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Introduction to Quantum Computer Science and Applications

Exercise Sheet 5

Exercise 1. Consider a function

f : {0, 1}2 → {0, 1}

for which there exists a unique x0 such that f(x0) = 1.

1. Write the different states |ψgood〉 , |ψbad〉 , |ψ〉 which are involved in Grover’s
algorithm as defined in the lecture in this setting.

2. Write |ψ〉 = cos(θ) |ψbad〉+ sin(θ) |ψgood〉. What is the value of θ?

3. Give the different steps of the computation after one iteration of Grover’s algo-
rithm − you don’t need to reprove how to perform the reflexions −. Show that
one iteration of Grover’s algorithm is enough to recover x0 with probability 1.

Exercise 2 (Grover’s algorithm when the number of solution is unknown). Our aim
in this exercise is to give a variation of Grover’s algorithm that can find solutions
in expected time

√
N
t

even when the number of solutions t is unknown. This exer-
cise describes the idea of the following article https://arxiv.org/pdf/quant-ph/
9605034.pdf. Roughly speaking, the idea basically consists in running Grover’s
algorithm with exponentially increasing guesses for the number of iterations.

Recall that we study the following problem:

• Input: a function f : {0, 1}n −→ {0, 1},

• Goal: find x ∈ {0, 1}n be such that f(x) = 1.

Let,
t

def
= ♯ {x ∈ {0, 1}n : f(x) = 1} .

1. We suppose that t, the unknown number of solutions, is unknown. Let θ def
=

arcsin
√

t
2n

. Let j be chosen uniformly at random in J0,m− 1K. Show that the
probability Pm to measure a solution after j iterations of Grover’s algorithm
verifies

Pm ≥ 1

4
when m ≥ 1

sin 2θ

Hint:recallthatsin
2
a=

1−cos2a
2andsin(2a)=2cos(a)sin(a)
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2. Let j be chosen uniformly at random in J0,m− 1K. Show that j is expected to
be equal to (m− 1)/2, namely:

E(j) =
m− 1

2

3. Let m0
def
= 1

sin 2θ
. Let us consider the following algorithm:

1. u def
= 0, λ def

= 6
5 and m def

= λ⌈logλm0⌉.
2. Pick j uniformly at random in J0,m− 1K.
3. Apply j iterations of Grover’s algorithm starting from initial state |ψ〉 def

=
1√
2n

∑
x∈{0,1}n |x〉 |f(x)〉.

4. Measure, if the last register is one, exit.
5. Otherwise, set m to min

(√
2n, λm

)
and go back to Step 2.

Show that the expected number of iterations of this algorithm before ending and
therefore finding a solution is a

O (m0) .

4. Suppose that the number t of solution is ≤ 3
4
· 2n and t > 0. Give an algorithm

that finds a solution in expected time O
(√

2n

t
max (n, Tf )

)
where Tf is the

classical running time of f .

5. How treating the case t > 3
4
· 2n or t = 0? In particular, what is the expected

running time of the algorithm when there is no solution?

Exercise 3. Let,
f : {1, . . . , n} → {1, . . . ,m}

be a function classically computable in time Tf . Construct a quantum algorithm using
Grover’s algorithm that finds the minimum of f in time O(

√
n log2(m)max(log n, Tf )).

f(x)≤T,anduseGrover’salgorithmofthepreviousexercisewithoutprovingit.

Hint:YoucanconsiderdifferentthresholdsTandtrytofindvaluesxsuchthat
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Exercise 4 (Grover with probability one). We claimed during the lecture (without
proof) that Grover’s algorithm can be tweaked to work with probability 1 if we know
the number of solutions exactly. The goal of this exercise is to provide such an exact
algorithm. Roughly, the idea is to increase the dimension (adding a qubit!) in order
to slightly change the angle θ of Grover’s algorithm in order to have a “perfect”
number of iterations, namely for which it is not necessary to round up.

Let,

f : {0, 1}n → {0, 1} such that there exists a unique x0 verifying f(x0) = 1.

Our aim is to recover x0 with probability one.

1. Give the success probability of the basic version of Grover’s algorithm after k
iterations.

2. Suppose that the optimal number of iterations k̃ = π

4 arcsin
(

1√
2n

) − 1
2

is not an

integer. Show that if we round k̃ up to the nearest integer, doing dk̃e iterations,
then the algorithm will have success probability strictly less than 1.

3. Define now the following function:

g : y ∈ {0, 1}n+1 7−→
{
f(x) if y = (x|0)
0 otherwise.

Show how you can implement the following (n+ 1)-qubit unitary

Sg : |y〉 7→ (−1)g(y) |y〉

using one query to f (of the usual form Uf : |x, b〉 7→ |x, f(x)⊕ b〉) and a few
elementary gates.

4. Let γ ∈ [0, 2π) and let Uγ
def
=

(
cos γ − sin γ
sin γ cos γ

)
be the corresponding rotation

matrix. Let
A = H⊗n ⊗Uγ

be an (n + 1)-qubit unitary. What is the probability (as a function of γ)
that measuring the state A |0n+1〉 in the computational basis gives a solution
y ∈ {0, 1}n+1 such that g(y) = 1?
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5. Give a quantum algorithm that finds the unique solution x0 with probability one
using O(

√
N) queries to f .

Exercise 5. Consider an efficiently computable function (to simplify formulas sup-
pose that Tf = 1) f : {0, . . . , 2n − 1} −→ {0, 1}. We also consider a string
s = s0, . . . , sS−1 ∈ {0, 1}S. The goal is to find S consecutive values of f(x) that
are equal to s. More formally, we want to find x ∈ {0, . . . , 2n − S} st. f(x) = s0,
f(x + 1) = s1, . . . , f(x + S − 1) = sS−1. We assume there exists a single x0 that
satisfies this property.

1. Find a quantum algorithm that finds x0 in time O(S · 2n/2).

2. Assume now we have an efficiently computable function g : {0, . . . , S − 1} −→
{0, 1} such that g(i) = si.

(a) Assume you have access to a version of Grover’s algorithm, that outputs
a solution to a search problem for a function ℓ : I −→ {0, 1} if there is a
solution and ⊥ if there is no solution (such as the algorithm of Exercise
2). Assume also that this routine works with probability 1 and takes time
O
(√

♯I
)
. Construct an algorithm A running in time O

(√
S
)

such that
for any input x, outputs 1 if x = x0 and 0 otherwise.

(b) Construct a quantum algorithm that finds x0 with good probability in run-
ning time O(

√
S · 2n/2).

Comment: this exercise illustrates that amplitude amplification can provide an exponential
improvement over Grover’s algorithm.

Exercise 6. Let f : {0, 1}n → {0, 1}n that we can query in the usual way. We are
promised that this function is 2-to-1: for all x ∈ {0, 1}n there exists a unique y 6= x
such that f(x) = f(y). Our aim in this exercise is to study some algorithms to
compute a collision, i.e., a pair (x,y) such that x 6= y and f(x) = f(y).

1. Choose a set S consisting of s element picked uniformly at random among {0, 1}n.
What is the expected number of x,y ∈ S such that x 6= y and f(x) = f(y)?

2. Give a classical randomized algorithm that finds a collision with probability
≥ 1/2 using O

(√
2n
)

queries to f .
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3. Give a quantum algorithm that finds a collision with O
(√

2n
)

queries to f .

4. Give a quantum algorithm that finds a collision using O
(
2n/3

)
queries to f .

In this question you recover the algorithm given in https://arxiv.org/pdf/
quant-ph/9705002.pdf.

Hint:Combinebothclassicalandquantumapproaches

Exercise 7 (Approximating Unitary Operators). Let U and V be two unitaries.
Let,

E(U,V) = max
|ψ⟩ : ∥|ψ⟩∥=1

‖(U−V) |ψ〉 ‖

where ‖ · ‖ denotes the norm of the considered Hilbert space for quantum states.
E(U,V) is known as the operator norm of U−V.

The distance between two unitaries A and B is defined as E (A,B).

1. Let M be a POVM associated with the measurement, and let PU (or PV) be the
probability of obtaining the corresponding measurement outcome if the operation
U (or V) was performed on |ψ〉. Show that

|PU − PV| ≤ 2E(U,V)

2. Show that

E(UmUm−1 · · ·U1,VmVm−1 · · ·V1) ≤
m∑
i=1

E(Ui,Vi)

3. Deduce that if A,U,V are unitaries, then

|PAU − PAV| ≤ 2E (U,V)

4. (i) What is the distance between the 2× 2 identity matrix and the phase-gate(
1 0
0 eiφ

)
?

(ii) What is the distance between the 4× 4 identity matrix and the controlled
version of the phase gate of (i)?

(iii) What is the distance between the 2n × 2n identity matrix I2n and the
controlled phase gate of (ii) tensored with I2n−2?
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(iv) Give a quantum circuit with O(n log n) elementary gates that has dis-
tance less than C/n (for some constant C) from the Fourier transform
QFTZ/2nZ.

Hint:youcanusethatcosε=
ε→0

1−
x2

2(1+O(1))

Exercise 8 (About characters).
Let G be a finite group.

1. Prove that for any character χ ∈ Ĝ,∑
g∈G

χ(g) =

{
♯G if χ = 1
0 otherwise.

2. How do you deduce from that∑
g∈G

χx(g)χy(g) =

{
♯G if χx = χy
0 otherwise.

3. Consider the function fx

fg : Ĝ −→ G

χ 7−→ χ(g)

What can you say about fg?

4. How can you deduce from the previous point that we also have∑
χ∈Ĝ

χ(x)χ(y) =

{
♯G if x = y
0 otherwise.

5. Let H be a subgroup of G. Show that∑
h∈H

χg(h) =

{
♯H if g ∈ H⊥

0 otherwise. and
∑

h⊥∈H⊥

χg(h
⊥) =

{
♯H⊥ if g ∈ H
0 otherwise.

Exercise 9 (Poisson summation formula and application).
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1. Let G be a finite group and H be a subgroup. Show the Poisson summation
formula, for any function f : G −→ C,

1√
♯H

∑
h∈H

f(h) =
1√
♯H⊥

∑
h⊥∈H⊥

f̂(h)

You can admit that ♯H⊥ · ♯H = ♯G.

2. Recall that the characters of Z/2nZ are given by the χx’s where χx(y)
def
= e−

2iπxy
2n .

Let i ∈ J0, n− 1K
(2i)

def
=

{
x2i : x ∈ Z/2nZ

}
is the subgroup of Z/2nZ generated by 2i. Determine (2i)⊥.

3. Given a function f : Z/2nZ → C which is 2i-periodic. Show that it vanishes
on (2i)⊥.

4. Suppose that you have f̂ for free. Is it easy to find its period (here 2i)? What
do you conclude?

Exercise 10. Is computing the Quantum Fourier Transform in Z/2nZ or Fn2 helps
to compute the classical Fourier transform?
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