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ORIGIN OF INFORMATION THEORY

Information Theory: the great Shannon

−→ Without Shannon: no efficient communications, storages!

But implications are much deeper . . .
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BUT DO WE CARE?

If communications, storages are not efficient, do we only need to improve physical devices?

−→ Information theory and coding theory offer an alternative
(
and much more exciting

)
!
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COMMUNICATION/STORAGE SYSTEMS

Source Coding

Channel Noise

DecodingUser

▶ Source: text, voice, image, video, . . .

▶ Channel: radio, optical fiber, magnetic support, . . .

▶ Noise: electromagnetic disturbance , scratches, . . .
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CHANNEL AND SOURCE CODING

Source Source Coding Channel Coding

Channel Noise

Decoding ChannelDecoding SourceUser

Lectures 2/3/4 Lectures 6/7/8

▶ Efficiency: transmit a given quantity of “ information” with the minimal amount of resources

▶ Reliability: provide to users a sufficiently accurate information from the source
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COMPRESSION VERSUS REDUNDANCY

▶ Source coding: remove redundancy/compress as much as possible

An example: compress the language

In French, E is frequent, Z is not

−→ E is compressed with fewer “symbols” than Z

▶ Channel coding: add redundancy to recover messages in the presence of noise

An example: spell your name over the phone, send first names!

M like Mike, O like Oscar, R like Romeo, A like Alpha, I like India and N like November

M: message ; Mike: encoding

Source and Channel coding are “dual”
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IMPORTANT RESULTS

▶ Given a source, what is the ultimate data compression?

−→ Answer: the entropy H

▶ Given a noisy channel, what is the best transmission rate of communication?

−→ Answer: the channel capacity C

Can we do better?

No!

Can we reach these theoretical limits?

Yes! And we know
(
surprisingly

)
efficient solutions/algorithms!
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SOME APPLICATIONS OF INFORMATION THEORY

Information theory is not only about communication and storages. . .

Information Theory

Communication
Theory

Limits of
communication
and storage

Mathematics

Inequalities

Statistics

Hypothesis
Testing

Probabilities

Large

Deviations

Physics

Quantum
Information
Theory

Computer
Science

Cryptography
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PROGRAM OF THIS COURSE

−→ Basics of information theory and some of its applications

• Theoretical limits for compression and transmission and how to reach them efficiently

• Application to probability and statistics
(
typical sequences, large deviations

)
• Study of linear error correcting codes

References:
▶ Cover and Thomas, Elements of Information Theory,

−→ Classical introduction to information theory

▶ Sendrier’s lecture notes: https://www.rocq.inria.fr/secret/Nicolas.Sendrier/thinfo.pdf,

−→ Nice for an “algorithmic” point of view

▶ MacKay, Information Theory, Inference, and Learning Algorithms,

−→ Nice to get many “intuitions”
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EVALUATION OF THIS COURSE

1. An exam
(
3 hours

)
: 4 pages of personal notes are allowed

−→ Three exercises seen during the Exercise Sessions will be at the exam

2. Presentation of a research article or a programming project
(
30min

)
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A WARNING

We will be doing a lot of discrete probabilities

−→ Discrete probabilities need enumeration, no Lebesgue integration

In particular: no hard formalism is involved!
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DISCRETE PROBABILITIES



HOW TO MODELIZE A SOURCE? A NOISY CHANNEL?

▶ A source
(
language, computer code, . . .

)
is modelized according to a discrete random

variable

−→ See the programming project or . . . any generative AI!

▶ A noisy channel
(
scratch your parents’ CD-ROMs, download a video stored across the world,

. . .
)
is modelized according to a discrete random variable

−→ Very accurate in practice
(
otherwise no Internet

)
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DISCRETE PROBABILITY SPACE

▶ An alphabet: X discrete
(
finite in almost all cases in this course

)
▶ An event: E ⊆ X

▶ Random variable: X : Ω → X
(
we don’t care of Ω

)
▶ Probability law / Associated distribution:

(
P(X = x)

)
x∈X

Abuse of notation:

P(X = x) = PX(x) = p(x)

Be careful: given random variables X and Y,

p(x) = P(X = x) and p(y) = P(Y = y)

Remark: the probability law uniquely determines the random variable

Whatever is the event E ,
P(X ∈ E) =

∑
x∈E

p(x)
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INDEPENDENCE

Notation: p(x, y) denotes

P(X = x and Y = y) = P(X = x, Y = y)

Random variables X and Y are said to be independent if

p(x, y) = p(x) · p(y)

Important notation: i.i.d.

X1, . . . , Xn are said Independent and Identically Distributed
(
i.d.d.

)
when they are

1. independent, ∀I ⊆ {1, . . . , n}, ∀(xi)i∈I , P(Xi = xi, i ∈ I) =
∏
i∈I

P(Xi = xi)

2. identically distributed: ∀i, j, x, P(Xi = x) = P(Xj = x)
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EXPECTATION

X : Ω −→ X

E(X) def
=
∑
x∈X

x p(x)

Transfer formula:

Given f : X −→ C,
E
(
f(X)
)

=
∑
x∈X

f(x) p(x)

Be careful!

E(X + Y) = E(X) + E(Y)

is always true
(
linearity of the expectation

)
! No independence condition. . .

Exercise: Bernoulli random variables and expectation

Given X1, . . . , Xn i.d.d. as Bernoulli random variables of parameter p, i.e., Xi : Ω → {0, 1} and

P(Xi = 1) = p. Compute,

E
( n∑

i=1
Xi

)
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WEAK LAW OF LARGE NUMBERS

Theorem: weak law of large numbers

X1, . . . , Xn be i.i.d. with expected value µ = E(X1) = · · · = E(Xn). Let,

Xn def
=

1
n

n∑
i=1

Xi

Then,
Xn P−→

n→+∞
µ = E(Xn), i.e., ∀ε > 0, lim

n→+∞
P
(∣∣∣Xn − µ

∣∣∣ < ε
)

= 1

Taking the average of the results obtained from a large number of independent and identical trials

tends to become closer to the expected value as more trials are performed
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EXPECTATION AND RANDOM VARIABLES

Is expectation enough to “describe” a random variable?

(
Spoil: no, but in many cases it is almost enough, it gives us “what we expect”

)
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VARIANCE AND STANDARD DEVIATION

X : Ω −→ X

Variance: V(X) def
= E

(
(X− E(X))2

)
=︸︷︷︸

linearity of E(·)

E(X2) − E(X)2 =
∑
x∈X

x2 p(x) −
(∑
x∈X

x p(x)
)2

Standard Deviation: σ(X) def
=
√

V(X)

In practice: expectation good approximation

X ≈ E(X), or more precisely: X ∈ [E(X) − σ(X),E(X) + σ(X)] with good probability

−→ Large deviation theory: study P
(
X � E(X)

)

Be careful!

X and Y independent =⇒ V(X + Y) = V(X) + V(Y)
(
the variance is not necessarily additive

)
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JOINT PROBABILITY SPACE AND CONDITIONAL PROBABILITY

Alphabet X × Y endowed with the probability law p(x, y),

Marginal Law Conditional Probability

P(X = x) = p(x) =
∑

y∈Y p(x, y) P(X = x | Y = y) = p(x|y) = p(x,y)
p(y)

(
when p(y) 6= 0

)
P(Y = y) = p(y) =

∑
x∈X p(x, y) P(Y = y | X = x) = p(y|x) = p(x,y)

p(x)

(
when p(x) 6= 0

)

▶ Marginal law: the knowledge of
(
p(x, y)

)
(x,y)∈X×Y

is enough to know
(
p(x)

)
x∈X

▶ Conditional probability: what is the probability of x knowing that y0 happened? Enough to

know
(
p(x, y)

)
(x,y)∈X×Y

.
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LAW OF TOTAL PROBABILITY

Law of total probability:

Given disjoint and complete events B1, . . . ,Bn , i.e.,

1. Bi ∩ Bj = ∅ if i 6= j

2.
n
∪
i=1

Bi = Ω

Then,
P(X ∈ E) =

n∑
i=1

P (X ∈ E | Bi) P(Bi)

One of the most useful fact in probability computations!

Exercise:

A box contains two coins, one is biased to head with probability 1/2+ ε, the other one is biased to

tail with probability 1/2 + ε. You choose a coin uniformly at random and you throw it. What is the

probability to get head?
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OVERVIEW OF INFORMATION THEORY



INFORMATION THEORY

Information Theory answers the following two
(
fundamental

)
questions:

    

▶ Ultimate data compression? Entropy

▶ Ultimate transmission rate of communication? Channel capacity

−→ Information Theory is much more!

A common denominator: typical sequences/realisations!

Anecdote:

At the police station, is it easier to answer the following questions: what were you doing

three Monday ago? or what were you doing a typical Monday?

−→ Typical realisations: simple mean to answer hard questions!
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TYPICAL OR MOST PROBABLE?

X1, . . . , Xn be i.i.d. with P(Xi = 1) = p < 1/2

What is the most probable sequence/realisation?

0 . . . 0 appears with probability: (1− p)n

−→ Most probable event!

But do you expect this realisation? No!

Hamming weight:

Given x = (x1, . . . , xn) ∈ {0, 1}n , its Hamming weight is defined as

|x| def= ♯ {i : xi 6= 0}

Chernoff’s bound:

∀ε > 0, P
(∣∣∣∣∣

n∑
i=1

Xi − np
∣∣∣∣∣ ≥ εn

)
≤ 2e−2ε2n

Typical sequence/realisation: x’s such that |x| ≈ np
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TYPICAL EVENTS

Typical events are an extremely powerful tools for proofs!

 
−→ and the most important “spirit” of this course. . .
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ENTROPY AND TYPICAL SEQUENCES

Given a classical source of information (X1, . . . , Xn) ∈ X n

Your new motto: focus on typical sequences!

X n

T

T def
= typical sequences

P ((X1, . . . , Xn) ∈ T) ≈ 1

Crucial question:

How many typical sequences are there?

Entropy (informal definition):

Entropy (X1, . . . , Xn) def
= log2 ♯T ⇐⇒ ♯T = 2Entropy(X1,...,Xn)
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WHERE ENTROPY IS COMING FROM

Entropy:

H(X1, . . . , Xn) def
= −E

(
log2 P(X1, . . . , Xn)

)
= −

∑
x1,...,xn∈X

p(x1, . . . , xn) · log2 p(x1, . . . , xn)

(
log2 P(X1, . . . , Xn) random variable outputting log2 p(x1, . . . , xn) with probability p(x1, . . . , xn)

)
Our reasoning to get this formula:

▶ Non typical sequences (x1, . . . , xn) never appear, i.e.,

P(X1 = x1, . . . , Xn = xn) ≈ 0

▶ Typical sequences (x1, . . . , xn) all appear with the “same” probability
(
those with smaller

probabilities are non-typical
)
given by their expected value to appear, i.e.,

log2 P(X1 = x1, . . . , Xn = xn) ≈ E
(
log2 P(X1, . . . , Xn)

)
= −H(X1, . . . , Xn)

i.e., P(X1 = x1, . . . , Xn = xn) ≈ 2−H(X1,...,Xn)

Conclusion
(
informal

)
: T be the set of typical sequences

1 =
∑

x1,...,xn

p(x1, . . . , xn) ≈
∑

(x1,...,xn)∈T
p(x1, . . . , xn) ≈

∑
(x1,...,xn)∈T

2−H(X1,...,Xn) ≈ ♯T·2−H(X1,...,Xn)
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BINARY ENTROPY

Let’s focus on a simple case: X1, . . . , Xn ∈ {0, 1}n be i.i.d with p def
= P(Xi = 1)

H(X1, . . . , Xn) = nh(p) where h(p) def
= −p log2 p− (1− p) log2(1− p)

(
binary entropy

)
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WHERE (BINARY) ENTROPY IS COMING FROM

Given (X1, · · · , Xn)∈ {0, 1}n be i.i.d with p def
= P(Xi = 1)

Entropy formula is coming from two facts:

(i) log2 maps product into sum

(ii) a random variable concentrates around its expectation

log2 P
(
(X1, . . . , Xn)

) indep
= log2

∏
i

P
(
Xi
)

(i)
= log2 P(X1) + · · · + log2 P(Xn)
(ii)
≈ E
(
log2 P(X1)

)
+ · · · + E

(
log2 P(Xn)

)
= (p log2 p + (1− p) log2(1− p)) + · · · + (p log2 p + (1− p) log2(1− p))
= −nh(p)

Conclusion
(
informal

)
:

All non-zero P (X1 = x1, . . . , Xn = xn) verify

log2 P
(
X1 = x1, · · · , Xn = xn

)
≈ −nh(p), i.e., P (X1 = x1, · · · , Xn = x1) ≈ 2−nh(p)

−→ We expect 2nh(p) typical sequences
(
by using

∑
x1,...,xn

P (X1 = x1, . . . , Xn = xn) = 1
)
!
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SOURCE/CHANNEL CODING

Two Problematics:

• Source coding: efficient compression of a given source with a maximal compression rate

Realisation: x = (x1, . . . , xn) ∈ {0, 1}n where P(xi = 1) = p

Optimal compression size ≈ nh(p) bits

• Channel Coding: efficient transmission of a given source through a noisy channel with the

minimal amount of redundancy; maximal amount of information bits

Realisation: x = (x1, . . . , xn) ∈ {0, 1}n ⇝ y = (y1, . . . , yn) ∈ {0, 1}n where P(yi 6= xi) = p

Optimal number of bits to transmit ≈ n(1− h(p)) bits
(
nh(p) bits of redundancy

)

A common quantity quantifies these limits: entropy
(
binary entropy in this case

)
h(p) def

= −p log2 p− (1− p) log2(1− p)
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SOURCE CODING: GEOMETRIC INTERPRETATION

(X1, · · · , Xn) ∈ {0, 1}n be i.i.d. with p def
= P(Xi = 1)

{0, 1}n

T typical sequences

P
(
(X1, . . . , Xn) ∈ T

)
≈ 1

Compression algorithm

1. Describe elements of T with bits: it requires ≈ nh(p) bits as ♯T ≈ 2nh(p)

2. Given a realisation x: if x ∈ T describe it with bits, otherwise output fail ⊥

The compression works with probability ≈ 1 and to decompress we just inverse the bit description

of elements in T

Conclusion:

We can compress with nh(p) bits with a success probability ≈ 1
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AN IMPORTANT FACT

The set of typical sequences T is the smallest set such that P
(
(X1, . . . , Xn) ∈ T

)
≈ 1

−→ By smaller we mean exponentially smaller, i.e., it does not exist S such that ♯S = 2−cn · ♯T

for some c > 0 such that

P
(
(X1, . . . , Xn) ∈ S

)
≈ 1

Remark:

Up to now we did not define rigorously what do we mean by “typical set”, wait Lecture 2 and 3

−→ Conclusion: log2 ♯T is the optimal number of bits to compress!
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CHANNEL CODING: GEOMETRIC INTERPRETATION

(X1, · · · , Xn) ∈ {0, 1}n be i.i.d. with p def
= P(Xi = 1)

▶ Channel Coding: we transmit c = (c1, . . . , cn) ∈ {0, 1}n , the receiver gets

(c1 + X1, . . . , cn + Xn) and wants to recover c

transmit word

typical realisation
after noise

{0, 1}n

Size: 2nh(p)

2n(1−h(p)) words can be transmitted without confusion

size ball × words which can be transmitted without confusion ≈ 2n(
2nh(p) × 2n(1−h(p)) = 2n

)
32



CODES TO REACH THE THEORETICAL LIMITS

Typical sequences seem to be useful to prove
(
sequences Xi i.d.d. Bernoulli of parameter p

)
• nh(p) bits for optimal compression

• n(1− h(p)) optimal number of bits which can be transmitted when the noise rate is p

But how to reach these theoretical limits for compression and transmission?

−→ We will use mathematical objects known as codes!

Let’s focus on the case of transmission of information
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CODES TO TRANSMIT INFORMATION (I)

To transmit m ∈ {0, 1}k
(encoding)

c ∈ {0, 1}n
noisy

channel
y = c + e

Aim: recover m from y!

Important Remark:

We mapped k to n > k bits
(
redundancy

)
: c encoding of m

Your first
(
error correcting

)
code: 3-repetition code

Encoding 1 bit into 3 bits,
0 7→ 000
1 7→ 111{

(000, 111)
}
is called the three repetition code!

Exercise:

What does it mean to successfully remove an error with the above encoding? Which error can you

successfully remove? Why didn’t we introduce the 2-repetition code?
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CODES TO TRANSMIT INFORMATION (II)

• Encoding: b ∈ {0, 1} 7−→ bbb ∈ {0, 1}3

• Noisy Channel: bbb 7−→ c1c2c3 where P(ci 6= b) = p

• Decoding Strategy: given c1c2c3 ∈ {0, 1}3 , choose the majority bit

001 7−→ 0, 011 7−→ 1, 101 7−→ 1, etc. . .

−→ This strategy is successful if there are < 2 errors

Successful Decoding with probability Unsuccessful Decoding with probability

(1− p)3 + 3p(1− p)2 p3 + 3(1− p)p2

Suppose that p = 0.01,

▶ The decoding procedure fails with probability 3× 10−4

▶ The same decoding procedure with the 5 repetition code fails with probability ≈ 10−5

Which code will you use for communication?
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CODE RATE

prob. successfully decoding 5-repetition code� prob. successfully decoding 3-repetition code

But. . .

Encoding 1 bit necessitates 5 > 3 bits!

−→ Higher communication cost with the 5-repetition code. . .

▶ The 3-repetition code has rate 1/3 = 0.33 . . .

▶ The 5-repetition code has rate 1/5 = 0.2

Is the rate necessarily go to 0 in order to successfully decoding with probability tending to 1?

No! Second Shannon’s theorem

−→ ∀ Rate ≤ Channel Capacity

It is possible to decode with probability of success tending to 1!
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BSC CAPACITY

p = 0.01: the 3-repetition code fails to decode with probability 3× 10−4 with a rate 0.33 . . .

But capacity for 0.01: C(0.01) = 1− h(0.01) = 0.919

We can do much better! Even with success probability tending to 1

0.01 0.20 0.40 0.60 0.80 1.00
p

0.2

0.4

0.6

0.8

1.0

1− h(p)
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BINARY SYMMETRIC CHANNEL AND OTHERS

Up to now we considered the following noise model:

Binary Symmetric Channel BSC(p):

1 1
1− p

0 0
1− p

p

p

−→ There many other
(
realistic

)
channel models! For instance by scratching a CD-ROM you

remove bits:

Exercise: Binary Erasure Channel
(
BEC(p)

)

1 1
1− p

0 0
1− p

?

p

p

Is it “easier” to decode the 3-repetition repetition when BSC or BEC? What do you conclude? 38



ENTROPY, WHAT ELSE?



ENTROPY ORIGIN

Entropy is defined such that number of typical sequences of a random variable X is given by

2Entropy(X)

−→ We need Entropy(X) to describe realisations of X
(
non-typical sequences “never” appear

)

Informal reasoning:

To enumerate typical sequences:

1. We compute the expected value of − log2 P (X = x)
(
over x

)
2. This expected value is defined as the entropy

3. We deduce that the P(X = x) are “equal” to 2−Entropy(X)
(
for typical sequences

)
or 0

(
for

non-typical sequences
)

4. As probabilities sum to 1, there are 2Entropy(X) typical sequences
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ENTROPY

Motivated by our discussion on typical sequences, entropy of X is defined as the average value of

− log2 P (X = x) = − log2 p(x)
(
over x ∈ X

)

Entropy:

Given X : Ω → X , its entropy is defined as:

H(X) def
= −

∑
x∈X

p(x) · log2 p(x)

with the convention that 0 · log2 0 = 0

Remark:

Given some random variables X1 ∈ X1, . . . , Xn ∈ Xn , their
(
joint

)
entropy is defined as the

entropy of X def
= (X1, . . . , Xn), i.e.

H(X1, . . . , Xn) = −
∑

x1∈X1,...,xn∈Xn

p(x1, . . . , xn) log2 p(x1, . . . , xn)
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ENTROPY OF INDEPENDENT RANDOM VARIABLE

Proposition:

Suppose that X1, . . . , Xn are independent, then,

H(X1, . . . , Xn) =
n∑
i=1

H(Xi)

Proof:

See Exercise Session
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CONDITIONAL ENTROPY

Entropy: amount of bits to describe the outcome of a random variable(
think about the example of the compression

)

How many bits do we need to describe X but when we only know the outcome of Y? 

−→ The average value of − log2 P(X = x | Y = y) = − log2 p(x | y)
(
over x ∈ X and y ∈ Y

)

Conditional entropy:

Given X and Y, their conditional entropy is defined as,

H(X | Y) def
= −

∑
x∈X ,y∈Y

p(x, y) log2 p(x | y)
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MUTUAL INFORMATION

▶ H(X): amount of bits to describe possible realisations of X

▶ H(X | Y): amount of bits to describe realisation of X knowing the realisation of Y

Are Y outcomes help to describe realisation of X?

Mutual information:

Given X and Y, their mutual information is defined as,

I(X, Y) = H(X) − H(X | Y)

Mutual information is also a measure of dependence between X and Y. If outcomes of Y help to

describe outcomes of X, random variables are dependent whereas in the opposite case they are

independent
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ENTROPY PROPERTIES

Some properties:

• Entropy is maximized when X : Ω → X is uniform,

H(X) ≤ log2 ♯X  with equality if and only if X is uniform

• Mutual information is symmetric,
I(X, Y) = I(Y, X)

• Mutual information is positive
(
how do you interpret this result?

)
I(X; Y) ≥ 0

(
H(X | Y) ≤ H(X)

)
• H(X, Y) = H(X) + H(Y) if X and Y are independent

(
how do you interpret this result?

)

Proof:

See Exercise Session
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GEOMETRIC INTERPRETATION

H(X, Y)

I(X; Y)H(X | Y) H(Y | X)

H(X) H(Y)

Usefulness of this picture: for instance (see exercise session for a proof):

H(X | Y) + H(Y) = H(X, Y) and H(Y | X) + H(X) = H(X, Y)
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KULLBACK DIVERGENCE

Motivation:

Suppose that we know how X is distributed. But sadly: we are given a random variable Y 6= X(
you know how to compress outputs of X, not Y

)
What do we loose if we would consider that X were given rather than Y?

−→ Kullback Divergence: measure of the distance between two distributions(
it measures the inefficiency of assuming that X is given when the true random variable is Y

)

Kullback-Leibler divergence:

Let p(x) def
= P(X = x) and q(x) def

= P(Y = x),

DKL(X||Y) def
=
∑
x
p(x) log2

p(x)
q(x)

∈ R ∪ {+∞}

Be careful: DKL(·||·) is not symmetric
(
assuming X given Y 6= assuming Y given X

)
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GIBB’S INEQUALITY

Gibb’s inequality:

DKL(X||Y) ≥ 0 with equality if and only if X = Y

Gibbs’ inequality is probably one of the most important inequality in information theory

Proof:

See Exercise Session

DKL(·||·) is often useful, not in itself, but because other entropy quantities can be regarded as a

special case of DKL(·||·)
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EXERCISE SESSION
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