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THE LEARNING WITH ERRORS PROBLEM

A mod-q linear system “with errors” to solve

LWE(m, n, q, σ): Learning With Errors

• Input: (A, As+ e) where,

A unif←−− (Z/qZ)m×n , s unif←−− (Z/qZ)n and e←− D s.t. |ei| ≈ σ

• Output: s

−→ Distribution D ensures small coefficients for e

Parameters m, n, q, σ are chosen to ensure unicity of the solution s

(s, e) 7→ As+ e ∈ (Z/qZ)m is sparse in its range
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LWE AND CRYPTOGRAPHY

LWE is conjectured as being hard on average

even in the quantum computational model

LWE Source of Hardness:

• enjoys self-reducibility (as hard as its worst-case variant)

• no easier than computing short vector in a lattice (Regev quantum reduction)

LWE hardness ensures the security of some:

▶ Encryption schemes,

▶ Fully Homomorphic Encryption schemes

−→ LWE is a very versatile problem to design cryptographic primitives

2



LWE AND VARIATIONS FOR CRYPTOGRAPHY

Variants of the LWE-hardness have been introduced

to design some advanced cryptographic primitives

Assumption: Efficient Oblivious LWE-Sampling is Impossible

Every algorithm generating LWE samples
(
A,b def

= As+ e
)

knows the underlying secret s

▶ Assumption used [GMNO18, NYI+20, ISW21, SSEK22, CKKK23, GNSV23] to ensure

security of some lattice SNARK (Succinct Non-interactive Arguments of Knowledge)
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OUR RESULT

An Oblivious Sampler for LWE:

A quantum algorithm generating LWE samples
(
A,b def

= As+ e
)
without knowing s

−→ The only way to extract s from the sampler is to solve the LWE-problem (A, As+ e)

▶ Our quantum oblivious sampler takes advantage of:

• complex phases in quantum computation

• an optimal unambiguous quantum measurement

▶ First application: it invalidates security proofs of some lattice-based SNARK

but does not break them

4



ROADMAP

1. A Fundamental Quantum State to Build

2. Quantum Unambiguous Measurement

3. Quantum Oblivious LWE Sampler
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A FUNDAMENTAL QUANTUM STATE



THE KEY IDEA

e← Gauss(σ)⊗m : the ei are i.i.d and P(ei = x) = Gauss(σ)(x) = e−πx2/σ2

σ(
up to normalization mod q

)

LWE(m, n, q, σ): Learning With Errors

• Input: (A, As+ e) where,

A unif←−− (Z/qZ)m×n , s unif←−− (Z/qZ)n and e←− Gauss(σ)⊗m

• Output: s

Key Idea:
To achieve oblivious LWE sampling,

(i) build
∑
s,e

(∏
i

√
Gauss(σ)(ei)

)
|As+ e〉 and (ii) measure
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A FUNDAMENTAL QUANTUM STATE TO BUILD

Is it hard to build
∑
s,e

(∏
i

√
Gauss(σ)(ei)

)
|As+ e〉?

Quantum Regev Reduction in a Nutshell:

(i)
∑
s,e

(∏
i

√
Gauss(σ)(ei)

)
|As+ e〉 QFT−−−→

∑
x: A⊤x=0

(∏
i

√
Gauss(4/σ)(xi)

)
|x〉

(ii) Then measuring gives a short x0 in the lattice {x ∈ Zm : A⊤x = 0 mod q}

−→ Building
∑
s,e

(∏
i

√
Gauss(σ)(ei)

)
|As+ e〉 implies the ability to compute

a short vector in a lattice which is a hard problem. . .
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NOT A DEAD-END

Fundamental Remark: Adding Phases

Considering
∑
s,e
λs,e

(∏
i

√
Gauss(σ)(ei)

)
|As+ e〉 where λs,e ∈ C and |λs,e| = 1

▶ Measuring with phases still gives a quantum oblivious LWE sampler

▶ Measuring after applying QFT does not necessarily give a short lattice vector

QFT
(∑
s,e
λs,e

(∏
i

√
Gauss(σ)(ei)

)
|As+ e〉

)
6=

∑
x:A⊤x=0

∏
i

√
Gauss(4/σ)(xi) |x〉
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QUANTUM UNAMBIGUOUS MEASUREMENT



DO NOT USE AN LWE-SOLVER

Naive Approach to Build
∑
s,e

(∏
i
f(ei)

)
|As+ e〉:

• Build, ∑
s,e

(∏
i
f(ei)

)
|s〉 |e〉

(
f is efficiently computable

)

• Multiplication by A and add to the second register,

∑
s,e

(∏
i
f(ei)

)
|s〉 |As+ e〉

• Disentangle by applying an LWE-solver, i.e., A (As+ e) 7→ s,

∑
s,e

(∏
i
f(ei)

)
|s−A (As+ e)〉 |As+ e〉 =

∑
s,e

(∏
i
f(ei)

)
|0〉 |As+ e〉

−→ Not efficient: it relies on an LWE-solver
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PREVIOUS WORK: [CLZ22]

[CLZ22](1) proposed a new approach to build

∑
s,e

(∏
i
f(ei)

)
|As+ e〉

−→ Unambiguous measurement to disentangle
∑
s,e

(∏
i
f(ei)

)
|s〉 |As+ e〉

(1)Yilei Chen, Qipeng Liu, and Mark Zhandry. Quantum algorithms for variants of
average-case lattice problems via filtering. In EUROCRYPT, 2022.
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PREVIOUS WORK: [CLZ22] AND UNAMBIGUOUS MEASUREMENT

Given A = (a1| · · · |am)⊤ and denoting x · y def=
∑

i xiyi ∈ Z/qZ

∑
s,e

(∏
i
f(ei)

)
|s〉 |As+ e〉 =

∑
s
|s〉
⊗
i

(∑
ei

f(ei) |ai · s+ ei〉︸ ︷︷ ︸
def
=

∣∣∣ψai·s〉

)

∀j ∈ Z/qZ,
∣∣ψj〉 def= ∑

e∈Z/qZ
f(e) |j+ e〉

|ψ0〉

|ψ1〉

|ψ2〉

Key-Idea: Quantum Unambiguous Measure

∣∣ψai·s〉 unambiguous
−−−−−−−−−−→

measure

{
ai · s with probability p
⊥ with probability 1− p

Using a quantum unambiguous measure reduces to solve a linear system with erasure
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QUANTUM OBLIVIOUS LWE SAMPLER



AN OPTIMAL QUANTUM UNAMBIGUOUS MEASUREMENT

∑
s
|s〉
(∑

e1
f(e1) |a1 · s+ e1〉

)
⊗ · · · ⊗

(∑
em
f(em) |am · s+ em〉

)

am · s⊥

We succeed to recover ai · s with probability p

We are successful on ≈ pm coordinates: it is necessary that pm ≥ n to recover
s ∈ (Z/qZ)n

▶ In [CLZ22]: pCLZ = minx |̂f(x)|2
q

▶ Optimal unambiguous measurement [CB98](2) : pCB = q ·minx |̂f(x)|2

(2)Anthony Chefles and Stephen M. Barnett. Optimum unambiguous discrimination
between linearly independent symmetric states. Phys. Lett. A, 1998.
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ADD PHASES

Our quantum algorithm uses m registers with m = n
pCB = n

q·minx |̂f(x)|2

Issue:

If f =
√
Gauss(q, σ), then f̂ = Gauss(2/σ)

m = n
q·minx |̂f(x)|2

= eΩ(n)

Key-Idea: Use Phases

f(x) =
{ √

Gauss(σ)(x) if x > 0
(−1) ·

√
Gauss(σ)(x) otherwise

Then,
m = n

q·minx |̂f(x)|2
≤ n

Gauss(σ)(0) ≈ n · σ

(
with measurement from [CLZ22]: m = q2 · n · σ = eΩ(n) when q = eΩ(n)

)
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SUMMARY

Theorem:
Parameters m, n, q, σ are functions of λ and they satisfy,

q prime, m, log q ≤ poly(λ), m ≥ nσ · ω(log λ) and 2 ≤ σ ≤ q√
8m ln q

.

Then, there exists a poly(λ)-time quantum oblivious LWE(m, n, q, σ) instance sampler,
under the assumption that LWE(m, n, q, σ) is hard.

−→ To reach other parametrizations (σ larger, q not prime, etc. . . )

we use reductions (modulus switching, noise flooding) conserving obliviousness

17



CONCLUSION

Our result: a quantum algorithm which obliviously samples (given A),

As+ e with s unif←−− (Z/qZ)n and e← Gauss(σ)⊗m

What we did not discuss:

• Definition of classical and quantum oblivious sampling

• How to efficiently run the unambiguous measurement from [CB98]

• Why does it invalidate the security proofs of some SNARKs

Future Work:
Is this oblivious LWE-sampler can be used to design advanced quantum protocols?
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