Ecole Polytechnique, 3A

Introduction to Quantum Computer Science and Applications
Exercise Sheet 5
Exercise 1. Consider a function
f:{0,1}* — {0,1}
for which there exists a unique xo such that f(xg) = 1.

1. Write the different states |[go0d) » |¥bad) » |) which are involved in Grover’s
algorithm as defined in the lecture in this setting.

2. Write |1) = cos(0) [tvaa) + sin(8) [Ygood). What is the value of 67

3. Give the different steps of the computation after one iteration of Grover’s algo-
rithm — you don’t need to reprove how to perform the reflexions —. Show that
one iteration of Grover’s algorithm is enough to recover xqg with probability 1.

Exercise 2 (Grover’s algorithm when the number of solution is unknown). Our aim
in this exercise is to give a variation of Grover’s algorithm that can find solutions

¢
cise describes the idea of the following article https://arziv.org/pdf/quant-ph/

9605034 .pdf. Roughly speaking, the idea basically consists in running Grover’s
algorithm with exponentially increasing guesses for the number of iterations.
Recall that we study the following problem:

in expected time \/E even when the number of solutions t is unknown. This exer-

e Input: a function f:{0,1}" — {0,1},
e Goal: find x € {0,1}" be such that f(x) = 1.
Let,
t Yy xe{0,1)" : f(x)=1}.
def

1. We suppose that t, the unknown number of solutions, is unknown. Let 6 =
arcsin 4 / 2% Let j be chosen uniformly at random in [0, m — 1]. Show that the
probability P,, to measure a solution after j iterations of Grover’s algorithm

verifies
P, > L h > L
—  when m
Ty ~ sin20
(D)uts (D)sOD g = (DG)UIS PUD fzs5— = D LUIS JDY} ]9 JUTH

1


https://arxiv.org/pdf/quant-ph/9605034.pdf
https://arxiv.org/pdf/quant-ph/9605034.pdf

Ecole Polytechnique, 3A

2. Let j be chosen uniformly at random in [0,m — 1]. Show that j is expected to
be equal to (m — 1)/2, namely:

m—1
E(j) = —
(1) = —5
3. Let my dzefﬁ. Let us consider the following algorithm:
1. u d:efO, A d:efg and m d:ef)\ﬂogkmd.

2. Pick j uniformly at random in [0, m — 1].
3. Apply j iterations of Grover’s algorithm starting from initial state |1) i)
Y oy 1) 1£()).

4. Measure, if the last register is one, exit.

5. Otherwise, set m to min (\/ 2n, )\m) and go back to Step 2.

Show that the expected number of iterations of this algorithm before ending and
therefore finding a solution is a

O (mg) .

4. Suppose that the number t of solution is < % 2" and t > 0. Give an algorithm

that finds a solution in expected time O (,/%max (n,Tf)> where Ty is the
classical running time of f.

5. How treating the case t > % 2" ort = 07 In particular, what is the expected
running time of the algorithm when there is no solution?

Exercise 3. Let,
AL ... on}—=A{1,...,m}

be a function classically computable in time Ty. Construct a quantum algorithm using
Grover’s algorithm that finds the minimum of f in time O(y/nlog,(m) max(logn, Ty)).

‘1 bugaold ynoypm 25104072 snowald ay) fo wyiobp s so004xr) asn puv ‘T > (T)f
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Exercise 4 (Grover with probability one). We claimed during the lecture (without
proof) that Grover’s algorithm can be tweaked to work with probability 1 if we know
the number of solutions exactly. The goal of this exercise is to provide such an exact
algorithm. Roughly, the idea is to increase the dimension (adding a qubit!) in order
to slightly change the angle 68 of Grover’s algorithm in order to have a “perfect”
number of iterations, namely for which it is not necessary to round up.

Let,
f:4{0,1}" — {0,1} such that there exists a unique xo verifying f(xqg) = 1.
Our aim is to recover X, with probability one.

1. Glive the success probability of the basic version of Grover’s algorithm after k
tterations.

™

4 arcsin < 1

van
integer. Show that if we round k up to the nearest integer, doing [k| iterations,
then the algorithm will have success probability strictly less than 1.

2. Suppose that the optimal number of iterations k= 5

>—li3notan

3. Define now the following function:

g:y € {01} — { {;(X) Zzenge'.())

Show how you can implement the following (n + 1)-qubit unitary

Syt ly) = (=1)Yy)
using one query to f (of the usual form Uy : |x,b) — |x, f(x) ® b)) and a few
elementary gates.

4. Let v € [0,27) and let U W (COST I b the corresponding rotation
K siny  cosvwy

matriz. Let
A=H*""@U,

be an (n + 1)-qubit unitary. What is the probability (as a function of v)
that measuring the state A |0"1) in the computational basis gives a solution
y € {0,1}"" such that g(y) =17
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5. Give a quantum algorithm that finds the unique solution xo with probability one

using O(v'N) queries to f.

Exercise 5. Consider an efficiently computable function (to simplify formulas sup-
pose that Ty = 1) f : {0,...,2" — 1} — {0,1}. We also consider a string
s = 80,...,85.1 € {0,1}°. The goal is to find S consecutive values of f(z) that
are equal to s. More formally, we want to find x € {0,...,2" — S} st. f(x) = so,
fle4+1) =s1,...,flx + 5 —1) = sg_1. We assume there exists a single xo that
satisfies this property.

1. Find a quantum algorithm that finds o in time O(S - 2/?).

2. Assume now we have an efficiently computable function g :{0,...,S —1} —
{0,1} such that g(i) = s;.

(a) Assume you have access to a version of Grover’s algorithm, that outputs
a solution to a search problem for a function { : T — {0, 1} if there is a
solution and L if there is no solution (such as the algorithm of Exercise
2). Assume also that this routine works with probability 1 and takes time

O (\/ﬂ_l') Construct an algorithm A running in time O (\/§> such that

for any input x, outputs 1 if x = x¢ and 0 otherwise.

(b) Construct a quantum algorithm that finds xo with good probability in run-
ning time O(v/S - 27/?).

Comment: this exercise illustrates that amplitude amplification can provide an exponential
improvement over Grover’s algorithm.

Exercise 6. Let f : {0,1}" — {0,1}" that we can query in the usual way. We are
promised that this function is 2-to-1: for all x € {0,1}" there exists a unique y # x
such that f(x) = f(y). Our aim in this exercise is to study some algorithms to
compute a collision, i.e., a pair (x,y) such that x #y and f(x) = f(y).

1. Choose a set S consisting of s element picked uniformly at random among {0, 1}".
What is the expected number of X,y € S such that x #y and f(x) = f(y)?

2. Give a classical randomized algorithm that finds a collision with probability

> 1/2 using O (\/2”) queries to f.
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3. Give a quantum algorithm that finds a collision with O (\/ 2”) queries to f.

4. Give a quantum algorithm that finds a collision using O (2”/3) queries to f.
In this question you recover the algorithm given in https://arziv.org/pdf/
quant-ph/9705002. pdf.

§9Yy2D0LddD WNIUDND PUD JDIISSD]D Y10qQ dULQULOY) JUTH

Exercise 7 (Approximating Unitary Operators). Let U and V be two unitaries.
Let,

EU,V) = jmax [(U=V)[¥l

where || - || denotes the mnorm of the considered Hilbert space for quantum states.
E(U, V) is known as the operator norm of U — V.
The distance between two unitaries A and B is defined as FE (A, B).

1. Let M be a POVM associated with the measurement, and let Py (or Py ) be the
probability of obtaining the corresponding measurement outcome if the operation
U (or V) was performed on |¢). Show that

|Py — Py| <2E(U,V)
2. Show that

m

E(UpUpoy - UL Vi Vi Vi) <3 E(U, V)

i=1
3. Deduce that if A, U,V are unitaries, then

|Pav — Pav| < 2E (U, V)

4. (i) What is the distance between the 2 x 2 identity matriz and the phase-gate

L0 0
0 e¥
(1) What is the distance between the 4 x 4 identity matriz and the controlled

version of the phase gate of (1)?

(2ii) What is the distance between the 2" x 2" identity matriz Isn and the
controlled phase gate of (ii) tensored with Ign—2?¢

5


https://arxiv.org/pdf/quant-ph/9705002.pdf
https://arxiv.org/pdf/quant-ph/9705002.pdf

Ecole Polytechnique, 3A

(iv) Give a quantum circuit with O(nlogn) elementary gates that has dis-
tance less than C/n (for some constant C') from the Fourier transform

QFTz/QWLZ .
03

(1o + [)Z% — 1 = 2509 30y 9sn uv? nofi UIH

Exercise 8 (About characters).
Let G be a finite group.

1. Prove that for any character x € (AJ,

_J G ifx=1
ZX(Q) - { 0  otherwise.

geG

2. How do you deduce from that

> Xal9)Xl9) = { (ﬁ)G g = o

otherwise.
geG

3. Consider the function f,

G
x(9)

e

> Q)

—
—
What can you say about f,?

4. How can you deduce from the previous point that we also have

Sovt) = { 57 ey

« otherwise.
X€G

5. Let H be a subgroup of G. Show that

IRTORS A TR SRS RS & el kvt

otherwise. otherwise.
heH hleHL

Exercise 9 (Poisson summation formula and application).
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1. Let G be a finite group and H be a subgroup. Show the Poisson summation
formula, for any function f : G — C,

ﬁ S ) = ﬂ% S fn)

heH hteHL

You can admit that $H* - 1H = #G.

de 2imx
f —2Zimey

2. Recall that the characters of Z./2"7 are given by the x,’s where x,(y) = e
Let i € [0,n — 1]
@) ¥ {22 wez/27)
is the subgroup of Z/2"7Z generated by 2¢. Determine (2°)*.
3. Given a function f : Z/2"Z — C which is 2'-periodic. Show that it vanishes
on (21)+.

4. Suppose that you have ffor free. Is it easy to find its period (here 2')? What
do you conclude?

Exercise 10. Is computing the Quantum Fourier Transform in Z/2"Z or FYy helps
to compute the classical Fourier transform?



