Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation of parity-check equations

Limits of statistical decoding

Statistical Decoding

Thomas Debris-Alazard and Jean-Pierre Tillich

Inria Saclay, EPI GRACE

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation of parity-check equations

Limits of statistical decoding

Code-based Cryptography and generic decoding problem

Code-based cryptography: McEliece (1978)...

- \rightarrow This is based on the difficulty of decoding for random linear codes
 - Input: \mathscr{C} binary code of length n, dimension k with parity-check matrix $H \in \mathbb{F}_2^{n(1-R) \times n}$, $y \in \mathbb{F}_2^n$, $t \in \mathbb{N}$
 - Search: e where e has Hamming weight t such that $He^{T} = Hy^{T}$

 \rightarrow Decision problem NP-complete

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation o parity-check equations

Limits of statistical decoding

The simplest information set decoding: Prange algorithm

We are looking for solving $\operatorname{He}^{T} = \operatorname{s}^{T}$: $\begin{cases}
s_{1} = h_{1,1}e_{1} + h_{1,2}e_{2} + \dots + h_{1,n}e_{n} \\
\vdots \\
s_{n(1-R)} = h_{n(1-R),1}e_{1} + h_{n(1-R),2}e_{2} + \dots + h_{n(1-R),n}e_{n} \\
\rightarrow n(1-R) \text{ equations with } n \text{ unknowns.}
\end{cases}$

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation of parity-check equations

Limits of statistical decoding

The simplest information set decoding: Prange algorithm

• If $e_i = 0$ on a set of nR positions i:

$$\begin{cases} s_1 = h_{1,J_1} e_{J_1} + h_{1,J_2} e_{J_2} + \dots + h_{1,J_{n(1-R)}} e_{J_{n(1-R)}} \\ \vdots \\ s_{n(1-R)} = h_{n(1-R),J_1} e_{J_1} + h_{n(1-R),J_2} e_{J_2} + \dots + h_{n(1-R),J_{n(1-R)}} e_{J_{n(1-R)}} e_{J_{n(1-R)}} \\ \end{cases}$$

ightarrow n(1-R) equations with n(1-R) unknowns .

Exponential complexity as exponentially small probability to pick a set with this property

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

parity-check equations

Limits of statistical decoding

Information set decoding

Most of the generic decoding algorithms come from the Prange algorithm (1962) :

Lee-Brickell (1988) - Leon (1988) - Stern (1988) - CC (1998) -- MMT (2011)- BLP (2011) - BJMM (2012) - MO (2015)

If t = o(n), all these algorithms have the same asymptotic exponent (Canto-Torres&Sendrier 2016) :

$$\widetilde{\mathscr{O}}\left(2^{-\log_2(1-R)\cdot t}\right)$$

 \rightarrow Crucial when it comes to estimate key size of crypto-systems in code-based cryptography

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

- Two distributions
- Complexity
- Krawtchouk polynomials
- Computation o parity-check equations

Limits of statistical decoding

Statistical decoding

It exists an algorithm which does not belong to this family: Statistical decoding of Al. Jabri (2001)

Studied by R.Overbeck in 2006

No study of its asymptotic complexity!

Results

Tillich

Statistical Decoding

Thomas Debris-Alazard and Jean-Pierre

Statistical decoding

- Two distributions
- Complexity
- Krawtchouk polynomials
- Computation o parity-check equations
- Limits of statistical decoding

- Asymptotic exponent of statistical decoding given by a simple formula
- Statistical decoding has a worse complexity than the Prange algorithm for a certain range of error weights.

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation of parity-check equations

Limits of statistical decoding

Statistical decoding: intuition

$$y = c + e$$
 where $c \in \mathscr{C}$

$$\begin{split} \mathscr{C}^{\perp} &= \{ \mathsf{h} \in \mathbb{F}_{2}^{n} : \, \forall \mathsf{c} \in \mathscr{C}, \, \, \langle \mathsf{h}, \mathsf{c} \rangle = 0 \} \\ &\qquad \mathsf{h} \in \mathscr{C}^{\perp} \Rightarrow \langle \mathsf{y}, \mathsf{h} \rangle = \langle \mathsf{e}, \mathsf{h} \rangle \end{split}$$

• If
$$e_i = 1$$
 and $h_i = 1$,

 $\langle \mathsf{y},\mathsf{h}
angle = 1 \iff \#(\mathit{Supp}(\mathsf{e}) \cap \mathit{Supp}(\mathsf{h}) - \{i\}) \text{ even}$

• If $e_i = 0$ and $h_i = 1$

 $\langle \mathsf{y},\mathsf{h} \rangle = 1 \iff \#(Supp(\mathsf{e}) \cap Supp(\mathsf{h}) - \{i\}) \text{ odd}$

 \rightarrow Bias of the $\langle y, h \rangle$'s depending on $e_i = 1$ or 0

Notations

Tillich

Statistical Decoding

Thomas Debris-Alazard and Jean-Pierre

Statistical decoding

- Two distributions
- Complexity
- Krawtchouk polynomials
- Computation o parity-check equations
- Limits of statistical decoding

• $\mathscr{H}_w \subseteq \{h \in \mathscr{C}^{\perp} : |h| = w\}$ where $|\cdot|$ is Hamming weight • $\mathscr{H}_{w,i} \subseteq \mathscr{H}_w \cap \{m \in \mathbb{F}_2^n : m_i = 1\}$

We set a weight w, a noisy codeword y = c + e where |e| = t, $c \in C$.

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation of parity-check equations

Limits of statistical decoding

$e_i = 1$: $q_1(\mathbf{e}, w, i) \stackrel{\triangle}{=} \mathbb{P}_{\mathbf{h} \sim \mathscr{H}_{w,i}} (\langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{e}, \mathbf{h} \rangle = 1)$

Two distributions

$$e_i = 0 : q_0(\mathsf{e}, w, i) \stackrel{ riangle}{=} \mathbb{P}_{\mathsf{h} \sim \mathscr{H}_{w,i}} \left(\langle \mathsf{y}, \mathsf{h} \rangle = \langle \mathsf{e}, \mathsf{h} \rangle = 1 \right)$$

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation of parity-check equations

Limits of statistical decoding

Two distributions

$$\begin{split} e_i &= 1 : q_1(\mathsf{e}, w, i) \stackrel{\triangle}{=} \mathbb{P}_{\mathsf{h} \sim \mathscr{H}_{w,i}} \left(\langle \mathsf{y}, \mathsf{h} \rangle = \langle \mathsf{e}, \mathsf{h} \rangle = 1 \right) \\ e_i &= 0 : q_0(\mathsf{e}, w, i) \stackrel{\triangle}{=} \mathbb{P}_{\mathsf{h} \sim \mathscr{H}_{w,i}} \left(\langle \mathsf{y}, \mathsf{h} \rangle = \langle \mathsf{e}, \mathsf{h} \rangle = 1 \right) \end{split}$$

$$q_{1}(\mathbf{e}, w, i) = \frac{\sum_{j \text{ even}}^{w-1} {\binom{t-1}{j}} {\binom{n-t}{w-1-j}}}{\binom{n-1}{w-1}} = \frac{1}{2} + \varepsilon_{1}$$
$$q_{0}(\mathbf{e}, w, i) = \frac{\sum_{j \text{ odd}}^{w-1} {\binom{t}{j}} {\binom{n-t-1}{w-1-j}}}{\binom{n-1}{w-1}} = \frac{1}{2} + \varepsilon_{0}$$

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation o parity-check equations

Limits of statistical decoding

Distinguish two distributions

Goal: distinguishing two distributions at distance $|\varepsilon_1 - \varepsilon_0|$ \rightarrow Neymann-Pearson + Chernoff: sample of minimal size

$$P_{w} \stackrel{\triangle}{=} \frac{\log_{2}(n)}{(\varepsilon_{0} - \varepsilon_{1})^{2}}$$

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation o parity-check equations

Limits of statistical decoding

A distinguisher

$$V_m = \sum_{k=1}^m \operatorname{sgn}(\varepsilon_1 - \varepsilon_0) \langle y, h^k
angle \in \mathbb{Z}$$

Proposition (Chernoff bound)

If
$$e_i = l$$
 we have:
 $\mathbb{P}\left(|V_m - m\operatorname{sgn}(\varepsilon_1 - \varepsilon_0)(1/2 + \varepsilon_l)| \ge m \frac{|\varepsilon_1 - \varepsilon_0|}{2}\right) \le 2^{-2m \frac{(\varepsilon_1 - \varepsilon_0)^2}{2\ln(2)}}$

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation o parity-check equations

Limits of statistical decoding

Statistical Decoding

 \rightarrow Difficulty: find enough vectors $h \in \mathscr{H}_w$ with an algorithm $\texttt{ComputeParity}_w$

$$ightarrow$$
 We need: $O\left(P_{w}
ight)$ where $P_{w}=rac{\log_{2}(n)}{(arepsilon_{1}-arepsilon_{0})^{2}}$

Proposition

The complexity of statistical decoding is given up to a polynomial factor by:

- If parity-check equations are already computed: $O(P_w)$
- Otherwise: $O(P_w) + O(|\text{ComputeParity}_w|)$

 $|\mathsf{ComputeParity}_w| \ge P_w$

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation of parity-check equations

Limits of statistical decoding

Asymptotic exponent

$$\pi(\omega,\tau) \stackrel{\triangle}{=} \lim_{n \to +\infty} \frac{1}{n} \log_2 P_w$$

Let h be the binary entropy,

$$h(x) = -x \log_2(x) - (1-x) \log_2(1-x)$$

Theorem

We set
$$\omega \stackrel{\triangle}{=} \frac{w}{n}$$
, $\tau \stackrel{\triangle}{=} \frac{t}{n}$ et $\gamma \stackrel{\triangle}{=} \frac{1}{\omega}$,
• If $\tau \in \left(0, \frac{1}{2} - \sqrt{\omega - \omega^2}\right)$:
 $\pi(\omega, \tau) = 2\omega \log_2(r) - 2\tau \log_2(1 - r) - 2(1 - \tau) \log_2(1 + r) + 2h(\omega)$
where r is the smallest root of $(1 - \omega)X^2 - (1 - 2\tau)X + \omega = 0$.
• If $\tau \in \left(\frac{1}{2} - \sqrt{\omega - \omega^2}, \frac{1}{2}\right)$: $\pi(\omega, \tau) = h(\omega) + h(\tau) - 1$.

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation of parity-check equations

Limits of statistical decoding

Ingredient one: Bias and Krawtchouk polynomials

Polynomial of degree v, order m, p_v^m defined as:

$$p_{\nu}^{m}(X) = \frac{(-1)^{\nu}}{2^{\nu}} \sum_{j=0}^{\nu} (-1)^{j} \binom{X}{j} \binom{m-X}{\nu-j}$$

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation of parity-check equations

Limits of statistical decoding

Ingredient one: Bias and Krawtchouk polynomials

Polynomial of degree v, order m, p_v^m defined as:

$$p_{\nu}^{m}(X) = \frac{(-1)^{\nu}}{2^{\nu}} \sum_{j=0}^{\nu} (-1)^{j} \binom{X}{j} \binom{m-X}{\nu-j}$$

$$\frac{(-2)^{w-2}}{\binom{n-1}{w-1}}p_{w-1}^{n-1}(t) = \varepsilon_0$$
$$-\frac{(-2)^{w-2}}{\binom{n-1}{w-1}}p_{w-1}^{n-1}(t-1) = \varepsilon_1$$

We used results of Mourad E.H Ismail & Plamen Simeonov (1998)

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation of parity-check equations

Limits of statistical decoding

Equations of weight $\frac{Rn}{2}$

We compute the parity-check matrix H of the code \mathscr{C} Gaussian elimination on H : $[I_{n(1-R)}|H']$ The rows have a weight $\frac{Rn}{2}(1 + o(1))$ \rightarrow Polynomial cost per solution

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk

Computation of parity-check equations

Limits of statistical decoding

Equations of weight $\frac{Rn}{2}$

We compute the parity-check matrix ${\sf H}$ of the code ${\mathscr C}$

Gaussian elimination on H : $[I_{n(1-R)}|H']$

The rows have a weight $\frac{Rn}{2}(1+o(1))$

 \rightarrow Polynomial cost per solution

$$\pi^{complete}(\omega,\tau) \stackrel{\triangle}{=} \underbrace{\lim_{n \to +\infty} \frac{1}{n} \max\left(\log_2 P_w, \log_2 |\texttt{ComputeParity}_w|\right)}_{n \to +\infty}$$

Theorem

Let h be the binary entropy. With the previous algorithm of parity-check equations computation

- If $\tau = h^{-1}(1-R)$: $\pi(R/2,\tau) = \pi^{complete}(R/2,\tau) = h(R/2) - R;$
- If $\tau = o(1)$: $\pi(R/2, \tau) = \pi^{complete}(R/2, \tau) = -2\tau \log_2(1-R)$.

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation of parity-check equations

Limits of statistical decoding

Comparison of exponents at $h^{-1}(1-R)$

Strategy

Tillich

Statistical Decoding

Thomas Debris-Alazard and Jean-Pierre

Statistical decoding

- Two distributions
- Complexity
- Krawtchouk polynomials
- Computation of parity-check equations

Limits of statistical decoding We are looking for a number P_w of vectors of \mathscr{C}^\perp of weight w $P_w\searrow \text{if }w\searrow$

Finding parity-check equations of moderate (or small) weight w

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation of parity-check equations

Limits of statistical decoding

Parity-check equations

In a random code there are $C_w \stackrel{\triangle}{=} \frac{\binom{n}{w}}{2^{nR}}$ parity-check equations

 \rightarrow We are looking for the smallest w_0 such that:

$$P_{w_0} \leq C_{w_0}$$

The complexity of statistical decoding can not be $< P_{w_0}$.

Thomas Debris-Alazard and Jean-Pierre Tillich

Surprising fact

Introduction

Statistical decoding

Two distributions

Complexity

Krawtchouk polynomials

Computation o parity-check equations

Limits of statistical decoding $t = nh^{-1}(1 - R)$: number of errors which is the hardest to decode For $\tau = h^{-1}(1 - R)$: $\forall w \ge w_0$: $P_w = C_w$

where

$$w_0 = n\left(\frac{1}{2} - \sqrt{\tau - \tau^2}\right)$$

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

- Two distributions
- Complexity
- Krawtchouk polynomials
- Computation parity-check equations

Limits of statistical decoding

Optimal exponent on Gilbert-Varshamov bound

Thomas Debris-Alazard and Jean-Pierre Tillich

Introduction

Statistical decoding

- Two distributions
- Complexity
- Krawtchouk polynomials
- Computation o parity-check equations

Limits of statistical decoding

Concluding remarks

- Iterative statistical decoding only improves a polynomial factor
- Consider a plenty of parity-check equation weights does not improve the asymptotic exponent
- Other kind of improvements
 → Consider a linear combination of information bits?

$$\langle \mathbf{h}, \mathbf{y} \rangle = h_1 \cdot y_1 + \sum_{j=2}^n h_j \cdot y_j \rightsquigarrow \langle \mathbf{h}, \mathbf{y} \rangle = \sum_{j \in J} h_j \cdot y_j + \sum_{j \in \overline{J}} h_j \cdot y_j$$

• Statistical decoding arises the issue of other kind of techniques to decode random linear codes.