

A Code-based Hash and Sign Signature Scheme

Gustavo Banegas, Kévin Carrier, André Chailloux, Alain Couvreur, **Thomas Debris-Alazard**, Philippe Gaborit, Pierre Karpman, Johanna Loyer, Ruben Niederhagen, Nicolas Sendrier, Benjamin Smith and Jean-Pierre Tillich

Inria, École Polytechnique

- 1. Code-based hash and sign,
- 2. Wave: design rationale,
- 3. Leakage free signatures,
- 4. Wave: standardization candidate (NIST)
- 5. Next steps.

https://wave-sign.org

CODE-BASED HASH AND SIGN

FULL DOMAIN HASH SIGNATURE SCHEME

- ► Hash(·) hash function,
- f trapdoor one-way function

Check
$$f(\sigma) \stackrel{?}{=} \operatorname{Hash}(\mathbf{m})$$

 \longrightarrow Coding theory provides one-way functions!

- A [n, k]-code C is a defined as a k dimension subspace of \mathbb{F}_q^n .
- \mathbb{F}_q^n embedded with Hamming weight,

$$\forall \mathbf{x} \in \mathbb{F}_q^n, \qquad |\mathbf{x}| \stackrel{\text{def}}{=} \sharp \{i, \ \mathbf{x}(i) \neq 0\}.$$

One-way in code-based crypto:

$$f_{\mathsf{W}}: (\mathsf{c}, \mathsf{e}) \in \mathcal{C} \times \{\mathsf{e}: |\mathsf{e}| = \mathsf{W}\} \longmapsto \mathsf{c} + \mathsf{e}.$$

(inverting f_w : decoding C at distance w)

 \rightarrow To hope f_w surjective: choose noise distance w large enough (GV bound)

One-way in code-based crypto:

$$f_{\mathsf{W}}: (\mathsf{c}, \mathsf{e}) \in \mathcal{C} \times \{\mathsf{e}: |\mathsf{e}| = \mathsf{W}\} \longmapsto \mathsf{c} + \mathsf{e}.$$

(inverting f_w : decoding C at distance w)

 \rightarrow To hope f_{W} surjective: choose noise distance w large enough (GV bound)

But, be careful...

w parametrizes the hardness of inverting f_w !

 \longrightarrow for some w, it is easy to invert f_{w} ...

HARD OR EASY TO INVERT? PRANGE ALGORITHM

Inverting f_w:

- Given: [n, k]-C, **y** uniformly distributed over \mathbb{F}_q^n and w,
- Find: $\mathbf{c} \in \mathcal{C}$ such that $|\mathbf{y} \mathbf{c}| = \mathbf{w}$.

HARD OR EASY TO INVERT? PRANGE ALGORITHM

Inverting f_w:

- Given: [n, k]-C, **y** uniformly distributed over \mathbb{F}_q^n and w,
- Find: $\mathbf{c} \in \mathcal{C}$ such that $|\mathbf{y} \mathbf{c}| = \mathbf{w}$.

Fact: by linear algebra (Gaussian elimination)

C has dimension k: $\forall z \in \mathbb{F}_q^k$, easy to compute $c \in C$ such that,

Given a uniform $\mathbf{y} \in \mathbb{F}_q^n$: compute $\mathbf{c} \in \mathcal{C}$,

Public data: a hash function $Hash(\cdot)$, an [n, k]-code C and,

$$\mathbf{w} \notin \left[\frac{q-1}{q}(n-k), k+\frac{q-1}{q}(n-k)\right] \qquad (signing \ distance)$$

1. Hashing:
$$m \longrightarrow y \stackrel{\text{def}}{=} \text{Hash}(m)$$
,

- 2. Decoding: find with a trapdoor $c \in C$ such that |y c| = w.
- Verifying (m, c):

$$c \in C$$
 and $|Hash(m) - c| = w$.

Security:

Signing distance w s.t hard to find $c \in \mathcal{C}$ at distance w

 \longrightarrow Unless to own a secret/trapdoor structure on \mathcal{C} !

Trapdoor:

An [n, k]-code C with a peculiar structure enabling to decode at distance $w \notin [w_{easy}^-, w_{easy}^+]$

Security:

 ${\mathcal C}$ indistinguishable from a random code (unless to know its peculiar structure)

Trapdoor:

An [n, k]-code C with a peculiar structure enabling to decode at distance $w \notin [w_{easy}^-, w_{easy}^+]$

Security:

 ${\cal C}$ indistinguishable from a random code (unless to know its peculiar structure)

WAVE: DESIGN RATIONALE

• Vector permutation:

$$\mathbf{x} = (\mathbf{x}(i))_{1 < i < n} \in \mathbb{F}_q^n$$
; π permutation of $\{1, \dots, n\}$.

 $\mathbf{x}^{\pi} \stackrel{\text{def}}{=} (\mathbf{x}(\pi(i)))_{1 \leq i \leq n}$

• Component-wise product:

 $\mathbf{a} \star \mathbf{x} \stackrel{\text{def}}{=} (\mathbf{a}(i)\mathbf{x}(i))_{1 \leq i \leq n}$

Generalized $(U \mid U + V)$ -codes: Let U and V be $[n/2, k_U]$ and $[n/2, k_V]$ -codes $C \stackrel{\text{def}}{=} \left\{ (\mathbf{x}_U + \mathbf{b} \star \mathbf{x}_V \mid \mathbf{c} \star \mathbf{x}_U + \mathbf{d} \star \mathbf{x}_V)^{\pi} : \mathbf{x}_U \in U \text{ and } \mathbf{x}_V \in V \right\}$ where π permutation, $\mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{F}_a^{n/2}$ verify $\mathbf{c}(i) \neq 0$ and $\mathbf{d}(i) - \mathbf{b}(i)\mathbf{c}(i) = 1$.

 \longrightarrow It defines a code with dimension $k \stackrel{\text{def}}{=} k_U + k_V$

Secret-key/Trapdoor: *U*, *V*, **b**, **c**, **d** and π .

Security assumption: Distinguishing Wave Key (DWK)

Hard to distinguish random and generalized (U | U + V) codes.

Secret-key/Trapdoor: $U, V, \mathbf{b}, \mathbf{c}, \mathbf{d}$ and π .

- 1. Given $\mathbf{y} \in \mathbb{F}_q^n$: decompose $\mathbf{y} = (\mathbf{y}_L \mid \mathbf{y}_R)^{\pi}$,
- 2. Compute any $\mathbf{x}_V \in V$ with Prange Algorithm,
- 3. Using Prange Algorithm: compute $\mathbf{x}_U \in U$ by choosing k_U symbols $\mathbf{x}_U(i)$'s such that

 $\begin{cases} \mathbf{x}_U(i) + \mathbf{b}(i)\mathbf{x}_V(i) \neq \mathbf{y}_L(i) \\ \mathbf{c}(i)\mathbf{x}_U + \mathbf{d}(i)\mathbf{x}_V(i) \neq \mathbf{y}_R(i) \end{cases}$

(i) $q \ge 3$, (ii) $c(i) \ne 0$ and (iii) d(i) - b(i)c(i) = 1.

4. Return
$$\mathbf{c} \stackrel{\text{def}}{=} (\mathbf{x}_U + \mathbf{b} \star \mathbf{x}_V \mid \mathbf{c} \star \mathbf{x}_U + \mathbf{d} \star \mathbf{x}_V)^{\pi} \in \mathcal{C}$$
 (public code).

What is the (typical) distance w between y and c?

$$\begin{aligned} \text{Given any valid} \qquad \mathbf{x}_{V} &= \underbrace{\begin{array}{c} & n/2 \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ &$$

► Choose
$$k_U$$
 symbols $\mathbf{x}_U^{\text{choose}}(i)$ such that:

$$\begin{cases}
\mathbf{x}_U^{\text{choose}}(i) + \mathbf{b}(i)\mathbf{x}_V(i) - \mathbf{y}_L(i) \neq 0 \\
\mathbf{c}(i)\mathbf{x}_U^{\text{choose}}(i) + \mathbf{d}(i)\mathbf{x}_V(i) - \mathbf{y}_R(i) \neq 0
\end{cases}$$

Typical distance:

$$w = 2k_U + 2\frac{q-1}{q}(n/2 - k_U) > w_{easy}^+ = (k_U + k_V) + \frac{q-1}{q}(n - (k_U + k_V))$$

as soon as: $k_U > k_V$ (parameter constraint in Wave)

Collecting signatures:

$$(\mathbf{x}_U + \mathbf{b} \star \mathbf{x}_V \mid \mathbf{c} \star \mathbf{x}_U + \mathbf{d} \star \mathbf{x}_V)^{\pi}$$

may enable to recover the secret, for instance π ...

Collecting signatures:

$$(\mathbf{x}_U + \mathbf{b} \star \mathbf{x}_V \mid \mathbf{c} \star \mathbf{x}_U + \mathbf{d} \star \mathbf{x}_V)^{\pi}$$

may enable to recover the secret, for instance π ...

Above procedure leaks π ...

In what follows:

We will work in \mathbb{F}_3 , q = 3.

LEAKAGE FREE SIGNATURES

A signature: $x \in f^{-1}(y)$.

 $\longrightarrow x$ computed via a trapdoor/secret!

Ideal situation:

x distribution independent of the secret

 \longrightarrow For instance: x uniform over its domain when y uniform

A hard problem

In our case: exponential number of preimages

OUR AIM

Given uniform **y**: compute $(\mathbf{x}_U + \mathbf{b} \star \mathbf{x}_V | \mathbf{c} \star \mathbf{x}_U + \mathbf{d} \star \mathbf{x}_V)^{\pi}$ such that

 $\mathbf{e}^{\text{sgn}} \stackrel{\text{def}}{=} \mathbf{y} - (\mathbf{x}_U + \mathbf{b} \star \mathbf{x}_V \mid \mathbf{c} \star \mathbf{x}_U + \mathbf{d} \star \mathbf{x}_V)^{\pi} \text{ uniform over words of Hamming weight } \mathbf{w}.$

OUR AIM

Given uniform **y**: compute $(\mathbf{x}_U + \mathbf{b} \star \mathbf{x}_V | \mathbf{c} \star \mathbf{x}_U + \mathbf{d} \star \mathbf{x}_V)^{\pi}$ such that

 $e^{sgn} \stackrel{\text{def}}{=} y - (x_U + b \star x_V | c \star x_U + d \star x_V)^{\pi}$ uniform over words of Hamming weight w.

Important fact: as d(i) - b(i)c(i) = 1 for all *i*,

 $\varphi : (\mathsf{z}_U, \mathsf{z}_V) \longmapsto (\mathsf{z}_U + \mathsf{b} \star \mathsf{z}_V \mid \mathsf{c} \star \mathsf{z}_U + \mathsf{d} \star \mathsf{z}_V)^{\pi}$ bijection.

1. Write
$$\mathbf{y} = (\mathbf{y}_U + \mathbf{b} \star \mathbf{y}_V | \mathbf{c} \star \mathbf{y}_U + \mathbf{d} \star \mathbf{y}_V)^{\pi}$$

2. Deduce that
$$\mathbf{e}^{\text{sgn}} = (\mathbf{e}_U + \mathbf{b} \star \mathbf{e}_V \mid \mathbf{c} \star \mathbf{e}_U + \mathbf{d} \star \mathbf{e}_V)^{\pi}$$
 where
$$\begin{cases} \mathbf{e}_V \stackrel{\text{def}}{=} \mathbf{y}_V - \mathbf{x}_V \\ \mathbf{e}_U \stackrel{\text{def}}{=} \mathbf{y}_U - \mathbf{x}_U \end{cases}$$

Here \mathbf{x}_V and \mathbf{x}_U are computed via Prange algorithm...

LEAKAGE-FREE SIGNATURES

 $\mathbf{e}^{\text{sgn}} \stackrel{\text{def}}{=} (\mathbf{e}_U + \mathbf{b} \star \mathbf{e}_V \mid \mathbf{c} \star \mathbf{e}_U + \mathbf{d} \star \mathbf{e}_V)^{\pi} \quad \text{and} \quad \mathbf{e}^{\text{unif}} \text{ unif word of weight } w.$

$$\longrightarrow \text{Write: } \mathbf{e}^{\text{unif}} = (\mathbf{e}^{\text{unif}}_U + \mathbf{b} \star \mathbf{e}^{\text{unif}}_V \mid \mathbf{c} \star \mathbf{e}^{\text{unif}}_U + \mathbf{d} \star \mathbf{e}^{\text{unif}}_V)^{\pi}$$

We would like,

 $e^{sgn} \sim e^{unif}$

In a first step we want,

$$\mathbf{e}_{V} \sim \mathbf{e}_{V}^{\text{unif}}$$
 where $\mathbf{e}_{V} = \mathbf{y}_{V} - \mathbf{x}_{V} = \mathbf{y}_{V} - \text{Prange}(V, \mathbf{y}_{V})$

Important remark (function of weight):

$$\mathbb{P}\left(\mathbf{e}_{V}^{unif}=\mathbf{x}\right)=\frac{1}{\sharp\{\mathbf{y}:|\mathbf{y}|=t\}}\;\mathbb{P}\left(\left|\mathbf{e}_{V}^{unf}\right|=t\right)\quad\text{when }|\mathbf{x}|=t.$$

Approximation: Distribution of Prange algorithm, only function of the weight

$$\mathbb{P}(\mathsf{Prange}(\cdot) = \mathbf{x} \mid |\mathsf{Prange}(\cdot)| = t) = \frac{1}{\sharp \{\mathbf{y} : |\mathbf{y}| = t\}} \quad \text{when } |\mathbf{x}| = t.$$

 \rightarrow Uniformity property: enough to reach $|\mathbf{e}_V| \sim |\mathbf{e}_V^{\text{unif}}|$ as distribution

GUIDE THE WEIGHT OF e_V

• We first look for $\mathbb{E}(|\mathbf{e}_V|) = \mathbb{E}(|\mathbf{e}_V^{\text{unif}}|)$

- \mathbf{e}_V'' follows a uniform law over $\mathbb{F}_3^{n/2-k_V}$: $\mathbb{E}(|\mathbf{e}_V''|) = \frac{2}{3}(n/2-k_V)$
- e'_v can be chosen.

$$\longrightarrow k_V$$
 is fixed as: $\mathbb{E}(|\mathbf{e}'_V|) + \frac{2}{3}(n/2 - k_V) = \mathbb{E}\left(|\mathbf{e}^{\text{unif}}_V|\right)$

REJECTION SAMPLING

Perform rejection sampling!

 $\leq n$

26

REJECTION SAMPLING: TAIL

• $\mathbf{e}_{V}^{\prime\prime}$ follows a uniform law: its variance is fixed,

Choose the weight of e'_V as a random variable!

•
$$|\mathbf{e}'_{V}|$$
 s.t:
$$\begin{cases} \mathbb{E}(|\mathbf{e}'_{V}|) + \frac{2}{3}(n/2 - k_{V}) = \mathbb{E}\left(|\mathbf{e}^{unif}_{V}|\right) \\ |\mathbf{e}'_{V}| \text{ high variance!} \end{cases}$$

REJECTION SAMPLING

 $\leq n$

29

 \longrightarrow Distribution $|\mathbf{e}_V|'$ can be **precisely** chosen s.t. $\mathbb{P}(\text{accept}) \approx 1$

Using Renyi divergence argument: removing rejection sampling!

Signing algorithm: signatures don't leak any information on the secret-key!

 \longrightarrow It enables to reduce the security (EUF-CMA in (Q)ROM) to the hardness of:

Security reduction ((Q)ROM):

- Decoding a random linear code at distance $w \approx 0.9n$,
- Distinguishing random and generalized (U | U + V)-codes.

WAVE: STANDARDIZATION CANDIDATE (NIST)

By proving that signatures are leakage-free in a hash and sign context

 \longrightarrow Wave instantiates Gentry-Peikert-Vaikuntanathan (GPV) framework like Falcon

But Wave security relies on coding problems

Even if parameters are highly conservative

• Fast Verification: (Intel Core i5-1135G7 platform at 2.40GHz)

Post-quantum target security	Level I	Level III	Level V
Verification (MCycles)	1.2	2.5	4.3

• Short signatures: (Intel Core i5-1135G7 platform at 2.40GHz)

Post-quantum target security	Level I	Level III	Level V
Signature length (Bytes)	822	1249	1644

- Immune to statistical attacks.
- Proven secure (Q)ROM with tight reductions.

• Big public-key:

Post-quantum target security	Level I	Level III	Level V
Public-key size (MBytes)	3.6	7.8	13.6

- Signing and key generation rely on Gaussian elimination on large matrices
- Security based on fairly new assumption (2018): distinguishing random and generalized (U | U + V)-codes

NEXT STEPS

Wave parameters are highly conservative!

Attack model:
Cost of \mathcal{A} to solve \mathcal{P} : $\alpha \stackrel{\text{def}}{=} \lim_{n \to +\infty} \frac{1}{n} \log_2 \operatorname{Time} (\mathcal{A})$
Then choose <i>n</i> s.t:
$\alpha n = \lambda$ ($\alpha \approx 0.0149$)
\rightarrow It ignores (super-)polynomial factors and memory access!

For instance: considered attack to forge a signature

Time =
$$P(\lambda)2^{\lambda}$$
 and Memory = $Q(\lambda)2^{\lambda}$.

Next Step:

Providing parameters for "concrete" security.

A MORE OPTIMIZED/SECURE IMPLEMENTATION

Wave reference implementation

- portable C99,
- KeyGen and Sign in constant-time,
- bit-sliced arithmetic over 𝔽₃.

Bottleneck of Wave: Gaussian elimination on big matrices/memory access

(it impacts key generation and signing not verification)

Next Step:

- Providing optimized implementation: AVX,
 - → Wavelet: AVX2 (intel) & ARM CORTEX M4 in verification (2x faster),
- Providing a Wave version with countermeasures, maskings,
- Providing (friendly) tools to ensure that Wave is properly implemented.

REMOVING APPROXIMATION IN PRANGE

PRANGE ALGORITHM: GAUSSIAN ELIMINATION

To represent C: use a basis/generator-matrix $\mathbf{G} \in \mathbb{F}_q^{k \times n}$, $C = \left\{ \mathbf{xG} : \mathbf{x} \in \mathbb{F}_q^k \right\} \quad (\text{rows of } \mathbf{G} \text{ form } a \text{ basis of } C \right).$

Prange algorithm: by linear algebra (Gaussian elimination)

C has dimension k: $\forall z \in \mathbb{F}_q^k$, easy to compute $c \in C$ such that,

The *k* symbols are not freely chosen!

1. Pick $\mathcal{I} \subseteq \{1, \dots, n\}$ such that $G_{\mathcal{I}}$ has rank *k* (columns of **G** indexed by \mathcal{I}),

2. Compute the codeword xG where $x \stackrel{\text{def}}{=} zG_{\mathcal{I}}^{-1}.$

$$\mathbb{P}(\operatorname{Prange}(\cdot) = \mathbf{x} \mid |\operatorname{Prange}(\cdot)| = t) = \frac{1}{\sharp\{\mathbf{y} : |\mathbf{y}| = t\}} \quad : \text{ only } \approx$$

 \rightarrow Only \approx as we cannot invert the system for all *k* coordinates!

NON-UNIFORMITY OF PRANGE

$$\mathbb{P}(\operatorname{Prange}(\cdot) = \mathbf{x} \mid |\operatorname{Prange}(\cdot)| = t) = \frac{1}{\sharp\{\mathbf{y} : |\mathbf{y}| = t\}} \quad : \text{ only } \approx$$

 \rightarrow Only \approx as we cannot invert the system for all k coordinates!

$$\mathbb{P}(\mathsf{Prange}(\cdot) = \mathbf{x} \mid |\mathsf{Prange}(\cdot)| = t) = \frac{1}{\sharp\{\mathbf{y} : |\mathbf{y}| = t\}} \quad : \mathsf{only} \approx$$

 \rightarrow Only \approx as we cannot invert the system for all k coordinates!

