Ecole Polytechnique, 3A

Introduction to Quantum Computer Science and Applications
Exercise Sheet 4

Exercise 1 (Inverting quantum circuits). Given a quantum circuit implementing a
unitary U, how is the quantum circuit implementing the inverse of U, namely U~1?

Give the circuit implementing the inverse of the unitary represented by the fol-
lowing circuit

CNOT

Exercise 2. Let f: {0,1}" — {0,1}. Recall that Uy is the following unitary,

Uy %) |y) = %) |y @ f(x))

Show that the output of the following circuit
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Exercise 3 (Deutsch-Jozsa and Bernstein-Vazirani algorithms).

1. In Deutsch-Jozsa’s problem we are given as input a function which is either
constant or balanced'. The goal is to determine if f is either constant or
balanced. How many classical queries to f do we need to make the right
decision with probability one?

2. Deutsch-Josza’s quantum algorithm solves Deutsch-Josza’s problem. The as-
sociated quantum circuit is given by:

Tt is equal to 0 for half of the possible inputs.
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Show that this quantum circuit indeed solves Deutsch-Josza’s problem. How
many queries to f does this circuit perform? What do you conclude?
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3. Let |¢) the quantum state just before the final measurements. Prove that

W= 3 [ X ey

ye{0,13 \xe{0,1}»
where recall that x -y =Y ¢ x;y; mod 2 forx =x1...2, andy =Yy ... Yn.

4. Assume our function f satisfies the following property: 3s € {0,1}", f(x) =
x -s. Show that the above algorithm always outputs y = s. This algorithm
is known as the Bernstein-Vazirani algorithm, if we have the promise that the
function f satisfies the property above, then this algorithm finds s with a single
query to Uy.

Exercise 4 (Clean your workspace!).
Let x = (g, x1). Suppose that we can implement the following 1-qubit unitary

Ox : [b) — (1) [b)

1. Suppose that we run the 1-qubit circuit HOx +H on initial state |0) and then

measure. What is the probability distribution on the output bit, as a function
of x?
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2. Now suppose the query leaves some workspace in a second qubit, which is
initially |0):
e 16)10) > (=1)™ [b) [b)

Suppose we just ignore the workspace and run the algorithm of Question 1. on
the first qubit with O} ., instead of Oy + (and H® I instead of H, and initial
state [00)). What is now the probability distribution on the output bit (i.e., if
we measure the first of the two bits)?

Comment: this exercise illustrates why it’s important to “clean up” (i.e., set back to
|0)) workspace qubits of some subroutine before running it on a superposition of inputs:
the unintended entanglement between the address and workspace registers can thwart the
intended interference effects.

Exercise 5 (Quantum unitary that mimics a permutation). Consider a permutation
7 acting on {0,1}" such that m and 7' are efficiently computable, which means that
we can efficiently construct the quantum unitaries

U-x)y)=lx)y@erx) ad Usilx)ly)=x|yer (x).

Show how to construct the unitary U |x) = |7(X)), using auziliary qubits. You can
use the above unitaries as well as any elementary operations.
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Exercise 6. Write the unitary acting on 2 qubits corresponding to the following
circuit in matriz form (in the {|00) ,|01),]10),|11)} basis):

—HaH -
CNOT
—A -

Exercise 7 (x Constructing reflexions over a quantum state x). Consider a
n qubit state 1) and assume we have an efficiently computable unitary U such that

U0") = [¢).
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Our goal is to show that we can compute the reflexion Ry i.e., the unitary satisfying

Ry ([9)) = [¢),  and V]p) such that |¢) L{e), Ry (le)) = =)

with one call to U, one call to Ut and O(n)-calls to some 2-qubits unitaries.

1. Show that for all |¢) such that |@) L |Y), we can write

Ul(le) = Y aili).
ie{0,1}"
i£0™

2. Argue, without writing the circuit, that one can efficiently compute the unitary
V on n+ 1 qubits that satisfies
V([x) [y) = [x) [y @ g(x))
where g(x) = 0 if and only if x = 0" and g(x) = 1 otherwise.

3. Construct using the previous unitaries and elementary gates the unitary W
on n qubits with an extra auxiliary qubit such that

W [x) [0) = (=1)7*[x) |0).

There is a construction that uses only 2 calls to V or V' and a phase flip
gate Z.. There is another construction that uses a single call to 'V and 2 calls
to H or H' and 2 calls to the bit flip X. Find at least one construction, can
you find both?

4. Show how to build Ryyy (with an auziliary qubit) with 2 calls to U or U' and 1
call to W.

Exercise 8 (One-time pad). For k € {0,1}", consider the one-time pad function,
Ey:xe{0,1}" — kadxe{0,1}"
1. Show that there is a quantum polynomial time algorithm querying Ug, just
once that distinguishes Ey from a random function P of {0,1}".

You can admit that for a random function P of {0,1}" we have for any 'y €
{0,137,
1
92n

t{x e {0,1}" : Px)®x =y}’ ~
where the =~ stands for the expectation.

2. What property did you crucially use?



