LECTURE 1 INTRODUCTION TO INFORMATION THEORY

Information Theory

Thomas Debris-Alazard

Inria, École Polytechnique

Information Theory: the great Shannon

→ Without Shannon: no efficient communications, storages!

But implications are much deeper . . .

If communications, storages are not efficient, do we only need to improve physical devices?

 \rightarrow Information theory and coding theory offer an alternative (and much more exciting)!

- Source: text, voice, image, video, . . .
- Channel: radio, optical fiber, magnetic support, . . .
- Noise: electromagnetic disturbance , scratches, . . .

- Efficiency: transmit a given quantity of "information" with the minimal amount of resources
- Reliability: provide to users a sufficiently accurate information from the source

Source coding: remove redundancy/compress as much as possible

An example: compress the language In French, E is frequent, Z is not \longrightarrow E is compressed with fewer "symbols" than Z

Channel coding: add redundancy to recover messages in the presence of noise

An example: spell your name over the phone, send first names! M like Mike, O like Oscar, R like Romeo, A like Alpha, I like India and N like November M: message : Mike: encoding

Source and Channel coding are "dual"

Given a source, what is the ultimate data compression?

 \longrightarrow Answer: the entropy H

Given a noisy channel, what is the best transmission rate of communication?

 \longrightarrow Answer: the channel capacity C

SOME APPLICATIONS OF INFORMATION THEORY

Information theory is not only about communication and storages. . .

PROGRAM OF THIS COURSE

----> Basics of information theory and some of its applications

- Theoretical limits for compression and transmission and how to reach them efficiently
- Application to probability and statistics (typical sequences, large deviations)
- Study of linear error correcting codes

References:

Cover and Thomas, Elements of Information Theory,

 \longrightarrow Classical introduction to information theory

Sendrier's lecture notes: https://www.rocq.inria.fr/secret/Nicolas.Sendrier/thinfo.pdf,

 \longrightarrow Nice for an "algorithmic" point of view

MacKay, Information Theory, Inference, and Learning Algorithms,

→ Nice to get many "intuitions"

1. An exam (3 hours): 4 pages of personal notes are allowed

 \longrightarrow Three exercises seen during the Exercise Sessions will be at the exam

2. Presentation of a research article or a programming project (30min)

We will be doing a lot of discrete probabilities

 \longrightarrow Discrete probabilities need enumeration, no Lebesgue integration

In particular: no hard formalism is involved!

DISCRETE PROBABILITIES

A source (language, computer code, ...) is modelized according to a discrete random variable

 \longrightarrow See the programming project or . . . any generative Al!

A noisy channel (scratch your parents' CD-ROMs, download a video stored across the world,
 ...) is modelized according to a discrete random variable

 \rightarrow Very accurate in practice (otherwise no Internet)

DISCRETE PROBABILITY SPACE

- An alphabet: X discrete (finite in almost all cases in this course)
- An event: $\mathcal{E} \subseteq \mathcal{X}$
- Random variable: $X : \Omega \rightarrow \mathcal{X}$ (we don't care of Ω)
- ▶ Probability law / Associated distribution: $(\mathbb{P}(\mathbf{X} = x))_{x \in \mathcal{X}}$

Abuse of notation:

$$\mathbb{P}(\mathsf{X}=\mathsf{x})=\mathbb{P}_{\mathsf{X}}(\mathsf{x})=p(\mathsf{x})$$

Be careful: given random variables X and Y,

$$p(x) = \mathbb{P}(X = x)$$
 and $p(y) = \mathbb{P}(Y = y)$

Remark: the probability law uniquely determines the random variable

Whatever is the event \mathcal{E}_{i}

$$\mathbb{P}(\mathsf{X} \in \mathcal{E}) = \sum_{x \in \mathcal{E}} p(x)$$

Notation: p(x, y) denotes

$$\mathbb{P}(\mathbf{X} = x \text{ and } \mathbf{Y} = y) = \mathbb{P}(\mathbf{X} = x, \mathbf{Y} = y)$$

Random variables X and Y are said to be independent if

$$p(x,y) = p(x) \cdot p(y)$$

Important notation: i.i.d.

 X_1, \ldots, X_n are said Independent and Identically Distributed (i.d.d.) when they are

1. independent, $\forall \mathcal{I} \subseteq \{1, \dots, n\}, \forall (x_i)_{i \in \mathcal{I}}, \mathbb{P}(\mathbf{X}_i = x_i, i \in \mathcal{I}) = \prod_{i \in \mathcal{I}} \mathbb{P}(\mathbf{X}_i = x_i)$

2. identically distributed: $\forall i, j, x, \mathbb{P}(\mathbf{X}_i = x) = \mathbb{P}(\mathbf{X}_j = x)$

$$\begin{aligned} \mathsf{X} &: \Omega \longrightarrow \mathcal{X} \\ \mathbb{E}(\mathsf{X}) &= \sum_{x \in \mathcal{X}} x \ p(x) \end{aligned}$$

Transfer formula:

Given $f: \mathcal{X} \longrightarrow \mathbb{C}$,

$$\mathbb{E}\left(f(\mathsf{X})\right) = \sum_{x \in \mathcal{X}} f(x) \ p(x)$$

Be careful! $\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$ is always true $\Bigl(linearity \ of \ the \ expectation \Bigr)!$ No independence condition. . .

Exercise: Bernoulli random variables and expectation

Given X_1, \ldots, X_n i.d.d. as Bernoulli random variables of parameter p, *i.e.*, $X_i : \Omega \to \{0, 1\}$ and $\mathbb{P}(X_i = 1) = p$. Compute,

$$\mathbb{E}\left(\sum_{i=1}^{n} \mathbf{X}_{i}\right)$$

Theorem: weak law of large numbers

 X_1, \ldots, X_n be i.i.d. with expected value $\mu = \mathbb{E}(X_1) = \cdots = \mathbb{E}(X_n)$. Let,

$$\overline{\mathbf{X}}_n \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n \mathbf{X}$$

Then,

$$\overline{X}_n \underset{n \to +\infty}{\overset{P}{\longrightarrow}} \mu = \mathbb{E}(\overline{X}_n), \quad \text{i.e., } \forall \varepsilon > 0, \ \lim_{n \to +\infty} \mathbb{P}\left(\left|\overline{X}_n - \mu\right| < \varepsilon\right) = 1$$

Taking the average of the results obtained from a large number of independent and identical trials

tends to become closer to the expected value as more trials are performed

Is expectation enough to "describe" a random variable?

(Spoil: no, but in many cases it is almost enough, it gives us "what we expect")

$$X: \Omega \longrightarrow \mathcal{X}$$
Variance: $\mathbb{V}(X) \stackrel{\text{def}}{=} \mathbb{E}\Big((X - \mathbb{E}(X))^2 \Big) \underset{\text{linearity of } \mathbb{E}(\cdot)}{=} \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \sum_{x \in \mathcal{X}} x^2 p(x) - \left(\sum_{x \in \mathcal{X}} x p(x)\right)^2$
Standard Deviation: $\sigma(X) \stackrel{\text{def}}{=} \sqrt{\mathbb{V}(X)}$

In practice: expectation good approximation

 $X \approx \mathbb{E}(X)$, or more precisely: $X \in [\mathbb{E}(X) - \sigma(X), \mathbb{E}(X) + \sigma(X)]$ with good probability

$$\longrightarrow$$
 Large deviation theory: study $\mathbb{P}(X \gg \mathbb{E}(X))$

Be careful!

X and Y independent $\implies \mathbb{V}(X + Y) = \mathbb{V}(X) + \mathbb{V}(Y)$ (the variance is not necessarily additive)

Alphabet $\mathcal{X} \times \mathcal{Y}$ endowed with the probability law p(x, y),

1

Marginal LawConditional Probability
$$\mathbb{P}(\mathbf{X} = x) = p(x) = \sum_{y \in \mathcal{Y}} p(x, y)$$
 $\mathbb{P}(\mathbf{X} = x \mid \mathbf{Y} = y) = p(x|y) = \frac{p(x,y)}{p(y)}$ (when $p(y) \neq 0$) $\mathbb{P}(\mathbf{Y} = y) = p(y) = \sum_{x \in \mathcal{X}} p(x, y)$ $\mathbb{P}(\mathbf{Y} = y \mid \mathbf{X} = x) = p(y|x) = \frac{p(x,y)}{p(x)}$ (when $p(x) \neq 0$)

Marginal law: the knowledge of
$$(p(x, y))_{(x, y) \in \mathcal{X} \times \mathcal{Y}}$$
 is enough to know $(p(x))_{x \in \mathcal{X}}$

Conditional probability: what is the probability of x knowing that y_0 happened? Enough to know $(p(x, y))_{(x,y) \in \mathcal{X} \times \mathcal{Y}}$.

Law of total probability:

Given disjoint and complete events $\mathcal{B}_1, \ldots, \mathcal{B}_n$, *i.e.*,

1.
$$\mathcal{B}_i \cap \mathcal{B}_j = \emptyset$$
 if $i \neq j$

2.
$$\bigcup_{i=1}^{n} \mathcal{B}_i = \Omega$$

Then,

$$\mathbb{P}(\mathsf{X} \in \mathcal{E}) = \sum_{i=1}^{n} \mathbb{P}\left(\mathsf{X} \in \mathcal{E} \mid \mathcal{B}_{i}\right) \mathbb{P}(\mathcal{B}_{i})$$

One of the most useful fact in probability computations!

Exercise:

A box contains two coins, one is biased to head with probability $1/2 + \varepsilon$, the other one is biased to tail with probability $1/2 + \varepsilon$. You choose a coin uniformly at random and you throw it. What is the probability to get head?

OVERVIEW OF INFORMATION THEORY

Information Theory answers the following two (fundamental) questions:

- Ultimate data compression? Entropy
- Ultimate transmission rate of communication? Channel capacity

→ Information Theory is much more!

A common denominator: typical sequences/realisations!

Anecdote:

At the police station, is it easier to answer the following questions: what were you doing

three Monday ago? or what were you doing a **typical** Monday?

 \longrightarrow Typical realisations: simple mean to answer hard questions!

 X_1, \ldots, X_n be i.i.d. with $\mathbb{P}(X_i = 1) = p < 1/2$

What is the most probable sequence/realisation?

 X_1, \ldots, X_n be i.i.d. with $\mathbb{P}(X_i = 1) = p < 1/2$

What is the most probable sequence/realisation?

0...0 appears with probability: $(1 - p)^n$

 \longrightarrow Most probable event!

But do you expect this realisation?

 X_1, \ldots, X_n be i.i.d. with $\mathbb{P}(X_i = 1) = p < 1/2$

What is the most probable sequence/realisation?

0...0 appears with probability: $(1 - p)^n$

 \longrightarrow Most probable event!

But do you expect this realisation? No!

 X_1, \ldots, X_n be i.i.d. with $\mathbb{P}(X_i = 1) = p < 1/2$

What is the most probable sequence/realisation?

0...0 appears with probability: $(1 - p)^n$

 \longrightarrow Most probable event!

But do you expect this realisation? No!

Hamming weight:

Given $\mathbf{x} = (x_1, \dots, x_n) \in \{0, 1\}^n$, its Hamming weight is defined as $|\mathbf{x}| \stackrel{\text{def}}{=} \sharp \{i : x_i \neq 0\}$

Chernoff's bound:

$$\forall \varepsilon > 0, \ \mathbb{P}\left(\left|\sum_{i=1}^{n} X_{i} - np\right| \ge \varepsilon n\right) \le 2e^{-2\varepsilon^{2}n}$$

Typical sequence/realisation: x's such that $|\mathbf{x}| \approx np$

Typical events are an **extremely powerful** tools for proofs!

 \longrightarrow and the most important "spirit" of this course. . .

ENTROPY AND TYPICAL SEQUENCES

Given a classical source of information $(X_1, \ldots, X_n) \in \mathcal{X}^n$

Your new motto: focus on typical sequences!

Crucial question:

How many typical sequences are there?

Entropy (informal definition):

Entropy
$$(X_1, \ldots, X_n) \stackrel{\text{def}}{=} \log_2 \sharp T \iff \sharp T = 2^{\text{Entropy}(X_1, \ldots, X_n)}$$

WHERE ENTROPY IS COMING FROM

Entropy:

$$H(\mathbf{X}_1,\ldots,\mathbf{X}_n) \stackrel{\text{def}}{=} -\mathbb{E}\Big(\log_2 \mathbb{P}(\mathbf{X}_1,\ldots,\mathbf{X}_n)\Big) = -\sum_{x_1,\ldots,x_n \in \mathcal{X}} p(x_1,\ldots,x_n) \cdot \log_2 p(x_1,\ldots,x_n)$$

 $\left(\log_2 \mathbb{P}(X_1,\ldots,X_n) \text{ random variable outputting } \log_2 p(x_1,\ldots,x_n) \text{ with probability } p(x_1,\ldots,x_n)\right)$

Our reasoning to get this formula:

Non typical sequences (x1,...,xn) never appear, i.e.,

$$\mathbb{P}(\mathbf{X}_1 = x_1, \ldots, \mathbf{X}_n = x_n) \approx 0$$

Typical sequences (x₁,..., x_n) all appear with the "same" probability (those with smaller probabilities are non-typical) given by their expected value to appear, *i.e.*,

$$\log_2 \mathbb{P}(\mathbf{X}_1 = x_1, \dots, \mathbf{X}_n = x_n) \approx \mathbb{E}\Big(\log_2 \mathbb{P}(\mathbf{X}_1, \dots, \mathbf{X}_n)\Big) = -H(\mathbf{X}_1, \dots, \mathbf{X}_n)$$

i.e., $\mathbb{P}(\mathbf{X}_1 = x_1, \dots, \mathbf{X}_n = x_n) \approx 2^{-H(\mathbf{X}_1, \dots, \mathbf{X}_n)}$

Conclusion (informal): T be the set of typical sequences

$$1 = \sum_{x_1, \dots, x_n} p(x_1, \dots, x_n) \approx \sum_{(x_1, \dots, x_n) \in T} p(x_1, \dots, x_n) \approx \sum_{(x_1, \dots, x_n) \in T} 2^{-H(X_1, \dots, X_n)} \approx \# T \cdot 2^{-H(X_1, \dots, X_n)}$$

Let's focus on a simple case: $X_1, \ldots, X_n \in \{0, 1\}^n$ be i.i.d with $p \stackrel{\text{def}}{=} \mathbb{P}(X_i = 1)$

$$H(X_1, \ldots, X_n) = nh(p)$$
 where $h(p) \stackrel{\text{def}}{=} -p \log_2 p - (1-p) \log_2(1-p)$ (binary entropy)

WHERE (BINARY) ENTROPY IS COMING FROM

Given
$$(\mathbf{X}_1, \dots, \mathbf{X}_n) \in \{0, 1\}^n$$
 be i.i.d with $p \stackrel{\text{def}}{=} \mathbb{P}(\mathbf{X}_i = 1)$

Entropy formula is coming from two facts:

- (i) log₂ maps product into sum
- (ii) a random variable concentrates around its expectation

$$\log_{2} \mathbb{P}((X_{1}, \dots, X_{n})) \stackrel{\text{indep}}{=} \log_{2} \prod_{i} \mathbb{P}(X_{i})$$

$$\stackrel{(i)}{=} \log_{2} \mathbb{P}(X_{1}) + \dots + \log_{2} \mathbb{P}(X_{n})$$

$$\stackrel{(ii)}{\approx} \mathbb{E}(\log_{2} \mathbb{P}(X_{1})) + \dots + \mathbb{E}(\log_{2} \mathbb{P}(X_{n}))$$

$$= (p \log_{2} p + (1 - p) \log_{2}(1 - p)) + \dots + (p \log_{2} p + (1 - p) \log_{2}(1 - p))$$

$$= -nh(p)$$

Conclusion (informal):

All non-zero
$$\mathbb{P}(X_1 = x_1, \ldots, X_n = x_n)$$
 verify

$$\log_2 \mathbb{P}(\mathbf{X}_1 = x_1, \cdots, \mathbf{X}_n = x_n) \approx -nh(p), \text{ i.e., } \mathbb{P}(\mathbf{X}_1 = x_1, \cdots, \mathbf{X}_n = x_1) \approx 2^{-nh(p)}$$

 \longrightarrow We expect $2^{nh(p)}$ typical sequences (by using $\sum_{x_1,...,x_n} \mathbb{P}(\mathbf{X}_1 = x_1,...,\mathbf{X}_n = x_n) = 1$)!

Two Problematics:

• Source coding: efficient compression of a given source with a maximal compression rate

Realisation: $\mathbf{x} = (x_1, \dots, x_n) \in \{0, 1\}^n$ where $\mathbb{P}(x_i = 1) = p$

Optimal compression size $\approx nh(p)$ bits

 Channel Coding: efficient transmission of a given source through a noisy channel with the minimal amount of redundancy; maximal amount of information bits

Realisation:
$$\mathbf{x} = (x_1, \dots, x_n) \in \{0, 1\}^n \rightsquigarrow \mathbf{y} = (y_1, \dots, y_n) \in \{0, 1\}^n$$
 where $\mathbb{P}(y_i \neq x_i) = p$

Optimal number of bits to transmit $\approx n(1 - h(p))$ bits (nh(p) bits of redundancy)

A common quantity quantifies these limits: entropy (binary entropy in this case)

$$h(p) \stackrel{\text{def}}{=} -p \log_2 p - (1-p) \log_2(1-p)$$

SOURCE CODING: GEOMETRIC INTERPRETATION

Compression algorithm

- 1. Describe elements of T with bits: it requires $\approx nh(p)$ bits as $\sharp T \approx 2^{nh(p)}$
- 2. Given a realisation **x**: if $\mathbf{x} \in T$ describe it with bits, otherwise output fail \perp

The compression works with probability pprox 1 and to decompress we just inverse the bit description

of elements in T

Conclusion:

We can compress with nh(p) bits with a success probability pprox 1

The set of typical sequences T is the smallest set such that $\mathbb{P}((X_1, \ldots, X_n) \in T) \approx 1$

 \longrightarrow By smaller we mean exponentially smaller, i.e., it does not exist S such that $\sharp S = 2^{-cn} \cdot \sharp T$

for some c > 0 such that

$$\mathbb{P}\Big(\left(X_1,\ldots,X_n\right)\in S\Big)\approx 1$$

Remark:

Up to now we did not define rigorously what do we mean by "typical set", wait Lecture 2 and 3

 \longrightarrow Conclusion: $\log_2 \#T$ is the optimal number of bits to compress!

CHANNEL CODING: GEOMETRIC INTERPRETATION

 $(\mathbf{X}_1, \cdots, \mathbf{X}_n) \in \{0, 1\}^n$ be i.i.d. with $p \stackrel{\text{def}}{=} \mathbb{P}(\mathbf{X}_i = 1)$

• Channel Coding: we transmit $\mathbf{c} = (c_1, \dots, c_n) \in \{0, 1\}^n$, the receiver gets

 $(c_1 + X_1, \dots, c_n + X_n)$ and wants to recover c

size ball \times words which can be transmitted without confusion $\approx 2^n$

$$\left(2^{nh(p)} \times 2^{n(1-h(p))} = 2^n\right)$$

Typical sequences seem to be useful to prove (sequences X_i i.d.d. Bernoulli of parameter p)

- nh(p) bits for optimal compression
- n(1 h(p)) optimal number of bits which can be transmitted when the noise rate is p

But how to reach these theoretical limits for compression and transmission?

 \longrightarrow We will use mathematical objects known as **codes**!

Let's focus on the case of transmission of information

CODES TO TRANSMIT INFORMATION (I)

To transmit $\mathbf{m} \in \{0, 1\}^k \xrightarrow{\text{(encoding)}} \mathbf{c} \in \{0, 1\}^n \xrightarrow{\text{noisy}} \mathbf{y} = \mathbf{c} + \mathbf{e}$ Aim: recover \mathbf{m} from \mathbf{y} !

Important Remark:

We mapped k to n > k bits (redundancy): **c** encoding of **m**

Your first (error correcting) code: 3-repetition code

Encoding 1 bit into 3 bits,

 $\begin{array}{cccc} 0 & \mapsto & 000 \\ 1 & \mapsto & 111 \end{array}$

 $\{(000, 111)\}$ is called the three repetition code!

Exercise:

What does it mean to successfully remove an error with the above encoding? Which error can you successfully remove? Why didn't we introduce the 2-repetition code?

CODES TO TRANSMIT INFORMATION (II)

• Encoding: $b \in \{0, 1\} \mapsto bbb \in \{0, 1\}^3$

- Noisy Channel: $bbb \mapsto c_1c_2c_3$ where $\mathbb{P}(c_i \neq b) = p$
- Decoding Strategy: given $c_1c_2c_3 \in \{0,1\}^3$, choose the majority bit

 $001 \longmapsto 0, 011 \longmapsto 1, 101 \longmapsto 1, etc...$

\longrightarrow This strategy is successful if there are $<$ 2 errors	
Successful Decoding with probability	Unsuccessful Decoding with probability
$(1-p)^3 + 3p(1-p)^2$	$p^3 + 3(1-p)p^2$

Suppose that p = 0.01,

- The decoding procedure fails with probability 3×10^{-4}
- \blacktriangleright The same decoding procedure with the 5 repetition code fails with probability $\approx 10^{-5}$

Which code will you use for communication?

prob. successfully decoding 5-repetition code \gg prob. successfully decoding 3-repetition code

But...

prob. successfully decoding 5-repetition code \gg prob. successfully decoding 3-repetition code

But...

Encoding 1 bit necessitates 5 > 3 bits!

 \longrightarrow Higher communication cost with the 5-repetition code. . .

The 3-repetition code has rate 1/3 = 0.33...

The 5-repetition code has rate 1/5 = 0.2

Is the rate necessarily go to 0 in order to successfully decoding with probability tending to 1?

No! Second Shannon's theorem

 \longrightarrow \forall Rate \leq Channel Capacity

It is possible to decode with probability of success tending to 1!

p = 0.01: the 3-repetition code fails to decode with probability 3 \times 10⁻⁴ with a rate 0.33...

But capacity for 0.01: C(0.01) = 1 - h(0.01) = 0.919

We can do much better! Even with success probability tending to 1

BINARY SYMMETRIC CHANNEL AND OTHERS

Up to now we considered the following noise model:

 \rightarrow There many other (realistic) channel models! For instance by scratching a CD-ROM you remove bits:

Is it "easier" to decode the 3-repetition repetition when BSC or BEC? What do you conclude?

ENTROPY, WHAT ELSE?

Entropy is defined such that number of typical sequences of a random variable X is given by $2^{\text{Entropy}(X)}$

 \rightarrow We need Entropy(X) to describe realisations of X (non-typical sequences "never" appear)

Informal reasoning:

To enumerate typical sequences:

- 1. We compute the expected value of $-\log_2 \mathbb{P}(X = x)$ (over x)
- 2. This expected value is defined as the entropy
- 3. We deduce that the $\mathbb{P}(\mathbf{X} = x)$ are "equal" to $2^{-\text{Entropy}(\mathbf{X})}$ (for typical sequences) or 0 (for non-typical sequences)
- 4. As probabilities sum to 1, there are $2^{Entropy(X)}$ typical sequences

Motivated by our discussion on typical sequences, entropy of X is defined as the average value of

$$-\log_2 \mathbb{P}(X = x) = -\log_2 p(x) \quad (over \ x \in \mathcal{X})$$

Entropy:

Given $X : \Omega \to \mathcal{X}$, its entropy is defined as:

$$H(\mathbf{X}) \stackrel{\text{def}}{=} -\sum_{x \in \mathcal{X}} p(x) \cdot \log_2 p(x)$$

with the convention that $0 \cdot \log_2 0 = 0$

Remark:

Given some random variables $X_1 \in \mathcal{X}_1, \ldots, X_n \in \mathcal{X}_n$, their (joint) entropy is defined as the

entropy of
$$\mathbf{X} \stackrel{\text{def}}{=} (\mathbf{X}_1, \dots, \mathbf{X}_n)$$
, *i.e.*

$$H(\mathbf{X}_1, \dots, \mathbf{X}_n) = -\sum_{x_1 \in \mathcal{X}_1, \dots, x_n \in \mathcal{X}_n} p(x_1, \dots, x_n) \log_2 p(x_1, \dots, x_n)$$

Proposition:

Suppose that X_1, \ldots, X_n are independent, then,

$$H(\mathbf{X}_1,\ldots,\mathbf{X}_n)=\sum_{i=1}^n H(\mathbf{X}_i)$$

Proof:

See Exercise Session

Entropy: amount of bits to describe the outcome of a random variable

(think about the example of the compression)

How many bits do we need to describe X but when we only know the outcome of Y?

 \longrightarrow The average value of $-\log_2 \mathbb{P}(\mathbf{X} = x \mid \mathbf{Y} = y) = -\log_2 p(x \mid y)$ (over $x \in \mathcal{X}$ and $y \in \mathcal{Y}$)

Conditional entropy:

Given X and Y, their conditional entropy is defined as,

$$H(\mathbf{X} \mid \mathbf{Y}) \stackrel{\text{def}}{=} -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log_2 p(x \mid y)$$

- H(X): amount of bits to describe possible realisations of X
- H(X | Y): amount of bits to describe realisation of X knowing the realisation of Y

Are Y outcomes help to describe realisation of X?

Mutual information:

Given X and Y, their mutual information is defined as,

 $I(X,Y) = H(X) - H(X \mid Y)$

Mutual information is also a measure of dependence between X and Y. If outcomes of Y help to

describe outcomes of X, random variables are dependent whereas in the opposite case they are

independent

Some properties:

• Entropy is maximized when $X:\Omega\to \mathcal{X}$ is uniform,

 $H(X) \leq \log_2 \sharp \mathcal{X}$ with equality if and only if X is uniform

• Mutual information is symmetric,

$$I(X,Y) = I(Y,X)$$

• Mutual information is positive (how do you interpret this result?)

$$I(X;Y) \geq 0 \quad \Big(H(X \mid Y) \leq H(X)\Big)$$

• H(X, Y) = H(X) + H(Y) if X and Y are independent (how do you interpret this result?)

Proof:

See Exercise Session

GEOMETRIC INTERPRETATION

Usefulness of this picture: for instance (see exercise session for a proof): H(X | Y) + H(Y) = H(X, Y) and H(Y | X) + H(X) = H(X, Y)

Motivation:

Suppose that we know how X is distributed. But sadly: we are given a random variable $Y \neq X$

What do we loose if we would consider that X were given rather than Y?

 \longrightarrow Kullback Divergence: measure of the distance between two distributions (it measures the inefficiency of assuming that X is given when the true random variable is Y)

Kullback-Leibler divergence:

Let $p(x) \stackrel{\text{def}}{=} \mathbb{P}(\mathbf{X} = x)$ and $q(x) \stackrel{\text{def}}{=} \mathbb{P}(\mathbf{Y} = x)$, $D_{\text{KL}}(\mathbf{X} || \mathbf{Y}) \stackrel{\text{def}}{=} \sum_{x} p(x) \log_2 \frac{p(x)}{q(x)} \in \mathbb{R} \cup \{+\infty\}$

Be careful: $D_{KL}(\cdot||\cdot)$ is not symmetric (assuming X given Y \neq assuming Y given X)

Gibb's inequality:

 $D_{KL}(X||Y) \ge 0$ with equality if and only if X = Y

Gibbs' inequality is probably one of the most important inequality in information theory

Proof:

See Exercise Session

 $D_{KL}(\cdot||\cdot)$ is often useful, not in itself, but because other entropy quantities can be regarded as a special case of $D_{KL}(\cdot||\cdot)$

EXERCISE SESSION