LECTURE 2 SOURCE CODING THEOREM AND FIRST EFFICIENT COMPRESSION ALGORITHMS

Information Theory

Thomas Debris-Alazard

Inria, École Polytechnique

How to compress data?

- Ultimate data compression (source coding theorem)
- An algorithmic way to reach it (Huffman encoding)

How many bits are needed to describe the outcome of an experiment?

Compressing data from a source into L bits and recover the data reliably:

the source is at most L bits per symbol (in average)

- 1. Optimal compression when small errors are allowed
 - Showing the possibility of non-trivial compression
 - First intuition/rigorous definition about the Asymptotic Equipartition Principle (AEP)

 \longrightarrow AEP pursued in Lecture 3

2. A first efficient algorithm to reach optimal compression: Huffman encoding

→ It appears almost everywhere (gzip, pkzip, winzip, bzip2, jpeg, png, mp3)

SOURCE CODING THEOREM

How to compress outputs of $X:\Omega\to \mathcal{X}?$

 \longrightarrow Write elements of $\mathcal X$ with bit-strings! This will require strings of length

Raw bit content:

The raw bit content of $X:\Omega\to \mathcal{X}$ is defined as,

 $H_0(\mathbf{X}) \stackrel{\text{def}}{=} \log_2 \sharp \mathcal{X}$

But is it a good idea?

How to compress outputs of $X:\Omega\to \mathcal{X}?$

 \longrightarrow Write elements of $\mathcal X$ with bit-strings! This will require strings of length

Raw bit content:

The raw bit content of $X:\Omega\to \mathcal{X}$ is defined as,

 $H_0(\mathbf{X}) \stackrel{\text{def}}{=} \log_2 \sharp \mathcal{X}$

But is it a good idea?

 \longrightarrow No! But it is non-trivial to overcome this. . .

Could we compress $X = x \in \mathcal{X}$ to c(x), and decompress c(x) to x s.t c(x) has less than $H_0(X)$ bits?

No! There are $2^{H_0(X)}$ possible outcomes...

Is it a dead-end? Remember your motto in this course (typical sequences)!

Could we compress $X = x \in \mathcal{X}$ to c(x), and decompress c(x) to x s.t c(x) has less than $H_0(X)$ bits?

No! There are $2^{H_0(X)}$ possible outcomes...

Is it a dead-end? Remember your motto in this course (typical sequences)!

• Lossy Compressor: compress by mapping some files to the same bit-string

 \rightarrow It is ambiguous!

Lossy compressor efficiency:

Probability to map two different files to the same has to be small!

• Lossless Compressor: all mapping are different but

 \longrightarrow It imposes to compress sometimes with a larger number of bits

Lossless compressor efficiency:

Probability to be lengthened has to be small, and to be shortened has to be large!

Focus on lossy compressor!

Ambiguity: we don't care if the probability to happen is small!

Taking some risk?

Let $\mathcal{X} = \{a, b, c, d, e, f, g, h\}$ with associated distribution $\{\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}\}$

- 1. Show that the raw bit content is 3 bits
- 2. Show that $\mathbb{P}(X \in \{a, b, c, d\}) = \frac{15}{16}$
- 3. Show that we can compress the source to 2 bits with risk $\frac{1}{16}$. What do you conclude?
- 4. Suppose that we accept a risk of $\frac{1}{2}$, how many bits are required to compress the source?

Ambiguity: risk δ to compress two data into the same bit-string

 $\delta\text{-sufficient subset }\mathcal{S}_{\delta}$ for compression:

 $\mathbb{P}(\mathsf{X}\notin\mathcal{S}_{\delta})\leq\delta$

- Compression: define a one-to-one mapping⁽¹⁾ $S_{\delta} \mapsto \{0,1\}^{\log_2 \sharp S_{\delta}}$. Then, if $X = x \in S_{\delta}$ write c(x) with $\log_2 \sharp S_{\delta}$ bits, otherwise do \bot
- Decompression: inverse the one-to-one mapping

The decompression works with probability $\geq 1 - \delta$ and it uses $\log_2 \sharp S_{\delta}$ bits

Ambiguity: risk δ to compress two data into the same bit-string

 $\delta\text{-sufficient subset }\mathcal{S}_{\delta}$ for compression:

$$\mathbb{P}(\mathsf{X}\notin\mathcal{S}_{\delta})\leq\delta$$

- Compression: define a one-to-one mapping⁽¹⁾ $S_{\delta} \mapsto \{0,1\}^{\log_2 \sharp S_{\delta}}$. Then, if $X = x \in S_{\delta}$ write c(x) with $\log_2 \sharp S_{\delta}$ bits, otherwise do \bot
- Decompression: inverse the one-to-one mapping

The decompression works with probability $\geq 1 - \delta$ and it uses $\log_2 \sharp S_{\delta}$ bits

For the best non-ambiguity: it motivates to consider

Smallest δ -sufficient subset S_{δ} for compression:

 $\mathbb{P}(\mathsf{X} \notin S_{\delta}) \leq \delta \iff \mathbb{P}(\mathsf{X} \in \mathsf{S}_{\delta}) \geq 1 - \delta$

 $\delta\text{-sufficient subset }\mathcal{S}_{\delta}$ for compression:

$$\mathbb{P}(\mathsf{X} \notin S_{\delta}) \leq \delta \iff \mathbb{P}(\mathsf{X} \in \mathsf{S}_{\delta}) \geq 1 - \delta$$

• Compression: define a one-to-one mapping⁽²⁾ $S_{\delta} \mapsto \{0,1\}^{\log_2 \sharp S_{\delta}}$. Then, if $X = x \in S_{\delta}$ write c(x) with $\log_2 \sharp S_{\delta}$ bits, otherwise do \bot

 \longrightarrow It compresses outcomes of X with $\log_2 \sharp S_{\delta}$ bits!

For the best non-ambiguity: it motivates to consider

Smallest δ -sufficient subset S_{δ} for compression:

$$\mathbb{P}(\mathsf{X} \notin \mathcal{S}_{\delta}) \leq \delta \iff \mathbb{P}(\mathsf{X} \in \mathsf{S}_{\delta}) \geq 1 - \delta$$

(2) If $\sharp S_{\delta}$ not a power of two, use $\lceil \log_2 \sharp S_{\delta} \rceil$ bits.

The essential bit content:

Given $X : \Omega \to \mathcal{X}$ and $S_{\delta} \subseteq \mathcal{X}$ be the smallest δ -sufficient subset for X,

 H_{δ} (X) $\stackrel{\text{def}}{=} \log_2 \sharp S_{\delta}$

Be careful: don't confuse H_{δ} and H_0 with the entropy H

Exercise:

Show that $H_{\delta}(X)$ is equal to $H_{0}(X)$ (the raw bit content defined in Slide 5) when $\delta = 0$

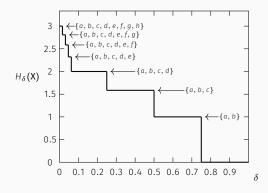
Optimal lossy compression:

The optimal lossy compression size, *i.e.*, the number of bits, with error δ is $H_{\delta}(\mathbf{X}) = \log_2 \sharp S_{\delta}$

A natural question: is $H_{\delta}(\mathbf{X})$ "strongly" function of δ ?

Let $\mathcal{X} = \{a, b, c, d, e, f, g, h\}$ with associated distribution $\{\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{3}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}\}$

- H₀(X) = 3
- $H_{1/16}(X) = 2$
- H_{3/4}(X) = 0



Consider the source: *n* independent flips $\mathbf{x} = (x_1, \dots, x_n) \in \{0, 1\}^n$ where $\mathbb{P}(x_i = 1) = p$

$$\mathbb{P}(\mathbf{x}) = p^{|\mathbf{x}|} (1-p)^{n-|\mathbf{x}|} \text{ where } |\mathbf{x}| \stackrel{\text{def}}{=} \sharp \left\{ i \in \{1, \dots, n\} : x_i \neq 0 \right\}$$

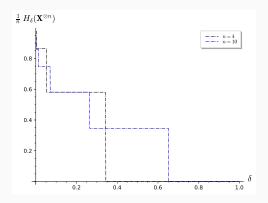
Let $\mathbf{X}^{\otimes n}$ denote this source (*n* independent and identically distributed)

What is the optimal compression size if we allow a probability of error δ ?

Optimal lossy compression:

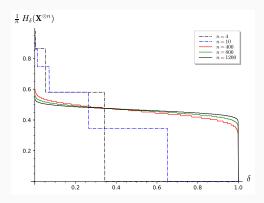
What is the size of $\log_2 \sharp S_\delta$ as function of δ ?

The behaviour depends "strongly" on δ but also on n



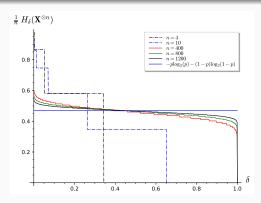
What does happen if *n* grows?

The behaviour depends "strongly" on δ but also on n



The curve becomes essentially flat! What do you conjecture?

The behaviour depends "strongly" on δ but also on n



For all $\delta \in (0, 1)$, it tends toward the binary entropy $h(p) = -p \log_2 p - (1-p) \log_2 (1-p)$ In particular: it does not (extremely surprisingly!) depend on δ

The probability that **x** has *r* 1's and (n - r)'s 0, *i.e.*, $|\mathbf{x}| = r$, is $\mathbb{P}(|\mathbf{x}| = r) = \binom{n}{r} p^r (1 - p)^{n-r}$

 \longrightarrow It is a Binomial distribution

The mean of $|\mathbf{x}|$ is *np* and its standard deviation is $\sqrt{np(1-p)}$,

• If n = 100 and $p = \frac{1}{10}$, $|\mathbf{x}| \sim 10 \pm 3 \ (3/10 = 0.3)$

• If
$$n = 1000$$
 and $p = \frac{1}{10}$,

$$|\mathbf{x}| \sim 100 \pm 10 \ (10/100 = 0.1 < 0.3)$$

As n increases: distribution of $|\mathbf{x}|$ becomes more concentrated: possible values of $|\mathbf{x}|$ grows as n, the standard deviation of r only grows as \sqrt{n}

 $\longrightarrow |x|$ is most likely to fall in a small range of values

But where does the distribution concentrate?

 \longrightarrow np 1's and (n - np) 0's:

 $\log_2 \mathbb{P}(\mathbf{x})_{typ} = \log_2 p^{np} (1-p)^{n-np} = -nh(p)$ where $h(\cdot)$ binary entropy

A remark:

The binary entropy h(p) is the entropy of the Bernoulli distribution with parameter p

(recall that according to Lecture 1: $H(X^{\otimes n}) = nH(X)$)

It motivates to introduce (your new best friend!) the typical set:

$$T_{n\varepsilon} \stackrel{\text{def}}{=} \left\{ \mathbf{x} \in \mathcal{X}^{n} : \left| \frac{1}{n} \log_{2} \frac{1}{\mathbb{P}\left(\mathbf{X}^{\otimes n} = \mathbf{x}\right)} - H(\mathbf{X}) \right| < \varepsilon \right\} \\ = \left\{ \mathbf{x} \in \mathcal{X}^{n} : 2^{-n(H(\mathbf{X}) + \varepsilon)} < \mathbb{P}\left(\mathbf{X}^{\otimes n} = \mathbf{x}\right) < 2^{-n(H(\mathbf{X}) - \varepsilon)} \right\}$$

Asymptotic Equipartition Property (AEP): "all" the distribution falls in $T_{n\varepsilon}$ where each events

happen with "equiprobable" probability

We will consider in this lecture only i.i.d. sources with n drawing: $\mathbf{X}^{\otimes n}$

$$\mathbb{P}\left(\mathbf{X}^{\otimes n} = (x_1, \ldots, x_n)\right) = \mathbb{P}(\mathbf{X} = x_1) \cdots \mathbb{P}(\mathbf{X} = x_n)$$

Be patient: a more general context in Lecture 3

Shannon source coding theorem:

Let $X : \Omega \to \mathcal{X}$, then for all $\delta \in (0, 1)$, $\frac{1}{n} H_{\delta} (X^{\otimes n}) \xrightarrow[n \to +\infty]{} H(X)$

Conclusion: the optimal lossy compression size for any error rate > 0 is the entropy of the source

H(X) if we consider block of outputs with size large enough

proof (i)

Start: use your best friend, the Asymptotic Equipartition Property (AEP)

Fundamental idea: to determine the typical set, apply the weak law of large number to the r.v. Y whose outputs are $\frac{1}{n} \log_2 \frac{1}{\mathbb{P}(x)}$ where x is drawn according to $X^{\otimes n}$

$$\frac{1}{n}\log_2\frac{1}{\mathbb{P}(\mathbf{x})} \stackrel{\text{(indep)}}{=} \frac{1}{n}\sum_{\mathbf{x}\in\mathcal{X}^n}\log_2\frac{1}{\mathbb{P}(x_i)} \quad \text{where the } x_i\text{'s are i.d.d according to } \mathbf{X}$$

 $\longrightarrow \mathbf{Y} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{Y}_i$ where the \mathbf{Y}_i 's are i.i.d. $\log_2 \frac{1}{\mathbb{P}(x_i)}$ with x_i picked according to \mathbf{X}

Expectation and variance:

$$\mathbb{E}(\mathbf{Y}_i) = \sum_{x \in \mathcal{X}} \log_2 \left(\frac{1}{\mathbb{P}(x)} \right) \mathbb{P}(x) = H(\mathbf{X}) \quad \text{and} \quad \sigma^2 \stackrel{\text{def}}{=} \mathsf{Var}(\mathbf{Y}_i)$$

By the weak law of large number:

$$\mathbb{P}\left(|\mathbf{Y} - H(\mathbf{X})| < \varepsilon\right) = \mathbb{P}_{\mathbf{X}}\left(\mathbf{X} \in \left\{\mathbf{y} : \ \left|\frac{1}{n}\log_{2}\frac{1}{\mathbb{P}(\mathbf{X}^{\otimes n} = \mathbf{y})} - H(\mathbf{X})\right| < \varepsilon\right\}\right) \ge 1 - \frac{\sigma^{2}}{n\varepsilon^{2}}$$

where **x** is drawn according to $\mathbf{X}^{\otimes n}$

PROOF (II)

$$\mathbb{P}_{\mathbf{X}}\left(\mathbf{X} \in \left\{\mathbf{y}: \ \left|\frac{1}{n}\log_2\frac{1}{\mathbb{P}(\mathbf{X}^{\otimes n} = \mathbf{y})} - H(\mathbf{X})\right| < \varepsilon\right\}\right) \geq 1 - \frac{\sigma^2}{n\varepsilon}$$

Typical set:

$$T_{n\varepsilon} \stackrel{\text{def}}{=} \left\{ \mathbf{y} \in \mathcal{X}^n : \quad \left| \frac{1}{n} \log_2 \frac{1}{\mathbb{P}(\mathbf{X}^{\otimes n} = \mathbf{y})} - H(\mathbf{X}) \right| < \varepsilon \right\}$$

$$\longrightarrow \mathbb{P}_{\mathbf{x}} (\mathbf{x} \in T_{n\varepsilon}) \geq 1 - \frac{\sigma^2}{n\varepsilon^2}$$

Conclusion:

If *n* large enough, i.e., $\frac{\sigma^2}{n\varepsilon^2} \leq \delta$, then, $\sharp T_{n\varepsilon} \geq \sharp S_{\delta} = 2^{H_{\delta}(\mathbf{x}^{\otimes n})}$ as S_{δ} is the smallest subset such that $\mathbb{P}(\mathbf{x} \in S_{\delta}) \geq 1 - \delta$.

 \longrightarrow We will use $T_{n\varepsilon}$ to provide an upper-bound on $H_{\delta}(\mathbf{X}^{\otimes n})$

PROOF (III): $\frac{1}{n} \log_2 H_{\delta}(\mathbf{x}^{\otimes n}) \leq \mathbf{H}(\mathbf{x}) + \varepsilon$

$$T_{n\varepsilon} = \left\{ \mathbf{y} \in \mathcal{X}^n : \quad \left| \frac{1}{n} \log_2 \frac{1}{\mathbb{P}(\mathbf{X}^{\otimes n} = \mathbf{y})} - H(\mathbf{X}) \right| < \varepsilon \right\}$$

$$1 = \sum_{\mathbf{x} \in \mathcal{X}^{n}} \mathbb{P}(\mathbf{X}^{\otimes n} = \mathbf{x})$$

$$\geq \sum_{\mathbf{x} \in T_{ne}} \mathbb{P}(\mathbf{X}^{\otimes n} = \mathbf{x})$$

$$\stackrel{(\text{by def})}{\geq} \sum_{\mathbf{x} \in T_{ne}} 2^{-n(H(\mathbf{X}) + \varepsilon)}$$

$$= \#T_{ne} \ 2^{-n(H(\mathbf{X}) + \varepsilon)}$$

Conclusion:

$$\sharp T_{n\varepsilon} \leq 2^{n(H(\mathbf{X})+\varepsilon)}$$

If n large enough, i.e., $rac{\sigma^2}{narepsilon^2}\leq \delta$, then,

$$\sharp S_{\delta} = 2^{H_{\delta}(\mathbf{X}^{\otimes n})} \leq \sharp T_{n\varepsilon} \leq 2^{n(H(\mathbf{X})+\varepsilon)}$$

PROOF (IV): $\frac{1}{n} \log_2 H_{\delta}(\mathbf{X}^{\otimes n}) \geq \mathbf{H}(\mathbf{X}) - \varepsilon$

Proof by contradiction: suppose there exists an infinity of *n*'s,

$$H_{\delta}\left(\mathbf{X}^{\otimes n}\right) \leq n \cdot (H(\mathbf{X}) - \varepsilon)$$

$$\longrightarrow \text{ It exists S such that: } \begin{cases} \#S \leq 2^{n(H(X)-\varepsilon)} \\ \mathbb{P}(X \in S) \geq 1-\delta \end{cases}$$

$$\mathbb{P}\left(\mathbf{x}\in\mathsf{S}\right)=\mathbb{P}\left(\mathbf{x}\in\mathsf{S}\cap\mathsf{T}_{n\varepsilon/2}\right)+\mathbb{P}\left(\mathbf{x}\in\mathsf{S}\cap\overline{\mathsf{T}_{n\varepsilon/2}}\right)\leq\mathbb{P}\left(\mathbf{x}\in\mathsf{S}\cap\mathsf{T}_{n\varepsilon/2}\right)+\mathbb{P}\left(\mathbf{x}\notin\mathsf{T}_{n\varepsilon/2}\right)$$

• Upper-bound on first term,

$$\mathbb{P}\left(\mathbf{x} \in S \cap T_{n\varepsilon/2}\right) = \sum_{\mathbf{x} \in S \cap T_{n\varepsilon/2}} \mathbb{P}\left(\mathbf{X}^{\otimes n} = \mathbf{x}\right)$$

$$\stackrel{\text{(by def)}}{\leq} \sum_{\mathbf{x} \in S \cap T_{n\varepsilon/2}} 2^{-n(H(\mathbf{X}) - \varepsilon/2)}$$

$$\leq 2^{n(H(\mathbf{X}) - \varepsilon)} 2^{-n(H(\mathbf{X}) - \varepsilon/2)} = 2^{-n\varepsilon/2} \quad \left(\text{as } \sharp S \leq 2^{n(H(\mathbf{X}) - \varepsilon)}\right)$$

• Upper-bound on the second term,

$$\mathbb{P}\left(\mathbf{x} \in T_{n\varepsilon/2}\right) \geq 1 - \frac{4\sigma^2}{n\varepsilon^2} \Longrightarrow \mathbb{P}\left(\mathbf{x} \notin T_{n\varepsilon/2}\right) \leq \frac{4\sigma^2}{n\varepsilon^2}$$

Proof by contradiction: suppose there exists an infinity of *n*'s,

$$H_{\delta}\left(\mathbf{X}^{\otimes n}\right) \leq n \cdot (H(\mathbf{X}) - \varepsilon)$$

Conclusion:

$$\longrightarrow$$
 It exists S such that $1 - \delta \leq \mathbb{P}(\mathbf{x} \in S) \leq 2^{-n\varepsilon/2} + \frac{4\sigma^2}{n\varepsilon^2}$

Contradiction: for *n* large enough $0 < 1 - \delta < 1 - \delta$, contradiction...

Conclusion:

For all $\varepsilon > 0$, it exists n_0 such that for all $n \ge n_0$,

$$n \cdot (H(\mathbf{X}) - \varepsilon) \leq H_{\delta}(\mathbf{X}^{\otimes n}) \leq n \cdot (H(\mathbf{X}) + \varepsilon)$$

→ We have proved Shannon's source coding theorem!

• $\frac{1}{n}H_{\delta}(\mathbf{X}^{\otimes n}) < H(\mathbf{X}) + \varepsilon$: even if the probability of error δ is extremely small

$$\frac{1}{n}H_{\delta}(\mathbf{X}^{\otimes n}) \leq H(\mathbf{X}) \quad \text{not} \quad \frac{1}{n}H_{\delta}(\mathbf{X}^{\otimes n}) \approx 1$$

• $\frac{1}{n}H_{\delta}(\mathbf{X}^{\otimes n}) > H(\mathbf{X}) - \varepsilon$: even if we tolerate a lot of errors, *i.e.*, $\delta \approx 1$

$$\frac{1}{n}H_{\delta}(\mathbf{X}^{\otimes n}) \geq H(\mathbf{X}) \quad \text{not} \quad \frac{1}{n}H_{\delta}(\mathbf{X}^{\otimes n}) \approx 0$$

Regardless of our allowance for error δ , the number of bits per symbol needed to specify X is H(X)no more and no less

• We used that $\mathbf{X}^{\otimes n}$ is i.i.d. \mathbf{X} only to prove with the weak law of large number

$$\mathbb{P}\left(\mathbf{X}^{\otimes n} \in T_{n\varepsilon}\right) \xrightarrow[n \to +\infty]{} 1$$

More generally: any sequence verifying this property can be compressed with nH(X) bits

(see Lecture 3)

But is it the end of the story for compression?

No! The proof is non-constructive, how do we compress? If we use S_{δ} , do we know its description?

 S_{δ} has exponential size $\approx 2^{nH(X)}$: deciding if x is in or not is potentially hard Furthermore, we need n (number of outputs by the source) to be large to reach the optimality!

----- In what follows: an efficient compression algorithm reaching the theoretical limits

even for small n

COMPRESSION WITH SYMBOL CODES

We defined a lossy compression using fixed length block codes: as *n* grows, we can encode *n* i.i.d. sources (x_1, \ldots, x_n) into a block of $n \cdot (H(X) + \varepsilon)$ bits with vanishing probability of error

 \longrightarrow We verified the <code>possibility</code> of compression, but the block coding defined did not give a \$\$ practical algorithm :(

Now:

We study practical data compression algorithms but with variable-length compression for small block sizes and that are not lossy

Key idea:

Shorter compression to the more probable outcomes and longer compression to the less probable

- Implications if a compression is lossless? Some compressions are shortened other have to be lengthened but by how much? *Kraft inequality*...
- Making compression practical? The fastest compression and decompression algorithms
- Optimal compression? Is the best achievable compression while being efficient is the entropy?

Source coding theorem with symbol codes (informal):

Given a source X, we can efficiently compute a variable-length compression for which decompression is efficient and whose compression average length belongs to [H(X), H(X) + 1)

→ The compression we will exhibit is known as Huffman encoding!

 \mathcal{X}^+ denotes the set of all strings of finite length composed of elements from \mathcal{X}

Symbol codes and codewords:

Mapping φ from \mathcal{X} to $\{0,1\}^+$. Given $x \in \mathcal{X}$, then $\varphi(x)$ is called a codeword and $\ell(x)$ will denote its length

The extended code φ^+ is the mapping from \mathcal{X}^+ to $\{0, 1\}^+$ obtained by concatenation, without punctuation, of the corresponding codewords:

$$\varphi^+(X_1,\ldots,X_L) \stackrel{\text{def}}{=} \varphi(X_1)\cdots\varphi(X_L)$$

Symbol codes are variable-length!

An example:		
	$x_i \qquad \varphi(x_i)$	
	a 0	
	b 10	
	c 110	
	d 111	

MORSE CODING

Key idea: shorter compression to the more probable outcomes and longer compression to the less probable

 \longrightarrow It is the case for the Morse coding! For instance E requires only one symbols, Z four

Α		Ν	
В		0	
С		Р	. – –.
D		Q	. – –.–
Е		R	. – .
F	– .	S	
G		Т	-
Н		U	
I		V	
J	. – – –	W	. – –
К		Х	
L	. –	Y	
М		Z	

Issue: ambiguity

It is impossible to distinguish BAM and NIJ $(-\dots -)$. In practice: a void between transmission (adapted for "human" conversations)

 \longrightarrow Morse is ternary coding: need to add a separator symbol $\{\cdot, -, \perp_{\mathsf{sep}}\}$

Ambiguous codes imply loss of information...

Non-ambiguous code:

A symbol code φ is said to be non-ambiguous if under the extended code φ^+ , no two distinct strings have the same encoding, *i.e.*,

$$\forall \mathsf{x},\mathsf{y} \in \mathcal{X}^+, \ \mathsf{x} \neq \mathsf{y} \Longrightarrow \varphi^+(\mathsf{x}) \neq \varphi^+(\mathsf{y})$$

Non-ambiguous code: necessary for lossless compression

Non-ambiguous codes are uniquely decodable code:

For any non-ambiguous code,

$$\varphi^+(\mathsf{x})\longmapsto\mathsf{x}$$

is a well-defined mapping which is called decoding

Prefix codes: no codeword is the beginning of another codeword

Prefix codes:

A symbol code is called a prefix code if no codeword is a prefix of any other codeword, i.e.,

$$\forall (x, y) \in \mathcal{X} : \quad \left(\exists t \in \{0, 1\}^+ \text{ s.t. } \varphi(x) t = \varphi(y) \right) \Rightarrow \left(\varphi(x) = \varphi(y) \right)$$

Proposition:

A prefix code is uniquely and efficiently decodeable

Proof:

Decoding procedure: given $\varphi(x_1) \cdots \varphi(x_L)$, looking from left to right until identifying the first codeword $\varphi(x_1)$ and etc (it does not require a special marker between words as with Morse coding)

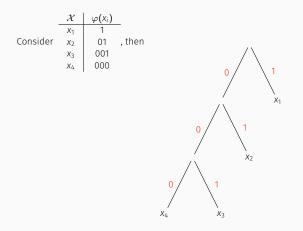
EXAMPLES AND COUNTER-EXAMPLES

χ	$\varphi_0(x_i)$	$\varphi_1(X_i)$	$\varphi_2(x_i)$	$\varphi_3(X_i)$	$\varphi_4(X_i)$
<i>X</i> ₁	0	0	1	0	0
X2	11	010	10	10	01
X3	11	01	100	110	011
X4	10	10	1000	111	111

- φ_0 : ambiguous
- φ_1 : ambiguous; not unique decoding: 010 is x_2 or x_1x_4 or x_3x_1 ?
- φ₂: unique decoding but not prefix code
- φ₃: prefix code
- φ_4 : not prefix code but it can be uniquely decoded (why?)

Prefix codes as tree:

Prefix codes can be represented on binary trees: codewords are given by leaves branches



Expected length:

Given a distribution of symbols $X:\Omega\to \mathcal{X},$ the expected length of a symbol code

 $\varphi:\mathcal{X} \to \{0,1\}^+$ is

$$L(\varphi, \mathcal{X}) \stackrel{\text{def}}{=} \sum_{x \in \mathcal{X}} \ell(x) \ p(x) \quad \text{where } p(x) \stackrel{\text{def}}{=} \mathbb{P}(\mathsf{X} = x)$$

----> Expected length: measure of efficiency! We want it to be small

\mathcal{X}	$\varphi_0(x_i)$	$p(x_i)$	$\ell(x_i)$	$\varphi_1(X_i)$	$p(x_i)$	$\ell(x_i)$	$\varphi_2(x_i)$	p(x _i)	$\ell(x_i)$
a	00	$\frac{1}{4}$	2	0	$\frac{1}{4}$	1	0	1/2	1
b	01	1/4	2	1	1/4	1	01	1/4	2
c	10	14	2	00	1	2	011	1 8	3
d	11	1 4	2	11	$\frac{1}{4}$	2	111	1 8	3

- $L(\varphi_0, \mathcal{X}) = 2$ is uniquely decodable (prefix code)
- $L(\varphi_1, \mathcal{X}) = 1.75$ but it is not uniquely decodable: $\varphi_1(aa) = \varphi_1(c)$
- $L(\varphi_2, \mathcal{X}) = 1.75$ is uniquely decodable **but** not prefix (exercise)

What do you conclude?

\mathcal{X}	$\varphi_0(x_i)$	$p(x_i)$	$\ell(x_i)$	$\varphi_2(x_i)$	$p(x_i)$	$\ell(x_i)$
a	00	$\frac{1}{4}$	2	0	1/2	1
b	01	1/4	2	01	1 1/4	2
с	10	1/4	2	011	1 8	3
d	11	$\frac{1}{4}$	2	111		3

- $L(\varphi_0, \mathcal{X}) = 2$ is uniquely decodable
- $L(\varphi_2, \mathcal{X}) = 1.75$ is uniquely decodable

If we shorten 00 \mapsto 0 in φ_0 , then we keep unique decodability like in φ_2 if we we lengthen other

codewords (*e.g.* 11
$$\mapsto$$
 111)

Constrained budget which can be spent on codewords, with shorter codewords being more expensive

What is the nature of this budget?

The code containing all the length 3 codewords has size 2³

But what does happen if we want a prefix code with 0 and only length 3 codewords?

 \rightarrow The only left possibility is {100, 110, 101, 111} which has size $2^2 = \frac{2^3}{2}$

Give me your money:

You have 1 budget, codewords of length ℓ have cost $2^{-\ell}$. Codewords of length 3 (*resp.* 1) have cost $\frac{1}{8}$ (*resp.* $\frac{1}{2}$). If you spend more that your money, the code won't be uniquely decodable. But, if

$$\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1$$

is the code-uniquely decodable?

The code containing all the length 3 codewords has size 2³

But what does happen if we want a prefix code with 0 and only length 3 codewords?

 \rightarrow The only left possibility is {100, 110, 101, 111} which has size $2^2 = \frac{2^3}{2}$

Give me your money:

You have 1 budget, codewords of length ℓ have cost $2^{-\ell}$. Codewords of length 3 (*resp.* 1) have cost $\frac{1}{8}$ (*resp.* $\frac{1}{2}$). If you spend more that your money, the code won't be uniquely decodable. But, if

$$\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1$$

is the code-uniquely decodable? Yes: Kraft-McMillan inequalities

McMillan's theorem:

There exists a **uniquely decodable** code with codewords of length n_1, \ldots, n_K if and only if

$$\sum_{i=1}^{K} \frac{1}{2^{n_i}} \le 1$$

Prefix codes are easy to decode, could we restrict our attention to prefix codes to simplify our life?

(prefix codes have a nice representation by trees)

Kraft inequality with prefix codes:

There exists a **prefix code** with codewords of length n_1, \ldots, n_K if and only if

$$\sum_{i=1}^{K} \frac{1}{2^{n_i}} \le 1$$

Proofs:

See Exercise Session

 \longrightarrow Uniquely decodable codes are not better than prefix codes!

Aim: minimizing over the code φ

$$L(\varphi, \mathcal{X}) = \sum_{x \in \mathcal{X}} \ell(x) p(x)$$
 where the $p(x) \stackrel{\text{def}}{=} \mathbb{P}(\mathbf{X} = x)$ are fixed

Short codewords to the more probable symbols: reducing the expected length

But, Kraft inequality tells us that shortening some codewords necessarily lengthen others!

SOURCE CODING THEOREM FOR SYMBOL CODES

Shannon's theorem:

For any distribution $X: \Omega \to \mathcal{X}$, there exists a prefix code φ with expected length satisfying

 $L(\varphi, \mathcal{X}) < H(\mathbf{X}) + 1$

Furthermore, for any prefix code,

 $H(X) \leq L(\varphi, \mathcal{X})$

Proof:

• Lower-bound. First, define the distribution $q(x) \stackrel{\text{def}}{=} \frac{2^{-\ell(x)}}{z}$ where $z \stackrel{\text{def}}{=} \sum_{x'} 2^{-\ell(x')}$ which means that $\ell(x) = \log_2 1/q(x) - \log_2 z$. By Gibb's inequality,

$$\sum_{x} p(x) \log_2 1/q(x) \ge \sum_{x} p(x) \log_2 1/p(x)$$

Furthermore, by Kraft's inequality,

$$z = \sum_{x'} 2^{-\ell(x')} \le 1$$

Therefore,

$$L(\varphi, \mathcal{X}) = \sum_{x} p(x)\ell(x) = \sum_{x} p(x)\log_2 1/q(x) - \log_2 z$$
$$\geq \sum_{x} p(x)\log_2 1/p(x) - \log_2 z$$
$$\geq H(\mathbf{X}) \qquad (\text{as } z \le 1)$$

Before, showing the upper-bound: some remarks

Remarks:

Optimal source codelengths. L(φ, X) is minimized and is equal to H(X) if and only if the codelengths are equal to the Shannon information:

 $\sum_{x} 2^{-\ell(x)} = 1 \text{ and } \ell(x) = \log_2 1/\rho(x) \text{ but not necessarily an integer...}$

• Implicit probabilities defined by codelengths. Conversely, any choice of codelengths implicitly defines a probability distribution

$$q(x) = \frac{2^{-\ell(x)}}{\sum_{x'} 2^{-\ell(x')}}$$

for which those codelengths would be the optimal codelengths

Proof:

• Upper-bound. To mimic the proof of the lower-bound, set,

$$\ell(x) \stackrel{\text{def}}{=} \lceil \log_2 1/p(x) \rceil$$

where $\lceil \ell \rceil$ denotes the smallest integer greater than or equal to ℓ By "Kraft inequality and prefix codes" (Slide 39), it exists a prefix code with these lengths as Kraft's inequality is satisfied,

$$\sum_{x} 2^{-\ell(x)} = \sum_{x} 2^{-\lceil \log_2 1/p(x) \rceil} \le \sum_{x} 2^{-\log_2 1/p(x)} = \sum_{x} p(x) = 1.$$

Then we conclude,

$$L(\varphi, \mathcal{X}) = \sum_{x} p(x) \lceil \log_2 1/p(x) \rceil < \sum_{x} p(x) \left(\log_2 1/p(x) + 1 \right) = H(\mathbf{X}) + 1$$

OPTIMAL SOURCE CODING: HUFFMAN CODING

Proof of source coding theorem: the code we explicit (during the upper-bound) is not optimal!

Optimal code:

A uniquely decodeable coding $arphi_{
m opt}$ is said to be optimal if for all uniquely decodeable coding arphi,

 $L(\mathcal{X}, \varphi_{\text{opt}}) \leq L(\mathcal{X}, \varphi)$

Motivation:

An efficient algorithm to compute an optimal and prefix code with a given outcome distribution

 \longrightarrow Prefix codes enjoy an easy decoding algorithm via a "tree representation"!

Huffman coding algorithm: recursive construction

- If $L = \# \mathcal{X} = 2$, return $\varphi_L = \{0, 1\}$
- Otherwise, given $\mathcal{X} = \{x_1, \dots, x_L\}$ and $p(x_1) \ge \dots \ge p(x_L)$, build the new alphabet $\mathcal{Y} = \{x_1, \dots, x_{L-2}, y_{L-1}\}$ with probability of outcomes $q(\cdot)$

$$q(x_i) = p(x_i)$$
 and $q(y_{L-1}) = p(x_{L-1}) + p(x_L)$

Let φ_{L-1} be a Huffman code for \mathcal{Y} , then build φ_L as:

-
$$\varphi_L(x_k) = \varphi_{L-1}(x_k)$$
, for $k = 1, ..., L-1$

$$- \varphi_L(X_{L-1}) = \varphi_{L-1}(Y_{L-1}) 0$$

$$- \varphi_L(X_L) = \varphi_{L-1}(Y_{L-1}) \mathbf{1}$$

Theorem:

Huffman coding is a prefix code which is optimal

Furthermore, its average length belongs to [H(X), H(X) + 1)

 \longrightarrow In particular: if $arphi_{
m H}$ is the Huffman coding, then for all uniquely decodable code

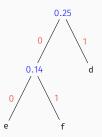
$$L(\mathcal{X}, \varphi_{\mathsf{H}}) \leq L(\mathcal{X}, \varphi)$$

Huffman coding: use the probabilities of outcomes $p(x_i)$'s to build a tree from the leaves! It equilibrates the probabilities at each level

Xi	p(x _i)	$-\log_2 p(x_i)$	$\varphi(X_i)$	ℓ(X)
a	0.43	1.22	0	1
b	0.17	2.56	000	3
с	0.15	2.74	001	3
d	0.11	3.18	011	3
е	0.09	3.47	0100	4
f	f 0.05 4.32		0101	4

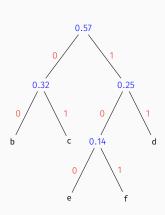
Huffman coding: use the probabilities of outcomes $p(x_i)$'s to build a tree from the leaves! It equilibrates the probabilities at each level

Xi	p(x _i)	$-\log_2 p(x_i)$	$\varphi(X_i)$	$\ell(x)$
a	0.43	1.22	1	1
b	0.17	2.56	000	3
с	0.15	2.74	001	3
d	0.11	3.18	011	3
е	0.09	3.47	0100	4
f	0.05	4.32	0101	4



Huffman coding: use the probabilities of outcomes $p(x_i)$'s to build a tree from the leaves! It equilibrates the probabilities at each level

Xi	p(x _i)	$-\log_2 p(x_i)$	$\varphi(X_i)$	$\ell(x)$
a	0.43	1.22	1	1
b	0.17	2.56	000	3
с	0.15	2.74	001	3
d	0.11	3.18	011	3
е	0.09	3.47	0100	4
f	0.05	4.32	0101	4



HUFFMAN CODING AS TREE

Huffman coding: use the probabilities of outcomes $p(x_i)$'s to build a tree from the leaves! It equilibrates the probabilities at each level

Xi	р (х _i)	$-\log_2 p(x_i)$	$\varphi(x_i)$	$\ell(x)$	1
a	0.43	1.22	1	1	
b	0.17	2.56	000	3	
с	0.15	2.74	001	3	0 1
d	0.11	3.18	011	3	
е	0.09	3.47	0100	4	0.57 a
f	0.05	4.32	0101	4	0.45
$H(X) = 2.248, \ L(\varphi, \mathcal{X}) = 2.28 \qquad \begin{array}{c} 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 &$					

Exercise:

Decompress: 010110010100

Huffman algorithm produces an optimal symbol code: but not the end of the story

We need to know beforehand the probabilities $p(x_i)$'s! And if we "make mistakes" by using another distribution q, then Huffman code compresses with rate $\approx H(p) + D_{KL}(p||q)$ instead of H(p) (see Exercise Session) There is also an issue coming from a priori probabilities

When compressing ℓ symbols $x_1,\ldots,x_\ell,$ Huffman code consider them as independent

(not realistic in the case for instance of the language)

An idea:

Pack symbols of $\mathcal X$ into symbols belonging to $\mathcal X^\ell$ for ℓ large enough:

• Don't take into account a priori probabilities but more realistic

•
$$\frac{L(\varphi, \mathcal{X}^{\ell})}{H(\mathbf{X}^{\otimes \ell})} \xrightarrow[\ell \to +\infty]{} 1$$

However, memory complexity $\sharp \left(\mathcal{X}^{\ell} \right)$

Huffman codes were widely trumpeted as "optimal": but have many defects for practical purposes!

They are optimal **among symbol codes**: each $x \in \mathcal{X}$ is mapped to an integer number of bits

Could we design other codes than symbol codes?

 \rightarrow Stream Codes: see arithmetic coding at Lecture 4 (Programming Session)!

EXERCISE SESSION