Introduction to Quantum Computer Science and Applications

Exercise Sheet 5

Exercise 1. *Consider a function*

$$
f: \{0, 1\}^2 \to \{0, 1\}
$$

for which there exists a unique \mathbf{x}_0 *such that* $f(\mathbf{x}_0) = 1$ *.*

- *1. Write the different states* $|\psi_{\text{good}}\rangle$, $|\psi_{\text{bad}}\rangle$, $|\psi\rangle$ *which are involved in Grover's algorithm as defined in the lecture in this setting.*
- *2. Write* $|\psi\rangle = \cos(\theta) |\psi_{bad}\rangle + \sin(\theta) |\psi_{good}\rangle$ *. What is the value of* θ *?*
- *3. Give the different steps of the computation after one iteration of Grover's algorithm − you don't need to reprove how to perform the reflexions −. Show that one iteration of Grover's algorithm is enough to recover* \mathbf{x}_0 *with probability* 1*.*

Exercise 2 (Grover's algorithm when the number of solution is unknown)**.** *Our aim in this exercise is to give a variation of Grover's algorithm that can find solutions in* expected *time* $\sqrt{\frac{N}{t}}$ $\frac{N}{t}$ even when the number of solutions t is unknown. This exer*cise describes the idea of the following article [https://arxiv.org/pdf/quant-ph/](https://arxiv.org/pdf/quant-ph/9605034.pdf) [9605034.pdf](https://arxiv.org/pdf/quant-ph/9605034.pdf). Roughly speaking, the idea basically consists in running Grover's algorithm with exponentially increasing guesses for the number of iterations.*

Recall that we study the following problem:

- **Input**: *a function* $f: \{0, 1\}^n \longrightarrow \{0, 1\}$,
- **Goal***:* find $\mathbf{x} \in \{0, 1\}^n$ be such that $f(\mathbf{x}) = 1$.

Let,

$$
t \stackrel{\text{def}}{=} \sharp \left\{ \mathbf{x} \in \{0,1\}^n : f(\mathbf{x}) = 1 \right\}.
$$

1. We suppose that *t*, the unknown number of solutions, is unknown. Let $\theta \stackrel{def}{=}$ arcsin $\sqrt{\frac{t}{2^n}}$. Let *j* be chosen uniformly at random in $[0, m-1]$. Show that the *probability P^m to measure a solution after j iterations of Grover's algorithm verifies*

$$
P_m \ge \frac{1}{4} \quad when \ m \ge \frac{1}{\sin 2\theta}
$$

 $g(x) = \frac{3}{\pi} \arctan\left(\frac{2\pi}{3}\right)$ **c** $\arctan\left(\frac{2\pi}{3}\right)$ = 2 cos(*a*) = 2 cos(

2. Let *j* be chosen uniformly at random in $[0, m-1]$. Show that *j* is expected to *be equal to* $(m-1)/2$ *, namely:*

$$
\mathbb{E}(j) = \frac{m-1}{2}
$$

- 3. Let $m_0 \stackrel{def}{=} \frac{1}{\sin}$ sin 2*θ . Let us consider the following algorithm:*
	- *1.* $u \stackrel{\text{def}}{=} 0, \lambda \stackrel{\text{def}}{=} \frac{6}{5}$ $\frac{6}{5}$ *and* $m \stackrel{\text{def}}{=} \lambda^{\lceil \log_{\lambda} m_0 \rceil}$.
	- 2. *Pick j uniformly at random in* $[0, m-1]$ *.*
	- 3. *Apply j iterations* of *Grover's* algorithm starting from initial state $|\psi\rangle \stackrel{def}{=}$ *√* 1 $\frac{1}{2^n}\sum_{\mathbf{x}\in\{0,1\}^n}|\mathbf{x}\rangle|f(\mathbf{x})\rangle.$
	- *4. Measure, if the last register is one, exit.*
	- *5. Otherwise, set m to* min $(\sqrt{2^n}, \lambda m)$ *and go back to Step* 2*.*

Show that the expected number of iterations of this algorithm before ending and therefore finding a solution is a

$$
O\left(m_{0}\right) .
$$

- 4. Suppose that the number *t* of solution is $\leq \frac{3}{4}$ $\frac{3}{4} \cdot \underline{2^n}$ and $t > 0$. Give an algorithm *that finds a solution in expected time* $O\left(\sqrt{\frac{2^n}{t}}\max(n,T_f)\right)$ where T_f *is the classical running time of f.*
- 5. How treating the case $t > \frac{3}{4} \cdot 2^n$ or $t = 0$? In particular, what is the expected *running time of the algorithm when there is no solution?*

Exercise 3. *Let,*

$$
f: \{1, \ldots, n\} \to \{1, \ldots, m\}
$$

be a function classically computable in time T_f . Construct a quantum algorithm using *Grover's algorithm that finds the minimum of f in time* $O(\sqrt{n} \log_2(m) \max(\log n, T_f))$.

> *, and use Grover's algorithm of the previous exercise without proving it. T [≤]*) *^x*(*^f* toh toward the consider different threshold Tata but the party that the produce x sample that the produce x

Exercise 4 (Grover with probability one)**.** *We claimed during the lecture (without proof) that Grover's algorithm can be tweaked to work with probability* 1 *if we know the number of solutions exactly. The goal of this exercise is to provide such an exact algorithm. Roughly, the idea is to increase the dimension (adding a qubit!) in order to slightly change the angle θ of Grover's algorithm in order to have a "perfect" number of iterations, namely for which it is not necessary to round up.*

Let,

$$
f: \{0,1\}^n \to \{0,1\}
$$
 such that there exists a unique \mathbf{x}_0 verifying $f(\mathbf{x}_0) = 1$.

Our aim is to recover **x**⁰ with probability one.

- *1. Give the success probability of the basic version of Grover's algorithm after k iterations.*
- 2. Suppose that the optimal number of iterations $\tilde{k} = \frac{\pi}{4 \arcsin\left(\frac{1}{\sqrt{2^n}}\right)}$ $\frac{1}{2}$ $rac{1}{2}$ *is not an integer. Show that if we round* \vec{k} *up to the nearest integer, doing* \vec{k} *f iterations, then the algorithm will have success probability strictly less than* 1*.*
- *3. Define now the following function:*

$$
g: \mathbf{y} \in \{0,1\}^{n+1} \longmapsto \begin{cases} f(\mathbf{x}) & \text{if } \mathbf{y} = (\mathbf{x}|0) \\ 0 & \text{otherwise.} \end{cases}
$$

Show how you can implement the following (*n* + 1)*-qubit unitary*

$$
\mathbf{S}_g: |\mathbf{y}\rangle \mapsto (-1)^{g(\mathbf{y})} \ket{\mathbf{y}}
$$

using one query to f (*of the usual form* \mathbf{U}_f : $|\mathbf{x}, b\rangle \mapsto |\mathbf{x}, f(\mathbf{x}) \oplus b\rangle$) *and a few elementary gates.*

4. Let $\gamma \in [0, 2\pi)$ and let $\mathbf{U}_{\gamma} \stackrel{def}{=}$ $\int \cos \gamma - \sin \gamma$ $\sin \gamma = \cos \gamma$ \setminus *be the corresponding rotation matrix. Let*

$$
\mathbf{A} = \mathbf{H}^{\otimes n} \otimes \mathbf{U}_{\gamma}
$$

be an $(n + 1)$ *-qubit unitary. What is the probability (as a function of* γ) *that measuring the state* \mathbf{A} $|0^{n+1}\rangle$ *in the computational basis gives a solution* $y \in \{0, 1\}^{n+1}$ *such that* $g(y) = 1$?

5. Give a quantum algorithm that finds the unique solution \mathbf{x}_0 *with probability one using* $O(\sqrt{N})$ *queries to f.*

Exercise 5. *Consider an efficiently computable function (to simplify formulas suppose that* $T_f = 1$ *f* : $\{0, \ldots, 2^n - 1\}$ \longrightarrow $\{0, 1\}$ *. We also consider a string* $s = s_0, \ldots, s_{S-1} \in \{0,1\}^S$. The goal is to find *S* consecutive values of $f(x)$ that *are equal to s. More formally, we want to find* $x \in \{0, \ldots, 2^n - S\}$ *st.* $f(x) = s_0$ *,* $f(x+1) = s_1, \ldots, f(x+S-1) = s_{S-1}$. We assume there exists a single x_0 that *satisfies this property.*

- *1. Find a quantum algorithm that finds* x_0 *in time* $O(S \cdot 2^{n/2})$ *.*
- *2. Assume now we have an efficiently computable function* $g: \{0, \ldots, S-1\} \longrightarrow$ ${0, 1}$ *such that* $g(i) = s_i$.
	- *(a) Assume you have access to a version of Grover's algorithm, that outputs a solution to a search problem for a function* $\ell : \mathcal{I} \longrightarrow \{0,1\}$ *if there is a solution and ⊥ if there is no solution (such as the algorithm of Exercise* 2*). Assume also that this routine works with probability* 1 *and takes time* $O(\sqrt{\sharp\mathcal{I}})$. Construct an algorithm *A* running in time $O(\sqrt{S})$ such that *for any input x, outputs* 1 *if* $x = x_0$ *and* 0 *otherwise.*
	- (b) *Construct a quantum algorithm that finds* x_0 *with good probability in running time* $O(\sqrt{S} \cdot 2^{n/2})$ *.*

Comment: this exercise illustrates that amplitude amplification can provide an exponential improvement over Grover's algorithm.

Exercise 6. Let $f: \{0,1\}^n \to \{0,1\}^n$ that we can query in the usual way. We are *promised that this function is* 2*-to-*1*: for all* $\mathbf{x} \in \{0,1\}^n$ *there exists a unique* $\mathbf{y} \neq \mathbf{x}$ *such that* $f(\mathbf{x}) = f(\mathbf{y})$ *. Our aim in this exercise is to study some algorithms to compute a collision, i.e., a pair* (\mathbf{x}, \mathbf{y}) *such that* $\mathbf{x} \neq \mathbf{y}$ *and* $f(\mathbf{x}) = f(\mathbf{y})$ *.*

- *1. Choose a set S consisting of s element picked uniformly at random among* $\{0,1\}^n$ *. What is the expected number of* $\mathbf{x}, \mathbf{y} \in S$ *such that* $\mathbf{x} \neq \mathbf{y}$ *and* $f(\mathbf{x}) = f(\mathbf{y})$ *?*
- *2. Give a classical randomized algorithm that finds a collision with probability* \geq 1/2 *using* $O(\sqrt{2^n})$ *queries to f.*
- *3. Give a quantum algorithm that finds a collision with* $O(\sqrt{2^n})$ *queries to f.*
- 4. Give a quantum algorithm that finds a collision using $O(2^{n/3})$ queries to f. *In this question you recover the algorithm given in [https://arxiv.org/pdf/](https://arxiv.org/pdf/quant-ph/9705002.pdf) [quant-ph/9705002.pdf](https://arxiv.org/pdf/quant-ph/9705002.pdf).*

 G ² *compineor <i>quantumb pub pubsisipy yiog suiquoz c <i><i>x c x and and <i>x and x and x*

Exercise 7 (Approximating Unitary Operators)**.** *Let* **U** *and* **V** *be two unitaries. Let,*

$$
E(\mathbf{U}, \mathbf{V}) = \max_{|\psi\rangle : |||\psi\rangle|| = 1} ||(\mathbf{U} - \mathbf{V}) |\psi\rangle||
$$

where $\|\cdot\|$ *denotes the norm of the considered Hilbert space for quantum states.* $E(\mathbf{U}, \mathbf{V})$ *is known as the operator norm of* $\mathbf{U} - \mathbf{V}$ *.*

The distance between two unitaries **A** *and* **B** *is defined as* $E(A, B)$ *.*

1. Let M be a POVM associated with the measurement, and let P_U (or P_V) be the *probability of obtaining the corresponding measurement outcome if the operation* **U** (or **V**) was performed on $|\psi\rangle$. Show that

$$
|P_{\mathbf{U}} - P_{\mathbf{V}}| \le 2E(\mathbf{U}, \mathbf{V})
$$

2. Show that

$$
E(\mathbf{U}_m \mathbf{U}_{m-1} \cdots \mathbf{U}_1, \mathbf{V}_m \mathbf{V}_{m-1} \cdots \mathbf{V}_1) \le \sum_{i=1}^m E(\mathbf{U}_i, \mathbf{V}_i)
$$

3. Deduce that if **A***,* **U***,* **V** *are unitaries, then*

$$
|P_{\mathbf{A}\mathbf{U}} - P_{\mathbf{A}\mathbf{V}}| \le 2E\left(\mathbf{U}, \mathbf{V}\right)
$$

- *4.* (*i*) *What is the distance between the* 2 *×* 2 *identity matrix and the phase-gate* $(1 \ 0)$ $\begin{pmatrix} 1 & 0 \\ 0 & e^{i\varphi} \end{pmatrix}$?
	- (*ii*) What is the distance between the 4×4 *identity matrix and the controlled version of the phase gate of* (*i*)*?*
	- (*iii*) What is the distance between the $2^n \times 2^n$ identity matrix I_{2^n} and the *controlled phase gate of (ii) tensored with* $\mathbf{I}_{2^{n-2}}$?

(*iv*) *Give a quantum circuit with O*(*n* log *n*) *elementary gates that has distance less than C/n (for some constant C) from the Fourier transform* $\mathbf{QFT}_{\mathbb{Z}/2^n\mathbb{Z}}.$

Hint: you can use that
$$
\cos z = 1 - \frac{z}{z} (1 + O(1))
$$

Exercise 8 (About characters)**.**

Let G be a finite group.

1. Prove that for any character $\chi \in \widehat{G}$ *,*

$$
\sum_{g \in G} \chi(g) = \begin{cases} \n\sharp G & \text{if } \chi = 1 \\ \n0 & \text{otherwise.} \n\end{cases}
$$

2. How do you deduce from that

$$
\sum_{g \in G} \chi_x(g) \overline{\chi_y}(g) = \begin{cases} \n\sharp G & \text{if } \chi_x = \chi_y \\ \n0 & \text{otherwise.} \n\end{cases}
$$

3. Consider the function f^x

$$
f_g: \widehat{G} \longrightarrow G
$$

$$
\chi \longmapsto \chi(g)
$$

What can you say about fg?

4. How can you deduce from the previous point that we also have

$$
\sum_{\chi \in \widehat{G}} \chi(x)\overline{\chi}(y) = \begin{cases} \n\sharp G & \text{if } x = y \\ \n0 & \text{otherwise.} \n\end{cases}
$$

5. Let H be a subgroup of G. Show that

$$
\sum_{h \in H} \chi_g(h) = \begin{cases} \sharp H & \text{if } g \in H^{\perp} \\ 0 & \text{otherwise.} \end{cases} \quad \text{and} \quad \sum_{h^{\perp} \in H^{\perp}} \chi_g(h^{\perp}) = \begin{cases} \sharp H^{\perp} & \text{if } g \in H \\ 0 & \text{otherwise.} \end{cases}
$$

Exercise 9 (Poisson summation formula and application)**.**

1. Let G be a finite group and H be a subgroup. Show the Poisson summation formula, for any function $f: G \longrightarrow \mathbb{C}$ *,*

$$
\frac{1}{\sqrt{\sharp H}}\sum_{h\in H}f(h)=\frac{1}{\sqrt{\sharp H^\perp}}\sum_{h^\perp\in H^\perp}\widehat{f}(h)
$$

You can admit that $\sharp H^{\perp} \cdot \sharp H = \sharp G$ *.*

2. Recall that the characters of $\mathbb{Z}/2^n\mathbb{Z}$ are given by the χ_x 's where $\chi_x(y) \stackrel{\text{def}}{=} e^{-\frac{2i\pi xy}{2^n}}$. *Let* $i \in [0, n-1]$

$$
(2^i)\stackrel{\mathrm{def}}{=}\left\{x2^i\,:\,x\in\mathbb{Z}/2^n\mathbb{Z}\right\}
$$

is the subgroup of $\mathbb{Z}/2^n\mathbb{Z}$ *generated by* 2^i *. Determine* $(2^i)^{\perp}$ *.*

- *3. Given a function* $f: \mathbb{Z}/2^n\mathbb{Z} \to \mathbb{C}$ *which is* 2^i -periodic. Show that it vanishes *on* $(2^{i})^{\perp}$ *.*
- 4. Suppose that you have \widehat{f} for free. Is it easy to find its period (here 2^{i})? What *do you conclude?*

Exercise 10. *Is computing the Quantum Fourier Transform in* $\mathbb{Z}/2^n\mathbb{Z}$ *or* \mathbb{F}_2^n *helps to compute the classical Fourier transform?*