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ORIGIN OF INFORMATION THEORY

Information Theory: the great Shannon

— Without Shannon: no efficient communications, storages! J

But implications are much deeper . ..




BUT DO WE CARE?

If communications, storages are not efficient, do we only need to improve physical devices?

— Information theory and coding theory offer an alternative (and much more exciting)!



COMMUNICATION /STORAGE SYSTEMS

Char@(— Noise

P> Source: text, voice, image, video, . . .
P Channel: radio, optical fiber, magnetic support, . . .

P> Noise: electromagnetic disturbance, scratches, . ..



CHANNEL AND SOURCE CODING

[ Source H Source Coding ]—){Channel Codingli
Cha@ Noise

[ User HDecoding Source}(—gﬁ)ecoding Channeﬂ(;

P Efficiency: transmit a given quantity of “information” with the minimal amount of resources

P Reliability: provide to users a sufficiently accurate information from the source



COMPRESSION VERSUS REDUNDANCY

» Source coding: remove redundancy/compress as much as possible

An example: compress the language
In French, E is frequent, Z is not

— E is compressed with fewer “symbols” than Z

» Channel coding: add redundancy to recover messages in the presence of noise

An example: spell your name over the phone, send first names!
M like Mike, O like Oscar, R like Romeo, A like Alpha, I like India and N like November

M: message ; Mike: encoding

Source and Channel coding are “dual”



IMPORTANT RESULTS

P Given a source, what is the ultimate data compression?

— Answer: the entropy H

P Given a noisy channel, what is the best transmission rate of communication?

— Answer: the channel capacity C

Can we do better?

[

Can we reach these theoretical limits?

Yes! And we know (surprisingly) efficient solutions/algorithms! J




SOME APPLICATIONS OF INFORMATION THEORY

Information theory is not only about communication and storages. . .
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PROGRAM OF THIS COURSE

— Basics of information theory and some of its applications

e Theoretical limits for compression and transmission and how to reach them efficiently
e Application to probability and statistics (typical sequences, large deviations)

e Study of linear error correcting codes

References:
» Cover and Thomas, Elements of Information Theory,

— Classical introduction to information theory

P Sendrier’s lecture notes: https://www.rocq.inria.fr/secret/Nicolas.Sendrier/thinfo.pdf,

— Nice for an “algorithmic” point of view

» MacKay, Information Theory, Inference, and Learning Algorithms,

— Nice to get many “intuitions”



https://www.rocq.inria.fr/secret/Nicolas.Sendrier/thinfo.pdf

EVALUATION OF THIS COURSE

1. An exam (3 hours): 4 pages of personal notes are allowed

— Three exercises seen during the Exercise Sessions will be at the exam

2. Presentation of a research article or a programming project (30min)



A WARNING

We will be doing a lot of discrete probabilities

— Discrete probabilities need enumeration, no Lebesgue integration

In particular: no hard formalism is involved!



DISCRETE PROBABILITIES



HOW TO MODELIZE A SOURCE? A NOISY CHANNEL?

» A source (language, computer code, . .. ) is modelized according to a discrete random

variable

— See the programming project or ... any generative Al!

» A noisy channel (scratch your parents’ CD-ROMs, download a video stored across the world,

.. ) is modelized according to a discrete random variable

— Very accurate in practice (otherwise no Internet)



DISCRETE PROBABILITY SPACE

P> An alphabet: X discrete (ﬁnite in almost all cases in this course)
> Anevent £ C X

» Random variable: X: Q@ — X (we don't care of Q)

> Probability law / Associated distribution: (IP’(X =x)> "
x€

Abuse of notation:
P(X = x) = Px(x) = p(x)
Be careful: given random variables X and Y,

p(x) =P(X=x) and p(y) =P(Y=y)

Remark: the probability law uniquely determines the random variable

Whatever is the event &,

P(X€ £) = 3 p()

xXe€




INDEPENDENCE

Notation: p(x, y) denotes
PX=xandY=y)=PX=x, Y=Y) J

Random variables X and Y are said to be independent if

p(x,y) = p(x) - p(y)

Important notation: i.i.d.

X1, ..., X, are said Independent and Identically Distributed (i.d.d,) when they are

1. independent, VZ C {1,...,n}, V(X)iez, PX; =X;, i € T) = T] P(Xi = X;)
i€z

2. identically distributed: Vi, j,x, P(X; = x) = P(X; = x)
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EXPECTATION

X:Q—X

def

E(X) = 3 xp(¥)
XEX

Transfer formula:
Givenf: X — C,
E(f0) = 32 3 p()
y
Be careful!
E(X+Y) = E(X) + E(Y)
is always true (linearity of the expectation)! No independence condition. . .
v
Exercise: Bernoulli random variables and expectation
Given Xq, . . ., X, i.d.d. as Bernoulli random variables of parameter p, i.e, X;: Q@ — {0,1} and
P(X; = 1) = p. Compute,
E (Z x,)
i=1 )




WEAK LAW OF LARGE NUMBERS

Theorem: weak law of large numbers

X1, ..., Xy be i.i.d. with expected value p = E(X7) = - - - = E(X,). Let,
def 1 o
v e
Xn = E ?71 Xl
Then,

X, 5 p=EX,), ie, ¥e>0, lim u»(
n—+oo

n—+oo

X0 — <5):1

Taking the average of the results obtained from a large number of independent and identical trials

tends to become closer to the expected value as more trials are performed

16



EXPECTATION AND RANDOM VARIABLES

Is expectation enough to “describe” a random variable?

( Spoil: no, but in many cases it is almost enough, it gives us “what we expect” )



VARIANCE AND STANDARD DEVIATION

X:Q— X

2
o . def _ 2 _ 2y 2 _ 2 —
Variance: V(x) & IE( (X — E(X)) ) E() — BX)? = 52 % p(9) <XZ€XX p(x))

linearity of E(-)

Standard Deviation: o(X) e v V(X)

In practice: expectation good approximation

X = E(X), or more precisely: X € [E(X) — o(X), E(X) + o(X)] with good probability

— Large deviation theory: study ]P’(X > ]E(X))

Be careful!

X and Y independent = V(X + Y) = V(X) + V(Y) <the variance is not necessarily additive)
y




JOINT PROBABILITY SPACE AND CONDITIONAL PROBABILITY

Alphabet X x Y endowed with the probability law p(x, y),

Marginal Law Conditional Probability

PX=X) = p(X) = T,ep P(,Y) | PX=x|Y=y) =p(xly) = LA (when p(y) # 0)

P(Y =) = p(Y) = Trex PX,Y) | BY =y | X=x) = p(ylx) = 25 (when p(x) # 0)

» Marginal law: the knowledge of (p(x, y)) is enough to know (p(x))

(xEX XY xex
» Conditional probability: what is the probability of x knowing that y, happened? Enough to

know (p(x, y))(

XYEX XY
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LAW OF TOTAL PROBABILITY

Law of total probability:

Given disjoint and complete events By, ..., By, ie,

1B NB =0ifi#)

n
2. UB=Q

i=1

Then, n
P(X€ &)=Y P(XEE|B)P(B)
i=1 y
One of the most useful fact in probability computations!

Exercise:

A box contains two coins, one is biased to head with probability 1/2 + ¢, the other one is biased to

tail with probability 1/2 + e. You choose a coin uniformly at random and you throw it. What is the

probability to get head?

20



OVERVIEW OF INFORMATION THEORY



INFORMATION THEORY

Information Theory answers the following two (fundamental) questions:

» Ultimate data compression? Entropy

» Ultimate transmission rate of communication? Channel capacity

— Information Theory is much more!

A common denominator: typical sequences/realisations!

Anecdote:
At the police station, is it easier to answer the following questions: what were you doing
three Monday ago? or what were you doing a typical Monday?

— Typical realisations: simple mean to answer hard questions!
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TYPICAL OR MOST PROBABLE?

Xi, ..., Xn be iid. with B(X = 1) = p < 1/2

What is the most probable sequence/realisation?

23



TYPICAL OR MOST PROBABLE?

X1, ... Xy be iid. with B(X; = 1) = p < 1/2

What is the most probable sequence/realisation?
0...0 appears with probability: (1 — p)”
— Most probable event!

But do you expect this realisation?

23



TYPICAL OR MOST PROBABLE?

Xi, ..., Xn be iid. with B(X = 1) = p < 1/2

What is the most probable sequence/realisation?
0...0 appears with probability: (1 — p)”
— Most probable event!

But do you expect this realisation? No!
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TYPICAL OR MOST PROBABLE?

X1, ... Xy be iid. with B(X; = 1) = p < 1/2

What is the most probable sequence/realisation?
0...0 appears with probability: (1 — p)”
— Most probable event!

But do you expect this realisation? No!

Hamming weight:

Given x = (x1, .. .,Xn) € {0,1}", its Hamming weight is defined as
def , .
IX| = 8 {i: x #0}
y
Chernoff’s bound:
n 2
Ve > 0, P(Zxﬁnp an> < 2e7 %N
i=1
y

Typical sequence/realisation: x's such that |x| = np
23



TYPICAL EVENTS

Typical events are an extremely powerful tools for proofs!

— and the most important “spirit” of this course. . .

24



ENTROPY AND TYPICAL SEQUENCES

Given a classical source of information (X1, ..., Xy) € X"

Your new motto: focus on typical sequences!

Xﬂ
T
7 & typical sequences
P((X1,...,X0) €T) =~ 1
Crucial question:
How many typical sequences are there? J

Entropy (informal definition):

Entropy (X, . . ., Xn) & log, #T <= #T = 2EMoPY(X1.- Xn) J

25



WHERE ENTROPY IS COMING FROM

Entropy:
def
HXi, .., Xn) S flE(IngIP’(Xu.H,Xn)) == > P Xn) - log, p(xa, . Xn)
X1y XnE€EX
(Iog2 P(X1, ..., Xn) random variable outputting log, p(x1, . . ., Xs) with probability p(xy, . . . ,x,,))
Our reasoning to get this formula:
> Non typical sequences (xi, . .., X,) never appear, i.e,

P(Xs = X1,...,Xn = Xp) = 0
P Typical sequences (xi, . .., Xy) all appear with the “same” probability (those with smaller
probabilities are non»typical) given by their expected value to appear, i.e,
log, P(Xi = X1, - . ., Xn = Xn) & E(Iog2 P(Xy, .. . 7xﬂ)) = —H(X, ..., Xn)
ie, PXi=x1,..., X =Xp) = 24, Xn)

Conclusion (informal): T be the set of typical sequences

T S NS VRS o AR PURE o P ORE JUPTPRLCORED)
X150 5Xn

(X1,-+-,Xn)ET (PR Xn)€ET
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BINARY ENTROPY

Let’s focus on a simple case: Xq, ..., X, € {0,1}" be i.i.d with p & P(X; = 1)

H(Xi,...,Xp) = nh(p) where h(p) el —plog, p — (1 —p)log,(1 —p) (binary entropy) J

27



WHERE (BINARY) ENTROPY IS COMING FROM

Given (X1, -+ ,Xn) € {0,1}" be i.id with p £ P(x; = 1)

Entropy formula is coming from two facts:
(i) log, maps product into sum

(/i) arandom variable concentrates around its expectation

tog, (%1, -, X)) "LPlog, [T P(x)
I

© log, B(X1) + - - - + log, P(Xy)

(’z”m(logz PX)) + -+ E( log, P(Xn))
= (plog;p+ (1—p)log,(1—p)) + -+ (plog, p + (1 — p) log,(1 = p))

= —nh(p)
Conclusion (informal):
All non-zero P (X1 = X1, ..., Xn = Xn) verify
log, IP’(XW =X, Xn = X,,) ~ —nh(p), ie, P(X;=xi, -, X =x;) & 2"

X

— We expect 2" typical sequences (by using 3oy B =x,. . X0 = x0) = 1)!

28




SOURCE/CHANNEL CODING

Two Problematics:

e Source coding: efficient compression of a given source with a maximal compression rate

Realisation: x = (x1,...,Xp) € {0,1}" where P(x; = 1) = p
Optimal compression size & nh(p) bits J

e Channel Coding: efficient transmission of a given source through a noisy channel with the

minimal amount of redundancy; maximal amount of information bits

Realisation: x = (X1, ... ,X1) € {0,1}" ~y = (v1,-..,¥n) € {0,1}" where P(y; # x;) = p

Optimal number of bits to transmit & n(1 — h(p)) bits (nh(p) bits of redundancy)

A common quantity quantifies these limits: entropy (binary entropy in this case)

h(p) £ —plog, p — (1 — p)log,(1 — p)

29



SOURCE CODING: GEOMETRIC INTERPRETATION

(%o, -+, %n) € {0,1}" be iid. with p £ p(x; = 1)

{0,1}*

T typical sequences
P((xw,...,xﬂ) c T) ~

Compression algorithm
1. Describe elements of T with bits: it requires & nh(p) bits as #T ~ 2"(?)

2. Given a realisation x: if x € T describe it with bits, otherwise output fail L

The compression works with probability & 1 and to decompress we just inverse the bit description
of elementsin T

Conclusion:

We can compress with nh(p) bits with a success probability ~ 1 J

30



AN IMPORTANT FACT

The set of typical sequences T is the smallest set such that ]P( X1,...,%Xn) € T) ~1 J

— By smaller we mean exponentially smaller, i.e,, it does not exist S such that §S = 2= - T

for some ¢ > 0 such that

IP((X1,...,X”) es) ~ 1

Remark:

Up to now we did not define rigorously what do we mean by “typical set”, wait Lecture 2 and 3 J

— Conclusion: log, #T is the optimal number of bits to compress!

31



CHANNEL CODING: GEOMETRIC INTERPRETATION

(X1, -+, Xa) € {0,1}" be iid. with p &' P(x; = 1)

» Channel Coding: we transmit ¢ = (¢1, ..., cn) € {0,1}", the receiver gets

(c1 + X4, ..., ¢n + Xp) and wants to recover ¢

2"(1=(P)) words can be transmitted without confusion

O transmit word
@ typical realisation
after noise

Size: 2"1P)

size ball x words which can be transmitted without confusion ~ 2"

(2nh<p> % 210=h) — zn)
2



CODES TO REACH THE THEORETICAL LIMITS

Typical sequences seem to be useful to prove (sequences X; i.d.d. Bernoulli of parameter p)

e nh(p) bits for optimal compression

e n(1— h(p)) optimal number of bits which can be transmitted when the noise rate is p

But how to reach these theoretical limits for compression and transmission?

— We will use mathematical objects known as codes!

Let's focus on the case of transmission of information
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CODES TO TRANSMIT INFORMATION (I)

(encoding) noisy
To transmit m € {0, 1}f————c € {0,1}'———y=c+e
channel
Aim: recover m from y!

Important Remark:

We mapped kto n > R bits (redundancy): cencoding of m

y
Your first (error correcting) code: 3-repetition code
Encoding 1 bit into 3 bits,
0 +~— 000
T = M
{(000, 111)} is called the three repetition code!
y

Exercise:

What does it mean to successfully remove an error with the above encoding? Which error can you

successfully remove? Why didn’t we introduce the 2-repetition code?
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CODES TO TRANSMIT INFORMATION (II)

e Encoding: b € {0,1} — bbb € {0,1}?
e Noisy Channel: bbb — cicoc3 where P(c; # b) = p

o Decoding Strategy: given cic,c3 € {0, 1}, choose the majority bit

001 — 0, 011 —— 1,101 — 1, etc. . .

— This strategy is successful if there are < 2 errors

Successful Decoding with probability | Unsuccessful Decoding with probability

(1=p)’ +3p(1—p)’ ‘ P’ +3(1—p)p’

Suppose that p = 0.01,
» The decoding procedure fails with probability 3 x 10=*

» The same decoding procedure with the 5 repetition code fails with probability ~ 107>

Which code will you use for communication?
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CODE RATE

prob. successfully decoding 5-repetition code > prob. successfully decoding 3-repetition code

But. ..

36



CODE RATE

prob. successfully decoding 5-repetition code > prob. successfully decoding 3-repetition code

But. ..
Encoding 1 bit necessitates 5 > 3 bits!

— Higher communication cost with the 5-repetition code. . .

P The 3-repetition code has rate 1/3 = 0.33. ..

P The 5-repetition code has rate 1/5 = 0.2

Is the rate necessarily go to 0 in order to successfully decoding with probability tending to 1?

No! Second Shannon’s theorem

— V Rate < Channel Capacity
It is possible to decode with probability of success tending to 1! J
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BSC CAPACITY

p = 0.01: the 3-repetition code fails to decode with probability 3 x 10~“ with a rate 0.33. ..
But capacity for 0.01: C(0.01) = 1 — h(0.01) = 0.919

We can do much better! Even with success probability tending to 1

1—h(p)
1.0

0.81

0.6

0.4

0.2

0.01 0.20 0.40 0.60 0.80 1.00
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BINARY SYMMETRIC CHANNEL AND OTHERS

Up to now we considered the following noise model:

Binary Symmetric Channel BSC(p):

— There many other (realistic) channel models! For instance by scratching a CD-ROM you

remove bits:

Exercise: Binary Erasure Channel (BEC(p))

1-p

Is it “easier” to decode the 3-repetition repetition when BSC or BEC? What do you conclude?




ENTROPY, WHAT ELSE?



ENTROPY ORIGIN

Entropy is defined such that number of typical sequences of a random variable X is given by
2Emropy(x) J

— We need Entropy(X) to describe realisations of X (nonftypical sequences “never” appear)

Informal reasoning:

To enumerate typical sequences:

1. We compute the expected value of — log, P (X = x) (overx)
2. This expected value is defined as the entropy

3. We deduce that the P(X = x) are “equal” to 2~ ENroPy(X) (for typical sequences) or 0 (for

non-typical sequences)

4. As probabilities sum to 1, there are 25"°PX) typical sequences

40



ENTROPY

Motivated by our discussion on typical sequences, entropy of X is defined as the average value of

—log, P (X = x) = — log, p(X) (overx € X)

Entropy:
Given X : Q — X, its entropy is defined as:

HO) £ = 37 p(x) - log, p(x)

XEX
with the convention that 0 - log, 0 = 0 )
Remark:

Given some random variables X; € X4, ..., X, € X, their (joint) entropy is defined as the

entropy of X i X1, ..., Xn), Le.

H(X1, ..., Xn) = — > p(X1, - - - Xn) logy (X1, - - - Xn)

X EXY,... . XnEXnp

4



ENTROPY OF INDEPENDENT RANDOM VARIABLE

Proposition:
Suppose that X, ..., X, are independent, then,
n
HX, - Xn) = > H(X)
i=1
Proof:
See Exercise Session J
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CONDITIONAL ENTROPY

Entropy: amount of bits to describe the outcome of a random variable

(think about the example of the compression)

How many bits do we need to describe X but when we only know the outcome of Y? )

— The average value of —log, P(X =x| Y =y) = —log, p(x | y) (overx € Xandy e y)

Conditional entropy:

Given X and Y, their conditional entropy is defined as,
def
HXIY)E = >~ p(xy)log, p(x | y)

XEX,yEY
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MUTUAL INFORMATION

P H(X): amount of bits to describe possible realisations of X

P> H(X | Y): amount of bits to describe realisation of X knowing the realisation of Y

Are Y outcomes help to describe realisation of X?

Mutual information:
Given X and Y, their mutual information is defined as,
I(X,Y) = H(X) — H(X | Y)

Mutual information is also a measure of dependence between X and Y. If outcomes of Y help to
describe outcomes of X, random variables are dependent whereas in the opposite case they are

independent

44



ENTROPY PROPERTIES

Some properties:

e Entropy is maximized when X : Q@ — X is uniform,

H(X) < log, #X with equality if and only if X is uniform

e Mutual information is symmetric,
10X, Y) = I(Y, X)

e Mutual information is positive (how do you interpret this result?)

106Y) > 0 (HX | Y) < H(X))

e H(X,Y) = H(X) + H(Y) if Xand Y are independent (how do you interpret this result?)

Proof:

See Exercise Session J
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GEOMETRIC INTERPRETATION

H(X,Y)
H(X) H(Y)
Usefulness of this picture: for instance (see exercise session for a proof):
H(X | Y) 4 H(Y) = H(X,Y) and H(Y | X) + H(X) = H(X,Y) J




KULLBACK DIVERGENCE

Motivation:
Suppose that we know how X is distributed. But sadly: we are given a random variable Y # X
( you know how to compress outputs of X, not Y )

What do we loose if we would consider that X were given rather than Y?

— Kullback Divergence: measure of the distance between two distributions

( it measures the inefficiency of assuming that X is given when the true random variable is Y )

Kullback-Leibler divergence:

Let p(x) & B(X = x) and q(x) & P(Y = x),

D (XIIY) €37 p(x) log, % € RU {+00}

Be careful: Dk (+|]-) is not symmetric (assuming XgivenY # assumingy given X)
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GIBB'S INEQUALITY

Gibb's inequality: J

Dy (X]]Y) > 0 with equality if and only if X =Y

Gibbs" inequality is probably one of the most important inequality in information theory

Proof:

See Exercise Session J

Dx.(+|]+) is often useful, not in itself, but because other entropy quantities can be regarded as a

special case of Dg.(+|)
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EXERCISE SESSION
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