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Introduction to Quantum Computer Science and Applications

Exercise Sheet 1

Recall that (Hadamard basis)

|+〉 def
=

1√
2
(|0〉+ |1〉) and |−〉 def

=
1√
2
(|0〉 − |1〉) .

Exercise 1. Determine whether the following states are qubits or not:

• 1
3
|0〉 − 2

3
|1〉.

• 1
2
|0〉+

√
3
2
|+〉.

• 1
2
|0〉+ (1− 1√

2
) |+〉+ 1

2
|1〉 .

Exercise 2.

1. Compute the scalar product between |+1〉, |10〉 and |11〉.

2. Let (|e0〉 , |e1〉) be an orthonormal basis of C2. Show that (|ei1〉 · · · |ein〉) for
i1, . . . , in ∈ {0, 1}n is an orthonormal basis of C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸

n times

= C2n.

3. Do we have |00〉+ |10〉 = (|0〉+ |1〉)⊗ |0〉?

4. (⋆) Show that is does not exist |ψ1〉 and |ψ2〉 such that

1√
2
(|00〉+ |11〉) = |ψ1〉 ⊗ |ψ2〉 .

In other words, show that the EPR1-pair 1√
2
(|00〉+ |11〉) is entangled.

5. Do there exist two qubits |ψ1〉 and |ψ2〉 such that

1

2
(|00〉+ |01〉+ |10〉+ |11〉) = |ψ1〉 ⊗ |ψ2〉 .

Exercise 3 (No cloning theorem). Our goal is to prove the no cloning theorem:
1EPR stands for Einstein, Podolsky and Rosen
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Theorem. There is no unitary U on 2 qubits that on input |ψ〉 |0〉 outputs |ψ〉 |ψ〉
for all qubits |ψ〉.

Prove this theorem. To do this, assume that such a unitary U exists and obtain a
contradiction, for example by computing U |ψ〉 |0〉 for |ψ〉 in the computational and
in the Hadamard basis, i.e. (|+〉 , |−〉).

Exercise 4.

1. Give a qubit such that measuring it in the computational basis simulates a
Bernoulli distribution of parameter p, namely the outcome is |1〉 with probability
p and |0〉 with probability 1− p.

2. Let (X,Y ) ∈ {0, 1} be the following dependent Bernoulli random variables

P(X = 1) = p, P(Y = 1 | X = 1) = p1 and P(Y = 1 | X = 0) = p0

Give a two-qubit state such that measuring the first qubit and then the second
one it in the computational basis simulates the distribution of (X,Y ). In other
words, the probability to measure |bb′〉 is equal to P((X,Y ) = (b, b′)).

Exercise 5. Determine whether the following matrices are unitary matrices:

• M1
def
= |0〉〈0|+ |+〉〈1|.

• M2
def
= 1√

2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|).

• M3
def
= |+〉〈−|+ |−〉〈+|

Exercise 6. Show that unitaries cannot “delete” information: there is no 1-quibit
unitary U that maps |ψ〉 7→ |0〉 for every 1-qubit state |ψ〉.

Exercise 7. Let f : {0, 1} → {0, 1} be some function. Suppose that you have access
to the following quantum gate (why is it a quantum gate?)

Uf : |x, y〉 7→ |x〉 |y ⊕ f(x)〉 .2
20⊕ 0 = 1⊕ 1 = 0 and 1⊕ 0 = 0⊕ 1 = 1.
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1. How to build the following state (“quantum parallelism”) starting from |00〉

|0, f(0)〉+ |1, f(1)〉√
2

2. By using the Hadamard gate H and Uf show how to implement

|0, 1〉 7→ 1

2

∑
x∈{0,1}

(−1)f(x) |x〉 ⊗ (|0〉 − |1〉) .

Exercise 8 (The Deutsch-Josza algorithm).

1. Let H be the quantum Hadamard gate over qubits. Let H⊗n def
= H⊗ · · · ⊗H︸ ︷︷ ︸

n times

.

Show that
∀x ∈ {0, 1}n, H⊗n |x〉 = 1√

2n

∑
y∈{0,1}n

(−1)x·y |y〉

where x · y def
=

∑n
i=1 xiyi (it denotes the standard inner product over {0, 1}n).

2. Let f : {0, 1}n → {0, 1} be a function that is either constant or balanced.
Suppose that we have access to

Uf : |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 .

Give the quantum algorithm starting with the (n + 1)-quibit |0〉⊗n |1〉 making
only one query to Uf and some calls to H⊗n which decides with certainty if f
is balanced or not.

duringthecourse.

Hint:usethepreviousexerciseandtheDeutsch-Joszaalgorithmthatwehaveseen

Exercise 9. Let θ ∈ [0, 2π), Uθ
def
=

(
cos θ − sin θ
sin θ cos θ

)
, |ψ〉 def

= Uθ |0〉 and
∣∣ψ⊥〉 def

=

Uθ |1〉. Recall that X = |1〉〈0|+ |0〉〈1| and Z = |0〉〈0| − |1〉〈1| .

1. Show that ZX
∣∣ψ⊥〉 = |ψ〉.
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2. Show that 1√
2
(|00〉+ |11〉) can also be written as 1√

2

(
|ψ〉 |ψ〉+

∣∣ψ⊥〉 ∣∣ψ⊥〉).
3. Suppose Alice and Bob start with an EPR-pair. Alice applies U−1

θ to her qubit
and then measures it in the computational basis. What state does Bob have if
her outcome was 0, and what state does he has if her outcome was 1?

4. Suppose Alice knows the number θ but Bob does not. Give a protocol that uses
one EPR-pair and one classical bit of communication where Bob ends up with
the qubit |ψ〉.

Exercise 10 (Encoding Integers versus qubits and qudits). A bit is defined as b ∈
{0, 1} and it verifies the following bit operations

0⊕ 0 = 1⊕ 1 and 0⊕ 1 = 1⊕ 0 = 1

Given an integer x ∈ N, its binary decomposition is (b0, . . . , bM−1) ∈ {0, 1}M where

x =
M−1∑
i=0

bi 2
i

In a classical computer, integers are described with their binary decomposition. A
classical computer is allowed to perform bit summation. For instance given 1, 5 ∈
{0, . . . , 7},

1 ≡ (1, 0, 0, 0) and 5 ≡ (1, 0, 1, 0) −→ (1, 0, 0, 0)⊕ (1, 0, 1, 0) = (1, 1, 1, 0)

A classical computer is also allowed to perform bit summation “by keeping the
carry”. For instance given 1, 5 ∈ {0, . . . , 7},

1 ≡ (1, 0, 0, 0) and 5 ≡ (1, 0, 1, 0) −→ (1, 0, 0, 0) + (1, 0, 1, 0) = (0, 1, 1, 0) ≡ 6

1. Given two integers x, y ∈ {0, . . . , 2ℓ − 1} a computer computes their bit sum-
mation by keeping the carry, which mathematical operation is it performing?

2. Suppose now that you want to perform addition modulo 3 with a classical
computer. First how do you encode t ∈ {0, 1, 2}? Which operations do you use
to perform addition modulo 3?

3. It may happen that we consider in quantum computation Hilbert spaces Cq.
Vectors of norm 1 in Cq are called qudits (when q = 2 it corresponds to qubits).
How do we write qudits when q = 2ℓ?

4. How do you write qudits when q is not a power of 2 with qubits (think classi-
cally)? How would you perform the addition modulo q quantumly?
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