This will require strings of length

Raw bit content:

The raw bit content of X : Q — X is defined as,

Ho(X) &' log, g

Butis it a good idea?

TO COMPRESS, WHY NOT?

How to compress outputs of X : Q — X7

— Write elements of X with bit-strings! This will require strings of length

Raw bit content:

The raw bit content of X : Q — X is defined as,

Ho(X) &' log, g

Butis it a good idea?

— No! But it is non-trivial to overcome this. ..

A NATURAL QUESTION

Could we compress X = x € X to c(x), and decompress c(x) to x s.t ¢(x) has less than Ho(X) bits?

No! There are 2"0®) possible outcomes. . .

Is it a dead-end? Remember your motto in this course (typical sequences)! J

A NATURAL QUESTION

Could we compress X = x € X to c(x), and decompress c(x) to x s.t ¢(x) has less than Ho(X) bits?

No! There are 2"0®) possible outcomes. . .

Is it a dead-end? Remember your motto in this course (typical sequences)! J

e Lossy Compressor: compress by mapping some files to the same bit-string
— It is ambiguous!
Lossy compressor efficiency:

Probability to map two different files to the same has to be small! J

e Lossless Compressor: all mapping are different but
— It imposes to compress sometimes with a larger number of bits

Lossless compressor efficiency: J

Probability to be lengthened has to be small, and to be shortened has to be large!

LOSSY COMPRESSION

Focus on lossy compressor!

Ambiguity: we don't care if the probability to happen is small!

Taking some risk?

Let X = {a, b, c,d,e,f, g, h} with associated distribution {1, 1,1, 2, &, &, &, &
1. Show that the raw bit content is 3 bits
2. ShowthatP(X € {a,b,c,d}) = £

3. Show that we can compress the source to 2 bits with risk % What do you conclude?

4. Suppose that we accept a risk of 3, how many bits are required to compress the source?

LOSSY COMPRESSION STRATEGY

Ambiguity: risk § to compress two data into the same bit-string

§-sufficient subset Ss for compression: J

P(X ¢ S5) <6

e Compression: define a one-to-one mapping* S5 — {0, 1}'°€2 ¥55_Then, if X = x € S5 write
c(x) with log, #Ss bits, otherwise do L

e Decompression: inverse the one-to-one mapping

The decompression works with probability > 1 — & and it uses log, #Ss bits

LOSSY COMPRESSION STRATEGY

Ambiguity: risk § to compress two data into the same bit-string

§-sufficient subset Ss for compression: J

P(X ¢ S5) <6

e Compression: define a one-to-one mapping* S5 — {0, 1}'°€2 ¥55_Then, if X = x € S5 write
c(x) with log, #Ss bits, otherwise do L

e Decompression: inverse the one-to-one mapping

The decompression works with probability > 1 — & and it uses log, #Ss bits

For the best non-ambiguity: it motivates to consider
Smallest §-sufficient subset S5 for compression: J

P(X ¢ Ss5) < «— P(XESs)>1-30

LOSSY COMPRESSION STRATEGY: THE FUNDAMENTAL IDEA

§-sufficient subset S5 for compression:
P(X ¢ S5) <6 < P(XESs)>1-46 J

e Compression: define a one-to-one mapping® S5 — {0,1}'°82 #55_Then, if X = x € S5 write

c(x) with log, #Ss bits, otherwise do L
— It compresses outcomes of X with log, #S; bits!
For the best non-ambiguity: it motivates to consider

Smallest §-sufficient subset S5 for compression:
]P’(X%S(;)S5<:>P(XES(5)Z'I—5 J

THE ESSENTIAL BIT CONTENT

The essential bit content:

Given X : Q — X and S5 C X be the smallest §-sufficient subset for X,

def
Hs (X) < log, #Ss

Be careful: don't confuse Hs and Hy with the entropy H

Exercise:

Show that Hs(X) is equal to Ho(X) (the raw bit content defined in Slide 5) when § =0 J

Optimal lossy compression:

The optimal lossy compression size, i.e, the number of bits, with error § is Hs(X) = log, #Ss J

A natural question: is Hs(X) “strongly” function of §?

AN EXAMPLE:

Let X = {a,b,c,d,e,f, g, h} with associated distribution {1, 1,1, 2, L &, & &)

e Ho(X) =3
L4 H1/16()() =2

o H3/u(X)=0
T T T T T
3 p<Hfa,b,cdef,g,h} n
<{a,b,c,d,e,f,g}
25 <—{a,b,c,d,e, f} -
<—{a,b,c,d, e}

s 2 [ey i
1501 {—{a, b, c} |
1k <—{0.6}
0.5 1
0 | I 1 1 1 1 1 L I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

Consider the source: n independent flips X = (X1, ...,X,) € {0,1}" where P(x; = 1) = p

def

P(x) = p™ (1 = p)"~X where |x| & ﬁ{i €{1,...,n}: x # O} J

Let X®" denote this source (n independent and identically distributed)
What is the optimal compression size if we allow a probability of error §2

Optimal lossy compression:
What is the size of log, #Ss as function of §? J

The behaviour depends “strongly” on & but also on n

0.8

0.6 1

0.4

0.2

. 4
0.2 0.4 0.6 0.8 1.0

What does happen if n grows?

ANOTHER EXAMPLE (11)

The behaviour depends “strongly” on & but also on n

i
0.84;
L

0.6

0.4

0.2

0.2 0.4

0.6

1.0

The curve becomes essentially flat! What do you conjecture?

ANOTHER EXAMPLE (11)

The behaviour depends “strongly” on & but also on n

 Hy(X“")

0.8

n=1200

—— —plogz(p) — (1= p)logz(1 - p)
0.6

0.4

0.2

0.2

0.4

| 4§
0.6 0.8 1.0

Forall § € (0,1), it tends toward the binary entropy h(p) = —plog, p — (1 — p) log,(1 — p)

In particular: it does not (extremely surprisinglyl) depend on §

WHY DOES INCREASING n HELP?

The probability that x has r 's and (n —r)'s 0, i.e, x| =r, is

2(x =n=(")p—py~’

— Itis a Binomial distribution

The mean of |x| is np and its standard deviation is \/np(1 — p),

e Ifn=100andp = g,

x| ~ 10 + 3 (3/10 = 0.3)
e Ifn=1000andp = 5,

x| ~ 100 % 10 (10/100 =01< o.3)

As n increases: distribution of |x| becomes more concentrated: possible values of |x| grows as n,

the standard deviation of r only grows as v/n

— |x| is most likely to fall in a small range of values

14

TYPICALITY

But where does the distribution concentrate?

— np1sand (n —np) 0's:

log, P(X)yp = log, p™P(1 — p)" =" = —nh(p) where h(-) binary entropy)

A remark:

The binary entropy h(p) is the entropy of the Bernoulli distribution with parameter p J

(recall that according to Lecture 1: H(X®") = nH(X))

It motivates to introduce (your new best friend!> the typical set:

def a1 1
Tnaf{XEX : ‘Elogzm—H(X)’<a}

= {x € X" W) o p (x®” = x) < 2‘”(”(")—5)}

Asymptotic Equipartition Property (AEP): “all” the distribution falls in T, where each events

happen with “equiprobable” probability 15

OUR HYPOTHESIS

We will consider in this lecture only i.i.d. sources with n drawing: X®"

]P’(X®” = (x1,...,x,,)) =P(X=x) - P(X = x,)

Be patient: a more general context in Lecture 3

16

SHANNON SOURCE CODING THEOREM

Shannon source coding theorem:

LetX: Q — X, then forall 6 € (0,1),
7 Ho (X¥7) ——— H(X)

Conclusion: the optimal lossy compression size for any error rate > 0 is the entropy of the source

H(X) if we consider block of outputs with size large enough

Start: use your best friend, the Asymptotic Equipartition Property (AEP)

Fundamental idea: to determine the typical set, apply the weak law of large number to the r.v.
Y whose outputs are 1 log, ﬁ where x is drawn according to X®" J

1 T (indep) 1 1 . .
—1 N | —— where the x;'s are i.d.d according to X
5 08 P(x) 5 XEZXH 08, P(x) i g

— Y =135"".Y; wherethe Y/sarei.id. log, #’) with x; picked according to X

Expectation and variance:

q
E(Y;) =) log, (m> P(x) = H(X) and o> £ var(y))
xex
y
By the weak law of large number:

P(IY — HX)| < <) P(Xe{ Ly ! Hoo < })>1 E

- €)= i |=log, ——— — € - —

* g n & P(X®" =y) - ne?
where x is drawn according to X®")

M(xe{y: Hlogzm—H(X)|<e}>Z1_%

Typical set:

1 1
T {yGX": ’EIogZM_H(X)‘ <€}

2
P (XETne) 21— 25

Conclusion:
If n large enough, i.e, % < 4, then,
®
#Toe > t55 = 25 (")

as Ss is the smallest subset such that P(x € Ss) > 1 — 4.

— We will use T to provide an upper-bound on Hs (X®”)

19

PROOF (111): 1 log, Hs(x®1) < H(X) +

1 1
Toe=3y€X": |=-log, ——— —H(X)| < ¢
7 8 pxan =)

1= > PX®" =x)

xexn

> > Px®" =x)

XE Tne

Z 9= n(H(X)+¢)

XETne
= #The 2—n(H(X)+s)

(by def)

Conclusion:
#The < 2n(H(x)+€)

If n large enough, i.e, ”—2 §, then,

#Ss = Hs (x®”) < uTnzgzn(H(X)Jra)

20

PROOF (1V): 1 log, Hs(x®") > H(X) — ¢

Proof by contradiction: suppose there exists an infinity of n’s,

Hs (x®”) <n-(HX) —e)

§5 < 2n(H9—e)

— It exists S such that:
P(xeS)>1-96

P(XES)=P(XESNTne)) +P (XESNTocr2) SP(XESNToess) +P (X & Toe2)

e Upper-bound on first term,

P(XESNThp) = >]P’(X®”:x)

XESNTne /-
/et S n(HN) =< /2)
xESanE/Z

< Q(HX) =€) 5H=n(HX)—e/2) _ 5—ne/2 (as #s < Zn(H(X)—E))

e Upper-bound on the second term,

2

4o? bo
IP’(XGTNE/Z) >1— n—sz:>]P’(x¢T,,e/2) < e

21

PROOF (V): 1 log, Hs(X®") > H(X) — ¢

Proof by contradiction: suppose there exists an infinity of n’s,

Hs (x®”) <n-(HX) — ¢)

Conclusion:

— Itexists S such that 1 — & < B(x € 5) < 27"%/7 4. o3

Contradiction: for n large enough 0 < 1 — & < 1 — §, contradiction. . .

22

Conclusion:

Forall e > 0, it exists ng such that for all n > no,

n-(HX) —£) < Hs(X®") < n- (HX) + &)

— We have proved Shannon’s source coding theorem!

23

SOME COMMENTS

° %Hg(x‘g’") < H(X) + e: even if the probability of error § is extremely small
1 @n 1 ®n
—Hs(XZ") SHX) ot —Hs(X®") ~ 1
o 1Hs(X®") > H(X) — e: even if we tolerate a lot of errors, i.e, § a1
1 @n 1 @n
~Hs(X®") 2 H(X) not —H;s(X®") ~ 0

Regardless of our allowance for error §, the number of bits per symbol needed to specify X is H(X) J

no more and no less

e We used that X®" is i.i.d. X only to prove with the weak law of large number

P (x®” & Tna) 1
n—+oc

More generally: any sequence verifying this property can be compressed with nH(X) bits
(see Lecture 3> J

24

NON CONSTRUCTIVE PROOF

But is it the end of the story for compression?

No! The proof is non-constructive, how do we compress? If we use Ss, do we know its description?

Ss has exponential size &= 2""X): deciding if x is in or not is potentially hard

Furthermore, we need n (number of outputs by the source) to be large to reach the optimality!

— In what follows: an efficient compression algorithm reaching the theoretical limits

even for small n

25

COMPRESSION WITH SYMBOL CODES

WHAT WE DID AND OUR AIM

We defined a lossy compression using fixed length block codes: as n grows, we can encode n

i.i.d. sources (x1,...,Xs) into a block of n - (H(X) + €) bits with vanishing probability of error

— We verified the possibility of compression, but the block coding defined did not give a

practical algorithm <(

Now:
We study practical data compression algorithms but with variable-length compression for small

block sizes and that are not lossy

27

THE KEY IDEA

Key idea:
Shorter compression to the more probable outcomes and longer compression to the less

probable

e Implications if a compression is lossless? Some compressions are shortened other have to

be lengthened but by how much? Kraft inequality. . .
e Making compression practical? The fastest compression and decompression algorithms
e Optimal compression? Is the best achievable compression while being efficient is the

entropy?

Source coding theorem with symbol codes (informal):
Given a source X, we can efficiently compute a variable-length compression for which

decompression is efficient and whose compression average length belongs to [H(X), H(X) + 1)

— The compression we will exhibit is known as Huffman encoding!

28

SYMBOL CODES

X denotes the set of all strings of finite length composed of elements from X’

Symbol codes and codewords:

Mapping ¢ from X to {0,1}". Given x € &, then ¢(x) is called a codeword and £(x) will denote
its length

The extended code o™ is the mapping from X to {0, 1}" obtained by concatenation, without

punctuation, of the corresponding codewords:

ot 0, x) Epa) o)

Symbol codes are variable-length!

An example:
Xi ‘P(Xi)
a 0
b 10
c 110
d M

29

MORSE CODING

Key idea: shorter compression to the more probable outcomes and longer compression to the less

probable

— Itis the case for the Morse coding! For instance E requires only one symbols, Z four

ErAUHIOTMMmOO®>
|
|
N<X=s<cHw=xXxO Wo =
|

Issue: ambiguity
It is impossible to distinguish BAM and NIJ (—.— — —) In practice: a void between
transmission (adapted for “human” conversations)

— Morse is ternary coding: need to add a separator symbol {-, —, Lsep} 30

SYMBOL CODES: UNIQUE DECODING

Ambiguous codes imply loss of information. . .

Non-ambiguous code:
A symbol code ¢ is said to be non-ambiguous if under the extended code ¢™, no two distinct
strings have the same encoding, i.e,,

VXY € XT, x £y = 0" (x) # ©T(y)

Non-ambiguous code: necessary for lossless compression

Non-ambiguous codes are uniquely decodable code:

For any non-ambiguous code,
P (X) — x

is a well-defined mapping which is called decoding

31

SYMBOL CODES: PREFIX CODES

Prefix codes: no codeword is the beginning of another codeword

Prefix codes:

A symbol code is called a prefix code if no codeword is a prefix of any other codeword, i.e,

Yy € X (Fe (0.1} st et =) = (2 = #1)

Proposition:
A prefix code is uniquely and efficiently decodeable J

Proof:

Decoding procedure: given ¢(x1) - - - (1), looking from left to right until identifying the first

codeword ¢(xq) and etc (it does not require a special marker between words as with Morse

coding)

32

EXAMPLES AND COUNTER-EXAMPLES

X | wol) | e10x) | waxi) | wa(x) | eulx)

X 0 0 1 0 0
X2 1 010 10 10 01
X3 1 01 100 110 01
Xy 10 10 1000 m m

e o: ambiguous
e (1: ambiguous; not unique decoding: 010 is X, OF X1X4 OF X3X1?
e ,: unique decoding but not prefix code

e 3 prefix code

e (4 not prefix code but it can be uniquely decoded (why?)

58

PREFIX CODES AND TREE REPRESENTATION

Prefix codes as tree:

Prefix codes can be represented on binary trees: codewords are given by leaves branches J

p(xi)
1

01
001
000

Consider x, , then

X3
Xy

X2

/ \
Xy X3

34

EXPECTED LENGTH

Expected length:
Given a distribution of symbols X : Q — X, the expected length of a symbol code
p: X — {0,1}Fis

def

L, 2) €S 0(x) p(x) where p(x) £ P(X = x)
XEX

— Expected length: measure of efficiency! We want it to be small

85

SOME EXAMPLES

X || wolxi) | PO | L) || ea(a) | pO) | L0a) || wa(xi) | pOG) | ()
a 00 1 2 0 1 1 0 1 1
b 01 1 2 1 1 1 01 1 2
c 10 3 2 00 o 2 011 z 3
d 1 1 2 1 1 2 M 1 3

e L(wo, X) = 2is uniquely decodable (preﬁx code)

e L(¢1,X) =1.75butitis not uniquely decodable: yp1(aa) = ¢1(c)

e L(p2,X)=1.75is uniquely decodable but not prefix (exercise)

What do you conclude?

36

A PRICE TO PAY?

X || wolxi) | PO | £06) || ea(xi) | pOG) | £(x)
a 00 I 2 0 I i
b 01 1 2 01 1 2
c 10 3 2 o 3 3
d 1 1 2 m 1 3

e L(po, X)=2isuniquely decodable

e L(p2, X) = 1.75is uniquely decodable

If we shorten 00 — 0 in g, then we keep unique decodability like in ¢, if we we lengthen other

codewords (e,gA 11— 111)

Constrained budget which can be spent on codewords, with shorter codewords being more J

expensive

What is the nature of this budget?

37

YOUR CONSTRAINED BUDGET

The code containing all the length 3 codewords has size 2°

But what does happen if we want a prefix code with 0 and only length 3 codewords?

Nana A 5 5 2
— The only left possibility is {100,110, 101, 111} which has size 2% = Z

Give me your money:
You have 1 budget, codewords of length £ have cost 2~*. Codewords of length 3 (resp 1) have

cost § (respA %) If you spend more that your money, the code won't be uniquely decodable.

But, if
Siex 27 <1

is the code-uniquely decodable?

38

YOUR CONSTRAINED BUDGET

The code containing all the length 3 codewords has size 2°

But what does happen if we want a prefix code with 0 and only length 3 codewords?

— The only left possibility is {100,110, 101, 111} which has size 2% = §

Give me your money:
You have 1 budget, codewords of length £ have cost 2~*. Codewords of length 3 (resp 1) have

cost § (respA %) If you spend more that your money, the code won't be uniquely decodable.

But, if
Siex 27 <1

is the code-uniquely decodable? Yes: Kraft-McMillan inequalities

38

KRAFT INEQUALITY

McMillan’s theorem:

There exists a uniquely decodable code with codewords of length ni, ..., ng if and only if

EK —1 <1
2" =
=1

Prefix codes are easy to decode, could we restrict our attention to prefix codes to simplify our life?

(prefix codes have a nice representation by trees)

Kraft inequality with prefix codes:

There exists a prefix code with codewords of length na, . .., ng if and only if

Proofs:
See Exercise Session J

— Uniquely decodable codes are not better than prefix codes!
39

TAKING ADVANTAGE OF THE PROBABILITIES

Aim: minimizing over the code ¢

L(e, X) = > £(x) p(x) where the p(x)

XEX

& P(X = x) are fixed

Short codewords to the more probable symbols: reducing the expected length

But, Kraft inequality tells us that shortening some codewords necessarily lengthen others!

40

SOURCE CODING THEOREM FOR SYMBOL CODES

Shannon'’s theorem:

For any distribution X : Q — X, there exists a prefix code ¢ with expected length satisfying
L(p, X) < HX) +1
Furthermore, for any prefix code,
H(X) < L, X) |
Proof:
2 T def H—2(x) l() def
e Lower-bound. First, define the distribution q(x) = wherez = 37,27) which
means that £(x) = log, 1/q(x) — log, z. By Gibb's |nequal|ty,
> p(x) log, 1/q(x) > Z p(x) log, 1/p(x)
X
Furthermore, by Kraft's inequality,
m=5 a2
z
Therefore,
L(p, X) = ZP X)e(x) = ZP(X) log, 1/q(x) — log, z
> Zp) log; 1/p(X) — log; 2
> H(X <1
>HN) (asz<1)) K

OPTIMAL CASE

Before, showing the upper-bound: some remarks

Remarks:
e Optimal source codelengths. L(¢, X) is minimized and is equal to H(X) if and only if the

codelengths are equal to the Shannon information:

S 27*® =1 and £(x) = log, 1/p(x) but not necessarily an integer. . .
X

e Implicit probabilities defined by codelengths. Conversely, any choice of codelengths implicitly

defines a probability distribution
2—£()

W= 7w

for which those codelengths would be the optimal codelengths

4

FINISHING THE PROOF

Proof:
e Upper-bound. To mimic the proof of the lower-bound, set,
£(x) € log, 1/p(3)]
where [£] denotes the smallest integer greater than or equal to ¢

By “Kraft inequality and prefix codes” (Slide 39), it exists a prefix code with these lengths

as Kraft's inequality is satisfied,
Zz—l Zz—rlf’Ez"/D(X)] < Zz logy 1/p(x ZD(X) =1,
X

Then we conclude,

L(p, X) = ZP(X)flogﬂ/p 1<Zp (logy 1/p(x) + 1) = H(X) + 1

43

OPTIMAL SOURCE CODING: HUFFMAN CODING

MOTIVATION

Proof of source coding theorem: the code we explicit (during the upper-bound> is not optimal!

Optimal code:
A uniquely decodeable coding ¢op: is said to be optimal if for all uniquely decodeable coding ¢,

L(X7 <Popt) < L(X, ‘P)

Motivation:

An efficient algorithm to compute an optimal and prefix code with a given outcome distribution J

— Prefix codes enjoy an easy decoding algorithm via a “tree representation”!

45

HUFFMAN CODE

Huffman coding algorithm: recursive construction

o IfL=H§X =2 return ¢, = {0,1}
e Otherwise, given X = {x,...,x .} and p(x;) > --- > p(x.), build the new alphabet
Y = {x1, -+ ,X—2,Vi—1} with probability of outcomes q(-)
q(x) = p(x) and q(yi—1) = p(xi-1) + p(x)
Let ¢, —1 be a Huffman code for Y, then build ¢, as:
— (X)) = pr—1(Xe), fork=1,...,L =1

— @u(X—1) = @r—1(y—1) 0

= (X)) = pr—1(yi—1) 1)

Theorem:
Huffman coding is a prefix code which is optimal

Furthermore, its average length belongs to [H(X), H(X) + 1)

— In particular: if ¢y is the Huffman coding, then for all uniquely decodable code

L(X, on) < L(X,)
46

HUFFMAN CODING AS TREE

Huffman coding: use the probabilities of outcomes p(x;)’s to build a tree from the leaves!
It equilibrates the probabilities at each level J

x| pe) | —logy p(x) | elx) | € |
a 0.43 1.22 0 1
b 0.17 2.56 000 3
c 0.15 2.74 001 3
d 0.1 3.18 01 3
e 0.09 3.47 0100 4
f 0.05 4.32 0101 4
0.14
0 1
e f

47

HUFFMAN CODING AS TREE

Huffman coding: use the probabilities of outcomes p(x;)’s to build a tree from the leaves!
It equilibrates the probabilities at each level J

X | pxi) | —log, p(x) | @(x) | £(x) |
a 0.43 1.22 1 1
b 0.17 2.56 000 3
c 0.15 2.74 001 3
d 0.1 3.18 01 3
e 0.09 3.47 0100 4
f 0.05 4.32 0101 4
0.25
% \
0.14 d
e f

47

HUFFMAN CODING AS TREE

Huffman coding: use the probabilities of outcomes p(x;)’s to build a tree from the leaves!
It equilibrates the probabilities at each level J

X | pxi) | —log, p(x) | @(x) | £(x) |
a | 0.43 1.22 1 1
b | 017 2.56 000 | 3
c | o015 2.74 001 3
d | 011 3.18 011 3 0.57
e | 0.09 3.47 0100 | 4
£ | 0.05 4.32 0101 | &4 0]
0.32 0.25
b c 0.4 d
e £

47

HUFFMAN CODING AS TREE

Huffman coding: use the probabilities of outcomes p(x;)’s to build a tree from the leaves!
It equilibrates the probabilities at each level J

X | p(a) | —log p(x) | wl(x) | €(x) | ‘
a | 0.43 1.22 1 1
b | 017 2.56 000 3 . :
c | 0.5 2.74 001 3
d | om 3.18 o 3 R
e | 0.09 3.47 0100 | 4 P4 oo
f | 0.05 4.32 0101 4 / \ ’
H(X) = 2.248, L(p, X) =2.28
07 \
005 .
Exercise:

Decompress: 010110010100 J o5

DISADVANTAGE OF HUFFMAN CODE (1)

Huffman algorithm produces an optimal symbol code: but not the end of the story

We need to know beforehand the probabilities p(x;)'s! And if we “make mistakes” by using
another distribution g, then Huffman code compresses with rate ~ H(p) + Dk.(p||q)

instead of H(p) (see Exercise Session)

48

DISADVANTAGE OF HUFFMAN CODE (II): PACKING SYMBOLS

There is also an issue coming from a priori probabilities

When compressing £ symbols x1, . . ., X¢, Huffman code consider them as independent

(not realistic in the case for instance of the Language)

An idea:

Pack symbols of X into symbols belonging to X* for ¢ large enough:
e Don't take into account a priori probabilities but more realistic

e, x)
—_—
HX®E) 4 too

However, memory complexity # (XZ)

49

BEYOND SYMBOL CODES

Huffman codes were widely trumpeted as “optimal”: but have many defects for practical purposes!
They are optimal among symbol codes: each x € X is mapped to an integer number of bits

Could we design other codes than symbol codes?

— Stream Codes: see arithmetic coding at Lecture 4 (Programming Session)!

50

EXERCISE SESSION

	Source Coding Theorem
	Compression with Symbol Codes
	Optimal source coding: Huffman coding
	Exercise session

