Introduction to Quantum Computer Science and Applications

Exercise Sheet 4

Exercise 1 (Inverting quantum circuits). Given a quantum circuit implementing a unitary U, how is the quantum circuit implementing the inverse of U, namely U^{-1} ?

Give the circuit implementing the inverse of the unitary represented by the following circuit

Exercise 2. Let $f: \{0,1\}^n \to \{0,1\}$. Recall that \mathbf{U}_f is the following unitary,

 $\mathbf{U}_{f}: |\mathbf{x}\rangle |y\rangle = |\mathbf{x}\rangle |y \oplus f(\mathbf{x})\rangle$

Show that the output of the following circuit

is

$$\frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \{0,1\}^n} (-1)^{f(\mathbf{x})} |\mathbf{x}\rangle |0\rangle$$

Exercise 3 (Deutsch-Jozsa and Bernstein-Vazirani algorithms).

- In Deutsch-Jozsa's problem we are given as input a function which is either constant or balanced¹. The goal is to determine if f is either constant or balanced. How many classical queries to f do we need to make the right decision with probability one?
- 2. Deutsch-Josza's quantum algorithm solves Deutsch-Josza's problem. The associated quantum circuit is given by:

¹It is equal to 0 for half of the possible inputs.

Show that this quantum circuit indeed solves Deutsch-Josza's problem. How many queries to f does this circuit perform? What do you conclude?

$$\left. \begin{array}{cc} 0 \neq \mathbf{z} & \text{if } & 0 \\ \text{seiveration} & 0 \end{array} \right\} = \mathbf{x} \cdot \mathbf{x} (1-)_{n\{1,0\} \ge \mathbf{x}} \sum \text{that for the form on a net of } \mathbf{x} + \mathbf{x} \cdot \mathbf{x} + \mathbf{x} + \mathbf{x} \cdot \mathbf{x} + \mathbf{x}$$

3. Let $|\psi\rangle$ the quantum state just before the final measurements. Prove that

$$|\psi\rangle = \frac{1}{2^n} \sum_{\mathbf{y} \in \{0,1\}^n} \left(\sum_{\mathbf{x} \in \{0,1\}^n} (-1)^{f(\mathbf{x}) + \mathbf{x} \cdot \mathbf{y}} \right) |\mathbf{y}\rangle |-\rangle.$$

where recall that $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i \mod 2$ for $\mathbf{x} = x_1 \dots x_n$ and $\mathbf{y} = y_1 \dots y_n$.

4. Assume our function f satisfies the following property: $\exists \mathbf{s} \in \{0,1\}^n$, $f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{s}$. Show that the above algorithm always outputs $\mathbf{y} = \mathbf{s}$. This algorithm is known as the Bernstein-Vazirani algorithm, if we have the promise that the function f satisfies the property above, then this algorithm finds \mathbf{s} with a single query to \mathbf{U}_f .

Exercise 4 (Clean your workspace!).

Let $\mathbf{x} = (x_0, x_1)$. Suppose that we can implement the following 1-qubit unitary

$$\mathbf{O}_{\mathbf{x},\pm}:|b\rangle\longmapsto(-1)^{x_b}|b\rangle$$

1. Suppose that we run the 1-qubit circuit $\mathbf{HO}_{\mathbf{x},\pm}\mathbf{H}$ on initial state $|0\rangle$ and then measure. What is the probability distribution on the output bit, as a function of \mathbf{x} ?

2. Now suppose the query leaves some workspace in a second qubit, which is initially $|0\rangle$:

$$\mathbf{O}'_{\mathbf{x},\pm}:\left|b\right\rangle\left|0
ight
angle\longmapsto(-1)^{x_{b}}\left|b\right\rangle\left|b
ight
angle$$

Suppose we just ignore the workspace and run the algorithm of Question 1. on the first qubit with $\mathbf{O}'_{\mathbf{x},\pm}$, instead of $\mathbf{O}_{\mathbf{x},\pm}$ (and $\mathbf{H} \otimes \mathbf{I}$ instead of \mathbf{H} , and initial state $|00\rangle$). What is now the probability distribution on the output bit (i.e., if we measure the first of the two bits)?

Comment: this exercise illustrates why it's important to "clean up" (*i.e.*, set back to $|0\rangle$) workspace qubits of some subroutine before running it on a superposition of inputs: the unintended entanglement between the address and workspace registers can thwart the intended interference effects.

Exercise 5 (Quantum unitary that mimics a permutation). Consider a permutation π acting on $\{0,1\}^n$ such that π and π^{-1} are efficiently computable, which means that we can efficiently construct the quantum unitaries

 $\mathbf{U}_{\pi} \left| \mathbf{x} \right\rangle \left| \mathbf{y} \right\rangle = \left| \mathbf{x} \right\rangle \left| \mathbf{y} \oplus \pi(\mathbf{x}) \right\rangle \quad and \quad \mathbf{U}_{\pi^{-1}} \left| \mathbf{x} \right\rangle \left| \mathbf{y} \right\rangle = \left| \mathbf{x} \right\rangle \left| \mathbf{y} \oplus \pi^{-1}(\mathbf{x}) \right\rangle.$

Show how to construct the unitary $\mathbf{U} | \mathbf{x} \rangle = | \pi(\mathbf{x}) \rangle$, using auxiliary qubits. You can use the above unitaries as well as any elementary operations.

Hint: here is a construction that builds U with a single call to U_{π} , a single call to $U_{\pi^{-1}}$ and n two swap gates - not necessarily in this order

Exercise 6. Write the unitary acting on 2 qubits corresponding to the following circuit in matrix form (in the $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ basis):

Exercise 7 (* Constructing reflexions over a quantum state *). Consider a *n* qubit state $|\psi\rangle$ and assume we have an efficiently computable unitary U such that

$$\mathbf{U} \left| 0^n \right\rangle = \left| \psi \right\rangle.$$

Our goal is to show that we can compute the reflexion $\mathbf{R}_{|\psi\rangle}$ i.e., the unitary satisfying

 $\mathbf{R}_{|\psi\rangle}(|\psi\rangle) = |\psi\rangle\,, \quad \text{ and } \forall \,|\varphi\rangle \ \text{ such that } |\psi\rangle \perp |\varphi\rangle\,, \ \mathbf{R}_{|\psi\rangle}(|\varphi\rangle) = - \,|\varphi\rangle$

with one call to U, one call to U^{\dagger} and O(n)-calls to some 2-qubits unitaries.

1. Show that for all $|\varphi\rangle$ such that $|\varphi\rangle \perp |\psi\rangle$, we can write

$$\mathbf{U}^{\dagger}(|\varphi\rangle) = \sum_{\substack{\mathbf{i} \in \{0,1\}^n \\ \mathbf{i} \neq 0^n}} \alpha_{\mathbf{i}} |\mathbf{i}\rangle$$

2. Argue, without writing the circuit, that one can efficiently compute the unitary \mathbf{V} on n + 1 qubits that satisfies

$$\mathbf{V}(|\mathbf{x}\rangle |y\rangle) \rightarrow |\mathbf{x}\rangle |y \oplus g(\mathbf{x})\rangle$$

where $g(\mathbf{x}) = 0$ if and only if $\mathbf{x} = 0^n$ and $g(\mathbf{x}) = 1$ otherwise.

3. Construct using the previous unitaries and elementary gates the unitary \mathbf{W} on n qubits with an extra auxiliary qubit such that

$$\mathbf{W} \ket{\mathbf{x}} \ket{0} = (-1)^{g(\mathbf{x})} \ket{\mathbf{x}} \ket{0}$$

There is a construction that uses only 2 calls to \mathbf{V} or \mathbf{V}^{\dagger} and a phase flip gate \mathbf{Z} . There is another construction that uses a single call to \mathbf{V} and 2 calls to \mathbf{H} or \mathbf{H}^{\dagger} and 2 calls to the bit flip \mathbf{X} . Find at least one construction, can you find both?

4. Show how to build $\mathbf{R}_{|\psi\rangle}$ (with an auxiliary qubit) with 2 calls to U or U[†] and 1 call to W.

Exercise 8 (One-time pad). For $\mathbf{k} \in \{0,1\}^n$, consider the one-time pad function,

$$E_{\mathbf{k}}: \mathbf{x} \in \{0,1\}^n \longrightarrow \mathbf{k} \oplus \mathbf{x} \in \{0,1\}^n$$

1. Show that there is a quantum polynomial time algorithm querying $\mathbf{U}_{E_{\mathbf{k}}}$ just once that distinguishes \mathbf{E}_{k} from a random function P of $\{0,1\}^{n}$.

You can admit that for a random function P of $\{0,1\}^n$ we have for any $\mathbf{y} \in \{0,1\}^n$,

$$\frac{1}{2^{2n}} \sharp \left\{ \mathbf{x} \in \{0,1\}^n : P(\mathbf{x}) \oplus \mathbf{x} = \mathbf{y} \right\}^2 \approx \frac{1}{2^{n-1}}$$

where the \approx stands for the expectation.

2. What property did you crucially use?