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THE OBJECTIVE OF THE DAY

How to compress data?

▶ Ultimate data compression
(
source coding theorem

)
▶ An algorithmic way to reach it

(
Huffman encoding

)
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FROM MEASUREMENT TO INFORMATION

How many bits are needed to describe the outcome of an experiment?

 

Compressing data from a source into L bits and recover the data reliably:

the source is at most L bits per symbol
(
in average

)
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COURSE OUTLINE

1. Optimal compression when small errors are allowed

• Showing the possibility of non-trivial compression

• First intuition/rigorous definition about the Asymptotic Equipartition Principle
(
AEP

)
−→ AEP pursued in Lecture 3

2. A first efficient algorithm to reach optimal compression: Huffman encoding

−→ It appears almost everywhere
(
gzip, pkzip, winzip, bzip2, jpeg, png, mp3

)

3



SOURCE CODING THEOREM



TO COMPRESS, WHY NOT?

How to compress outputs of X : Ω → X ?

−→ Write elements of X with bit-strings! This will require strings of length

Raw bit content:

The raw bit content of X : Ω → X is defined as,

H0(X) def
= log2 ♯X

But is it a good idea?

−→ No! But it is non-trivial to overcome this. . .
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A NATURAL QUESTION

Could we compress X = x ∈ X to c(x), and decompress c(x) to x s.t c(x) has less than H0(X) bits?

No! There are 2H0(X) possible outcomes. . .

Is it a dead-end? Remember your motto in this course
(
typical sequences

)
!

• Lossy Compressor: compress by mapping some files to the same bit-string

−→ It is ambiguous!

Lossy compressor efficiency:

Probability to map two different files to the same has to be small!

• Lossless Compressor: all mapping are different but

−→ It imposes to compress sometimes with a larger number of bits

Lossless compressor efficiency:

Probability to be lengthened has to be small, and to be shortened has to be large!
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LOSSY COMPRESSION

Focus on lossy compressor!

Ambiguity: we don’t care if the probability to happen is small!

Taking some risk?

Let X = {a, b, c, d, e, f, g, h} with associated distribution
{ 1
4 ,

1
4 ,

1
4 ,

3
16 ,

1
64 ,

1
64 ,

1
64 ,

1
64
}

1. Show that the raw bit content is 3 bits

2. Show that P (X ∈ {a, b, c, d}) = 15
16

3. Show that we can compress the source to 2 bits with risk 1
16 . What do you conclude?

4. Suppose that we accept a risk of 1
2 , how many bits are required to compress the source?
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LOSSY COMPRESSION STRATEGY

Ambiguity: risk δ to compress two data into the same bit-string

δ-sufficient subset Sδ for compression:

P(X /∈ Sδ) ≤ δ

• Compression: define a one-to-one mapping(1) Sδ 7→ {0, 1}log2 ♯Sδ . Then, if X = x ∈ Sδ write

c(x) with log2 ♯Sδ bits, otherwise do ⊥

• Decompression: inverse the one-to-one mapping

The decompression works with probability ≥ 1− δ and it uses log2 ♯Sδ bits

For the best non-ambiguity: it motivates to consider

Smallest δ-sufficient subset Sδ for compression:

P(X /∈ Sδ) ≤ δ ⇐⇒ P (X ∈ Sδ) ≥ 1− δ

(1) If ♯Sδ not a power of two, use ⌈log2 ♯Sδ⌉ bits.
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LOSSY COMPRESSION STRATEGY: THE FUNDAMENTAL IDEA

δ-sufficient subset Sδ for compression:

P(X /∈ Sδ) ≤ δ ⇐⇒ P (X ∈ Sδ) ≥ 1− δ

• Compression: define a one-to-one mapping(2) Sδ 7→ {0, 1}log2 ♯Sδ . Then, if X = x ∈ Sδ write

c(x) with log2 ♯Sδ bits, otherwise do ⊥

−→ It compresses outcomes of X with log2 ♯Sδ bits!

For the best non-ambiguity: it motivates to consider

Smallest δ-sufficient subset Sδ for compression:

P(X /∈ Sδ) ≤ δ ⇐⇒ P (X ∈ Sδ) ≥ 1− δ

(2) If ♯Sδ not a power of two, use ⌈log2 ♯Sδ⌉ bits.
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THE ESSENTIAL BIT CONTENT

The essential bit content:

Given X : Ω → X and Sδ ⊆ X be the smallest δ-sufficient subset for X,

Hδ (X) def
= log2 ♯Sδ

Be careful: don’t confuse Hδ and H0 with the entropy H

Exercise:

Show that Hδ(X) is equal to H0(X)
(
the raw bit content defined in Slide 5

)
when δ = 0

Optimal lossy compression:

The optimal lossy compression size, i.e., the number of bits, with error δ is Hδ(X) = log2 ♯Sδ

A natural question: is Hδ(X) “strongly” function of δ?
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AN EXAMPLE:

Let X = {a, b, c, d, e, f, g, h} with associated distribution
{ 1
4 ,

1
4 ,

1
4 ,

3
16 ,

1
64 ,

1
64 ,

1
64 ,

1
64
}

• H0(X) = 3

• H1/16(X) = 2

• H3/4(X) = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
δ

0

0.5

1

1.5

2

2.5

3

Hδ(X)

{a, b, c, d, e, f, g, h}
{a, b, c, d, e, f, g}
{a, b, c, d, e, f}

{a, b, c, d, e}

{a, b, c, d}

{a, b, c}

{a, b}
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ANOTHER EXAMPLE (I)

Consider the source: n independent flips x = (x1, . . . , xn) ∈ {0, 1}n where P(xi = 1) = p

P(x) = p|x|(1− p)n−|x| where |x| def= ♯
{
i ∈ {1, . . . , n} : xi 6= 0

}
 

Let X⊗n denote this source
(
n independent and identically distributed

)

What is the optimal compression size if we allow a probability of error δ?

Optimal lossy compression:

What is the size of log2 ♯Sδ as function of δ?
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ANOTHER EXAMPLE (II)

The behaviour depends “strongly‘” on δ but also on n

0.2 0.4 0.6 0.8 1.0
δ

0.2

0.4

0.6

0.8

1
n Hδ(X

⊗n)

n= 4
n= 10

What does happen if n grows?
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ANOTHER EXAMPLE (II)

The behaviour depends “strongly‘” on δ but also on n

0.2 0.4 0.6 0.8 1.0
δ

0.2

0.4

0.6

0.8

1
n Hδ(X

⊗n)

n= 4
n= 10
n= 400
n= 800
n= 1200

The curve becomes essentially flat! What do you conjecture?
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ANOTHER EXAMPLE (II)

The behaviour depends “strongly‘” on δ but also on n

0.2 0.4 0.6 0.8 1.0
δ

0.2

0.4

0.6

0.8

1
n Hδ(X

⊗n)

n= 4
n= 10
n= 400
n= 800
n= 1200
−plog2(p)− (1− p)log2(1− p)

For all δ ∈ (0, 1), it tends toward the binary entropy h(p) = −p log2 p− (1− p) log2(1− p)

In particular: it does not
(
extremely surprisingly!

)
depend on δ
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WHY DOES INCREASING n HELP?

The probability that x has r 1’s and (n− r)’s 0, i.e., |x| = r, is

P(|x| = r) =
(n
r

)
pr(1− p)n−r

−→ It is a Binomial distribution

The mean of |x| is np and its standard deviation is
√
np(1− p),

• If n = 100 and p = 1
10 ,

|x| ∼ 10± 3
(
3/10 = 0.3

)
• If n = 1000 and p = 1

10 ,

|x| ∼ 100± 10
(
10/100 = 0.1 < 0.3

)

As n increases: distribution of |x| becomes more concentrated: possible values of |x| grows as n,

the standard deviation of r only grows as
√
n

−→ |x| is most likely to fall in a small range of values
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TYPICALITY

But where does the distribution concentrate?

−→ np 1’s and (n− np) 0’s:

log2 P(x)typ = log2 p
np(1− p)n−np = −nh(p) where h(·) binary entropy

A remark:

The binary entropy h(p) is the entropy of the Bernoulli distribution with parameter p

(
recall that according to Lecture 1: H(X⊗n) = nH(X)

)

It motivates to introduce
(
your new best friend!

)
the typical set:

Tnε
def
=

{
x ∈ X n :

∣∣∣∣ 1n log2
1

P (X⊗n = x)
− H(X)

∣∣∣∣ < ε

}
=

{
x ∈ X n : 2−n(H(X)+ε)

< P
(
X⊗n = x

)
< 2−n(H(X)−ε)

}

Asymptotic Equipartition Property (AEP): “all” the distribution falls in Tnε where each events

happen with “equiprobable” probability 15



OUR HYPOTHESIS

We will consider in this lecture only i.i.d. sources with n drawing: X⊗n

P
(
X⊗n = (x1, . . . , xn)

)
= P(X = x1) · · · P(X = xn)

Be patient: a more general context in Lecture 3
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SHANNON SOURCE CODING THEOREM

Shannon source coding theorem:

Let X : Ω → X , then for all δ ∈ (0, 1),
1
n Hδ

(
X⊗n) −−−−−→

n→+∞
H(X)

Conclusion: the optimal lossy compression size for any error rate> 0 is the entropy of the source

H(X) if we consider block of outputs with size large enough
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PROOF (I)

Start: use your best friend, the Asymptotic Equipartition Property
(
AEP

)
Fundamental idea: to determine the typical set, apply the weak law of large number to the r.v.

Y whose outputs are 1
n log2

1
P(x) where x is drawn according to X

⊗n

1
n
log2

1
P(x)

(indep)
=

1
n

∑
x∈Xn

log2
1

P(xi)
 where the xi ’s are i.d.d according to X

−→ Y = 1
n
∑n

i=1 Yi where the Yi ’s are i.i.d. log2 1
P(xi)

with xi picked according to X

Expectation and variance:

E(Yi) =
∑
x∈X

log2

( 1
P(x)

)
P(x) = H(X) and σ

2 def
= Var(Yi)

By the weak law of large number:

P (|Y− H(X)| < ε) = Px
(
x ∈

{
y :

∣∣∣∣ 1n log2
1

P(X⊗n = y)
− H(X)

∣∣∣∣ < ε

})
≥ 1−

σ2

nε2

where x is drawn according to X⊗n
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PROOF (II)

Px
(
x ∈

{
y :

∣∣∣∣ 1n log2
1

P(X⊗n = y)
− H(X)

∣∣∣∣ < ε

})
≥ 1−

σ2

nε

Typical set:

Tnε
def
=

{
y ∈ X n :

∣∣∣∣ 1n log2
1

P (X⊗n = y)
− H(X)

∣∣∣∣ < ε

}

−→ Px (x ∈ Tnε) ≥ 1− σ2
nε2

Conclusion:

If n large enough, i.e., σ2
nε2

≤ δ, then,

♯Tnε ≥ ♯Sδ = 2Hδ
(
X⊗n)

as Sδ is the smallest subset such that P(x ∈ Sδ) ≥ 1− δ.

−→ We will use Tnε to provide an upper-bound on Hδ

(
X⊗n)
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PROOF (III): 1
n log2 Hδ(x⊗n) ≤ H(x) + ε

Tnε =

{
y ∈ X n :

∣∣∣∣ 1n log2
1

P (X⊗n = y)
− H(X)

∣∣∣∣ < ε

}

1 =
∑
x∈Xn

P(X⊗n = x)

≥
∑

x∈ Tnε

P(X⊗n = x)

(by def)
≥

∑
x∈Tnε

2−n(H(X)+ε)

= ♯Tnε 2−n(H(X)+ε)

Conclusion:

♯Tnε ≤ 2n(H(X)+ε)

If n large enough, i.e., σ2
nε2

≤ δ, then,

♯Sδ = 2Hδ
(
X⊗n)

≤ ♯Tnε≤2n(H(X)+ε)
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PROOF (IV): 1
n log2 Hδ(x⊗n) ≥ H(x)− ε

Proof by contradiction: suppose there exists an infinity of n’s,

Hδ

(
X⊗n

)
≤ n · (H(X) − ε)

−→ It exists S such that:


♯S ≤ 2n(H(X)−ε)

P (x ∈ S) ≥ 1− δ

P (x ∈ S) = P
(
x ∈ S ∩ Tnε/2

)
+ P

(
x ∈ S ∩ Tnε/2

)
≤ P

(
x ∈ S ∩ Tnε/2

)
+ P

(
x /∈ Tnε/2

)
• Upper-bound on first term,

P
(
x ∈ S ∩ Tnε/2

)
=

∑
x∈S∩Tnε/2

P
(
X⊗n = x

)
(by def)
≤

∑
x∈S∩Tnε/2

2−n(H(X)−ε/2)

≤ 2n(H(X)−ε) 2−n(H(X)−ε/2) = 2−nε/2
(
as ♯S ≤ 2n(H(X)−ε)

)
• Upper-bound on the second term,

P
(
x ∈ Tnε/2

)
≥ 1−

4σ2

nε2
=⇒ P

(
x /∈ Tnε/2

)
≤

4σ2

nε2
21



PROOF (V): 1
n log2 Hδ(x⊗n) ≥ H(x)− ε

Proof by contradiction: suppose there exists an infinity of n’s,

Hδ

(
X⊗n

)
≤ n · (H(X) − ε)

Conclusion:

−→ It exists S such that 1− δ ≤ P(x ∈ S) ≤ 2−nε/2 + 4σ2
nε2

Contradiction: for n large enough 0 < 1− δ < 1− δ, contradiction. . .
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PROOF (VI): CONCLUSION

Conclusion:

For all ε > 0, it exists n0 such that for all n ≥ n0 ,

n · (H(X) − ε) ≤ Hδ(X⊗n) ≤ n · (H(X) + ε)

−→ We have proved Shannon’s source coding theorem!
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SOME COMMENTS

• 1
nHδ(X⊗n) < H(X) + ε: even if the probability of error δ is extremely small

1
n
Hδ(X⊗n) ≤ H(X) not

1
n
Hδ(X⊗n) ≈ 1

• 1
nHδ(X⊗n) > H(X) − ε: even if we tolerate a lot of errors, i.e., δ ≈ 1

1
n
Hδ(X⊗n) ≥ H(X) not

1
n
Hδ(X⊗n) ≈ 0

Regardless of our allowance for error δ, the number of bits per symbol needed to specify X is H(X)

no more and no less

• We used that X⊗n is i.i.d. X only to prove with the weak law of large number

P
(
X⊗n ∈ Tnε

)
−−−−−→
n→+∞

1

More generally: any sequence verifying this property can be compressed with nH(X) bits(
see Lecture 3

)
24



NON CONSTRUCTIVE PROOF

But is it the end of the story for compression?

No! The proof is non-constructive, how do we compress? If we use Sδ , do we know its description?

Sδ has exponential size ≈ 2nH(X) : deciding if x is in or not is potentially hard

Furthermore, we need n
(
number of outputs by the source

)
to be large to reach the optimality!

−→ In what follows: an efficient compression algorithm reaching the theoretical limits

even for small n
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COMPRESSION WITH SYMBOL CODES



WHAT WE DID AND OUR AIM

We defined a lossy compression using fixed length block codes: as n grows, we can encode n

i.i.d. sources (x1, . . . , xn) into a block of n · (H(X) + ε) bits with vanishing probability of error

−→ We verified the possibility of compression, but the block coding defined did not give a

practical algorithm :(

Now:

We study practical data compression algorithms but with variable-length compression for small

block sizes and that are not lossy
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THE KEY IDEA

Key idea:

Shorter compression to the more probable outcomes and longer compression to the less

probable

• Implications if a compression is lossless? Some compressions are shortened other have to

be lengthened but by how much? Kraft inequality. . .

• Making compression practical? The fastest compression and decompression algorithms

• Optimal compression? Is the best achievable compression while being efficient is the

entropy?

Source coding theorem with symbol codes (informal):

Given a source X, we can efficiently compute a variable-length compression for which

decompression is efficient and whose compression average length belongs to [H(X),H(X) + 1)

−→ The compression we will exhibit is known as Huffman encoding!
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SYMBOL CODES

X+ denotes the set of all strings of finite length composed of elements from X

Symbol codes and codewords:

Mapping φ from X to {0, 1}+ . Given x ∈ X , then φ(x) is called a codeword and ℓ(x) will denote

its length

The extended code φ+ is the mapping from X+ to {0, 1}+ obtained by concatenation, without

punctuation, of the corresponding codewords:

φ
+(x1, . . . , xL)

def
= φ(x1) · · ·φ(xL)

Symbol codes are variable-length!

An example:

xi φ(xi)
a 0
b 10
c 110
d 111

29



MORSE CODING

Key idea: shorter compression to the more probable outcomes and longer compression to the less

probable

−→ It is the case for the Morse coding! For instance E requires only one symbols, Z four

A .− N −.

B − . . . O − − −
C −. − . P . − −.

D −.. Q . − −.−
E . R . − .

F .. − . S . . .

G − − . T −
H . . . . U ..−
I .. V . . .−
J . − −− W . − −
K −.− X −..−
L . − .. Y −. − −
M −− Z − − ..

Issue: ambiguity

It is impossible to distinguish BAM and NIJ
(
− . . . . − − −

)
. In practice: a void between

transmission
(
adapted for “human” conversations

)
−→ Morse is ternary coding: need to add a separator symbol {·,−,⊥sep} 30



SYMBOL CODES: UNIQUE DECODING

Ambiguous codes imply loss of information. . .

Non-ambiguous code:

A symbol code φ is said to be non-ambiguous if under the extended code φ+ , no two distinct

strings have the same encoding, i.e.,

∀x, y ∈ X+
, x 6= y =⇒ φ

+(x) 6= φ
+(y)

Non-ambiguous code: necessary for lossless compression

Non-ambiguous codes are uniquely decodable code:

For any non-ambiguous code,
φ+(x) 7−→ x

is a well-defined mapping which is called decoding
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SYMBOL CODES: PREFIX CODES

Prefix codes: no codeword is the beginning of another codeword

Prefix codes:

A symbol code is called a prefix code if no codeword is a prefix of any other codeword, i.e.,

∀(x, y) ∈ X :
(
∃t ∈ {0, 1}+ s.t. φ(x)t = φ(y)

)
⇒

(
φ(x) = φ(y)

)

Proposition:

A prefix code is uniquely and efficiently decodeable

Proof:

Decoding procedure: given φ(x1) · · ·φ(xL), looking from left to right until identifying the first

codeword φ(x1) and etc
(
it does not require a special marker between words as with Morse

coding
)
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EXAMPLES AND COUNTER-EXAMPLES

X φ0(xi) φ1(xi) φ2(xi) φ3(xi) φ4(xi)
x1 0 0 1 0 0
x2 11 010 10 10 01
x3 11 01 100 110 011
x4 10 10 1000 111 111

• φ0 : ambiguous

• φ1 : ambiguous; not unique decoding: 010 is x2 or x1x4 or x3x1?

• φ2 : unique decoding but not prefix code

• φ3 : prefix code

• φ4 : not prefix code but it can be uniquely decoded
(
why?

)
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PREFIX CODES AND TREE REPRESENTATION

Prefix codes as tree:

Prefix codes can be represented on binary trees: codewords are given by leaves branches

Consider

X φ(xi)
x1 1
x2 01
x3 001
x4 000

, then

x4

0

x3

1

x2

1

x1

10

0

34



EXPECTED LENGTH

Expected length:

Given a distribution of symbols X : Ω → X , the expected length of a symbol code

φ : X → {0, 1}+ is

L(φ,X )
def
=

∑
x∈X

ℓ(x) p(x) where p(x) def
= P(X = x)

−→ Expected length: measure of efficiency! We want it to be small
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SOME EXAMPLES

X φ0(xi) p(xi) ℓ(xi) φ1(xi) p(xi) ℓ(xi) φ2(xi) p(xi) ℓ(xi)
a 00 1

4 2 0 1
4 1 0 1

2 1
b 01 1

4 2 1 1
4 1 01 1

4 2
c 10 1

4 2 00 1
4 2 011 1

8 3
d 11 1

4 2 11 1
4 2 111 1

8 3

• L(φ0,X ) = 2 is uniquely decodable
(
prefix code

)
• L(φ1,X ) = 1.75 but it is not uniquely decodable: φ1(aa) = φ1(c)

• L(φ2,X ) = 1.75 is uniquely decodable but not prefix
(
exercise

)

What do you conclude?
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A PRICE TO PAY?

X φ0(xi) p(xi) ℓ(xi) φ2(xi) p(xi) ℓ(xi)
a 00 1

4 2 0 1
2 1

b 01 1
4 2 01 1

4 2
c 10 1

4 2 011 1
8 3

d 11 1
4 2 111 1

8 3

• L(φ0,X ) = 2 is uniquely decodable

• L(φ2,X ) = 1.75 is uniquely decodable

If we shorten 00 7→ 0 in φ0 , then we keep unique decodability like in φ2 if we we lengthen other

codewords
(
e.g. 11 7→ 111

)

Constrained budget which can be spent on codewords, with shorter codewords being more

expensive

What is the nature of this budget?

37



YOUR CONSTRAINED BUDGET

The code containing all the length 3 codewords has size 23

But what does happen if we want a prefix code with 0 and only length 3 codewords?

−→ The only left possibility is {100, 110, 101, 111} which has size 22 = 23
2

Give me your money:

You have 1 budget, codewords of length ℓ have cost 2−ℓ . Codewords of length 3
(
resp. 1

)
have

cost 1
8

(
resp. 1

2

)
. If you spend more that your money, the code won’t be uniquely decodable.

But, if ∑
x∈X 2−ℓ(x) ≤ 1

is the code-uniquely decodable?

Yes: Kraft-McMillan inequalities

38
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KRAFT INEQUALITY

McMillan’s theorem:

There exists a uniquely decodable code with codewords of length n1, . . . , nK if and only if
K∑
i=1

1
2ni

≤ 1

Prefix codes are easy to decode, could we restrict our attention to prefix codes to simplify our life?(
prefix codes have a nice representation by trees

)
Kraft inequality with prefix codes:

There exists a prefix code with codewords of length n1, . . . , nK if and only if
K∑
i=1

1
2ni

≤ 1

Proofs:

See Exercise Session

−→ Uniquely decodable codes are not better than prefix codes!
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TAKING ADVANTAGE OF THE PROBABILITIES

Aim: minimizing over the code φ

L(φ,X ) =
∑
x∈X

ℓ(x) p(x) where the p(x) def
= P(X = x) are fixed

Short codewords to the more probable symbols: reducing the expected length

But, Kraft inequality tells us that shortening some codewords necessarily lengthen others!
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SOURCE CODING THEOREM FOR SYMBOL CODES
Shannon’s theorem:

For any distribution X : Ω → X , there exists a prefix code φ with expected length satisfying

L(φ,X ) < H(X) + 1

Furthermore, for any prefix code,
H(X) ≤ L(φ,X )

Proof:

• Lower-bound. First, define the distribution q(x) def
= 2−ℓ(x)

z where z def=
∑

x′ 2
−ℓ(x′) which

means that ℓ(x) = log2 1/q(x) − log2 z. By Gibb’s inequality,∑
x
p(x) log2 1/q(x) ≥

∑
x
p(x) log2 1/p(x)

Furthermore, by Kraft’s inequality,
z =

∑
x′

2−ℓ(x′) ≤ 1

Therefore,
L(φ,X ) =

∑
x
p(x)ℓ(x) =

∑
x
p(x) log2 1/q(x) − log2 z

≥
∑
x
p(x) log2 1/p(x) − log2 z

≥ H(X)
(
as z ≤ 1

)
41



OPTIMAL CASE

Before, showing the upper-bound: some remarks

Remarks:

• Optimal source codelengths. L(φ,X ) is minimized and is equal to H(X) if and only if the

codelengths are equal to the Shannon information:∑
x
2−ℓ(x) = 1 and ℓ(x) = log2 1/p(x) but not necessarily an integer. . .

• Implicit probabilities defined by codelengths. Conversely, any choice of codelengths implicitly

defines a probability distribution

q(x) =
2−ℓ(x)∑
x′ 2−ℓ(x′)

for which those codelengths would be the optimal codelengths
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FINISHING THE PROOF

Proof:

• Upper-bound. To mimic the proof of the lower-bound, set,

ℓ(x) def
= dlog2 1/p(x)e

where dℓe denotes the smallest integer greater than or equal to ℓ

By “Kraft inequality and prefix codes” (Slide 39), it exists a prefix code with these lengths

as Kraft’s inequality is satisfied,∑
x
2−ℓ(x) =

∑
x
2−⌈log2 1/p(x)⌉ ≤

∑
x
2− log2 1/p(x) =

∑
x
p(x) = 1.

Then we conclude,

L(φ,X ) =
∑
x
p(x)dlog2 1/p(x)e <

∑
x
p(x) (log2 1/p(x) + 1) = H(X) + 1
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OPTIMAL SOURCE CODING: HUFFMAN CODING



MOTIVATION

Proof of source coding theorem: the code we explicit
(
during the upper-bound

)
is not optimal!

Optimal code:

A uniquely decodeable coding φopt is said to be optimal if for all uniquely decodeable coding φ,

L(X , φopt) ≤ L(X , φ)

Motivation:

An efficient algorithm to compute an optimal and prefix code with a given outcome distribution

−→ Prefix codes enjoy an easy decoding algorithm via a “tree representation”!
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HUFFMAN CODE

Huffman coding algorithm: recursive construction

• If L = ♯X = 2, return φL = {0, 1}

• Otherwise, given X = {x1, . . . , xL} and p(x1) ≥ · · · ≥ p(xL), build the new alphabet

Y = {x1, · · · , xL−2, yL−1} with probability of outcomes q(·)

q(xi) = p(xi) and q(yL−1) = p(xL−1) + p(xL)

Let φL−1 be a Huffman code for Y , then build φL as:

− φL(xk) = φL−1(xk), for k = 1, . . . , L− 1

− φL(xL−1) = φL−1(yL−1) 0

− φL(xL) = φL−1(yL−1) 1

Theorem:

Huffman coding is a prefix code which is optimal

Furthermore, its average length belongs to [H(X),H(X) + 1)

−→ In particular: if φH is the Huffman coding, then for all uniquely decodable code

L(X , φH) ≤ L(X , φ)
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HUFFMAN CODING AS TREE

Huffman coding: use the probabilities of outcomes p(xi)’s to build a tree from the leaves!
It equilibrates the probabilities at each level

xi p(xi) − log2 p(xi) φ(xi) ℓ(x)
a 0.43 1.22 0 1
b 0.17 2.56 000 3
c 0.15 2.74 001 3
d 0.11 3.18 011 3
e 0.09 3.47 0100 4
f 0.05 4.32 0101 4

0.14

e

0

f

1
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HUFFMAN CODING AS TREE

Huffman coding: use the probabilities of outcomes p(xi)’s to build a tree from the leaves!
It equilibrates the probabilities at each level

xi p(xi) − log2 p(xi) φ(xi) ℓ(x)
a 0.43 1.22 1 1
b 0.17 2.56 000 3
c 0.15 2.74 001 3
d 0.11 3.18 011 3
e 0.09 3.47 0100 4
f 0.05 4.32 0101 4

 

H(X) = 2.248, L(φ,X ) = 2.28

1

0.57

0.32

b

0

c

1

0.25

0.14

e

0

f

1

d

1

a

10

0 1

0

0.090.05

0.11

0.43

0.17 0.15

Exercise:

Decompress: 010110010100
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DISADVANTAGE OF HUFFMAN CODE (I)

Huffman algorithm produces an optimal symbol code: but not the end of the story

We need to know beforehand the probabilities p(xi)’s! And if we “make mistakes” by using

another distribution q, then Huffman code compresses with rate ≈ H(p) + DKL(p||q)

instead of H(p)
(
see Exercise Session

)
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DISADVANTAGE OF HUFFMAN CODE (II): PACKING SYMBOLS

There is also an issue coming from a priori probabilities

When compressing ℓ symbols x1, . . . , xℓ , Huffman code consider them as independent(
not realistic in the case for instance of the language

)

An idea:

Pack symbols of X into symbols belonging to X ℓ for ℓ large enough:

• Don’t take into account a priori probabilities but more realistic

• L(φ,Xℓ)

H(X⊗ℓ)
−−−−−→
ℓ→+∞

1

However, memory complexity ♯
(
X ℓ

)
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BEYOND SYMBOL CODES

Huffman codes were widely trumpeted as “optimal”: but have many defects for practical purposes!

They are optimal among symbol codes: each x ∈ X is mapped to an integer number of bits

Could we design other codes than symbol codes?

−→ Stream Codes: see arithmetic coding at Lecture 4
(
Programming Session

)
!
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EXERCISE SESSION
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