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THE LEARNING WITH ERRORS PROBLEM

A mod-q linear system “with errors” to solve

LWE(m, n, g, o): Learning With Errors
e Input: (A,As + e) where,

unif

ALY (z/qz)m™<", s & (2/qz)" and e«+— D st lelmo

e Output: s

— Distribution D ensures small coefficients for e

Parameters m, n, q, o are chosen to ensure unicity of the solution s

(s,e) — As+e € (Z/qZ)™ is sparse in its range )




LWE AND CRYPTOGRAPHY

LWE is conjectured as being hard on average

even in the quantum computational model

LWE Source of Hardness:

e enjoys self-reducibility (as hard as its worst-case variant)

e no easier than computing short vector in a lattice (Regev quantum reduction)

LWE hardness ensures the security of some:

> Encryption schemes,

» Fully Homomorphic Encryption schemes

— LWE is a very versatile problem to design cryptographic primitives



LWE AND VARIATIONS FOR CRYPTOGRAPHY

Variants of the LWE-hardness have been introduced
to design some advanced cryptographic primitives
Assumption: Efficient Oblivious LWE-Sampling is Impossible

Every algorithm generating LWE samples (A, b <" As + e)

knows the underlying secret s

> Assumption used [GMNO18, NYI*20, ISW21, SSEK22, CKKK23, GNSV23] to ensure

security of some lattice SNARK (Succinct Non-interactive Arguments of Knowledge)



OUR RESULT

An Oblivious Sampler for LWE:

A quantum algorithm generating LWE samples (A, b %" As + e) without knowing s

— The only way to extract s from the sampler is to solve the LWE-problem (A, As + e)

» Our quantum oblivious sampler takes advantage of:

e complex phases in quantum computation

e an optimal unambiguous quantum measurement

> First application: it invalidates security proofs of some lattice-based SNARK

but does not break them



ROADMAP

1. A Fundamental Quantum State to Build
2. Quantum Unambiguous Measurement

3. Quantum Oblivious LWE Sampler




A FUNDAMENTAL QUANTUM STATE



THE KEY IDEA

2 /52
e X /o

e <+ Gauss(c)®™M: the ¢; areiidand P(e; = x) = Gauss(o)(x) =

o

( up to normalization mod g )

LWE(m, n, g, o): Learning With Errors
e Input: (A,As + e) where,

A (z7q2)m*0 s < (2/qZ)" and e «— Gauss(o)®"

e Output: s

Key Idea:

To achieve oblivious LWE sampling,

(1) build > (H \/Gauss(a)(e,-)> |As +e) and (ii) measure




A FUNDAMENTAL QUANTUM STATE TO BUILD

Is it hard to build > (H \/Gauss(o)(e,)> |As +e)?
s.e i

Quantum Regev Reduction in a Nutshell:

() Sze (H \/Gauss(cr)(e,)> |As + e) ﬂ > (]‘[ \/Gauss(4/a)(x,~)> x)

! x: ATx=0 \ i

(i) Then measuring gives a short Xo in the lattice {x € Z™ : ATx = 0 mod g}

—> Building > <H \/Gauss(a)(e,ﬂ)) |As 4 e) implies the ability to compute
s,e

I

a short vector in a lattice which is a hard problem. ..



NOT A DEAD-END

Fundamental Remark: Adding Phases

Considering >~ Ase <H \/Gauss(a)(e,-)) |As 4 e) where Ase € C and [Ase| =1
s,e i

> Measuring with phases still gives a quantum oblivious LWE sampler

> Measuring after applying QFT does not necessarily give a short lattice vector

xATx=0 i

QFT <Z As,e (]‘[ \/Gauss(a)(e,-)> |As + e>) # > Il1+/Gauss(4/a)(x)[x)




QUANTUM UNAMBIGUOUS MEASUREMENT



DO NOT USE AN LWE-SOLVER

Naive Approach to Build > <Hf(ei)> |As + e):

SHE] i
e Build,
<Hf(ei)) s) |e) (fis efficiently computable)
s,e i

I

e Multiplication by A and add to the second register,

, <Hf(ei)> Is) [As + e)

S.,e i

e Disentangle by applying an LWE-solver, i.e., A (As + €) s,

> (Hf(&-)) Is—A(As+e))[As+e) =3 <1__[f(€f)> 0) |As + &)

s,e s,e

— Not efficient: it relies on an LWE-solver
1



PREVIOUS WORK: [cLZ22]

[CLZ22]Y proposed a new approach to build

> (nf(e,-)> IAs +e)

s,e \

i

— Unambiguous measurement to disentangle >_ (Hf(e,-)) Is) |As + e) J
s,e




PREVIOUS WORK: [CLZ22] AND UNAMBIGUOUS MEASUREMENT

Given A= (as| --- |am)T and denoting x-y - DiXiyi € Z/qZ

SZ;(HJ‘(@;)>IS)IAS+6> Sls) (Zfena, s+e) )

d:ef‘wa’vs>
viez/qz, |v) ¥ PROIEL |
e q.
[b2)
= 2b1)

)

Key-ldea: Quantum Unambiguous Measure

unambiguous | a;-s with probability p
|ays) ———r—

measure 1 with probability 1—p

Using a quantum unambiguous measure reduces to solve a linear system with erasure




QUANTUM OBLIVIOUS LWE SAMPLER



AN OPTIMAL QUANTUM UNAMBIGUOUS MEASUREMENT

SIs) (Sfenlar-s+e)) ©--@ (Sflem) lam s +em) )

l l

1 am-S

We succeed to recover a; - s with probability p

We are successful on = pm coordinates: it is necessary that pm > n to recover
s € (Z/qz)"

. oCz — ming [0
> In[CLz22]: ptiZ = mndl

» Optimal unambiguous measurement [CB98](2):  p®B = g - miny [f(x)[2



ADD PHASES

. . . o n_
Our quantum algorithm uses m registers with m = 5 = G TR

Issue:

If f=+/Gauss(q,o), then f= Gauss(2/o)

— 0 _ M
M= mime T2

Key-ldea: Use Phases

f) = Gauss(o)(x) ifx>0
(=) - /Gauss(o)(x) otherwise

Then,

= @ < i ~ c
i g-miny [f(x)[2 — Gauss(c)(0) e

<vvith measurement from [CLZ22]: m = g% - n - o = ") when q = eﬂ(”))

16



SUMMARY

Theorem:
Parameters m, n, g, o are functions of A and they satisfy,

9
v/8ming
Then, there exists a poly(A)-time quantum oblivious LWE(m, n, g, o) instance sampler,
under the assumption that LWE(m, n, g, o) is hard.

g prime, m,logg < poly(A\), m>no-w(log)) and 2<o<

— To reach other parametrizations (o larger, g not prime, etc...)

we use reductions (modulus switching, noise flooding) conserving obliviousness



CONCLUSION

Our result: a quantum algorithm which obliviously samples (given A),

As+e with s (Z/qZ)" and e <« Gauss(o)®M

What we did not discuss:

e Definition of classical and quantum oblivious sampling
e How to efficiently run the unambiguous measurement from [CB98]

e Why does it invalidate the security proofs of some SNARKs

Future Work:

Is this oblivious LWE-sampler can be used to design advanced quantum protocols? J
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