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THE OBJECTIVE OF THE DAY

Introduction to quantum cryptography!

Security relies on:

▶ No-cloning theorem

▶ Measuring modifies quantum states

▶ Incapacity to distinguish non-orthogonal quantum states

Distance between quantum states: essential tool for ensuring the security of quantum

cryptography
(
what is possible or not, what can be done at best to distinguish, etc. . .

)

−→ We need first
(
as usual

)
to understand where these concepts come from: classical world!
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COURSE OUTLINE

1. Distances Over Distributions

2. Distance Between Quantum States

3. Bit Commitment
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MOTIVATION

Classical Information theory modelizes an information source as a random variable

−→ Our aim: meaning of “two information sources are similar to one another, or not”

similar ≈ undistinguishable ; not-similar ≈ distinguishable

English and French texts:

May be modelling as a sequence of random variables over the Roman alphabet:

▶ English: “th” most frequent pair of letters

▶ French: “es” most frequent pair of letters

−→ To distinguish English and French: look the output distribution of letters

How to “quantify” that they are different? Are they as different as French and Hungarian?

−→ Define a distance between sources of information/distributions
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CONSEQUENCE

Distance between distributions/random variables:

▶ Quantifying the minimum amount of operations to distinguish them

▶ Difference of behaviours of an algorithm when changing some internal distribution

Extremely useful tool for cryptography, study of algorithms, etc. . .

Application case: f depends of some secret and g not but distance(f, g) = ε

−→ Owning f does not help to recover the secret. . .

Distance between quantum states:

enough to look at the distance between measurement outputs?

−→ No! But let us first see the classical case!
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DISTANCES OVER DISTRIBUTIONS



DISTRIBUTIONS VERSUS RANDOM VARIABLES

X be a finite set

• f : X → R such that


f ≥ 0∑
x∈X

f(x) = 1
is called a distribution

• A random variable X taking its values in X is defined via the distribution P(X = x) for x ∈ X

Distributions ⇐⇒ Random Variables

• From f: X be such that P(X = x) def
= f(x)

• From X: f be such that f(x) def
= P(X = x)

−→ In what follows: we identify random variables and their associated distributions
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DISTANCE BETWEEN DISTRIBUTIONS

Many “distances”
(
α-divergences

)
between distributions f and g:

▶ Statistical/Total-Variational/Trance distance:

∆(f, g) def
=

1
2
∑
x∈X

|f(x) − g(x)|

▶ Hellinger distance:

H(f, g) def
=

√
1−

∑
x∈X

√
f(x)

√
g(x)

▶ Kullback–Leibler divergence:

DKL(f||g)
def
=

∑
x∈X

f(x) log2
( f(x)
g(x)

)
▶ etc. . .

In what follows:

Focus on statistical distance
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STATISTICAL DISTANCE

Statistical distance:

The statistical distance between two distributions f, g over a finite set X :

∆(f, g) def
=

1
2
∑
x∈X

|f(x) − g(x)|

• The factor 1/2 ensures that ∆(f, g) ∈ [0, 1]

• ∆(f, g) = 0 ⇐⇒ f = g

• ∆(·, ·) defines a metric for distributions
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PROPERTY

Given S ⊆ X∑
x∈S

f(x) is the probability that an event S occurs when picking x according to f

An important property:

∆(f, g) = max
S event

∣∣∣f(S) − g(S)
∣∣∣ = max

S event

∣∣∣∣∣∣
∑
x∈S

f(x) −
∑
x∈S

g(x)

∣∣∣∣∣∣

Consequence:

Let S0 be the event reaching the maximum. This event S0 is optimal to distinguish f and g

−→ ∆(f, g) is quantifying how well it is possible
(
using S0

)
to distinguish f and g . . .

(
in practice S0 is hard to compute

)
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A DISTINGUISHING GAME

Let f0 and f1 be two distributions

• Alice chooses a bit b ∈ {0, 1} unknown to Bob

• Suppose that Alice gives to Bob one x picked according to fb

What is the best probability for Bob to guess b?

Proposition (see Exercise Session):

max
{strategy}

P (Bob guesses b) =
1
2
+

∆(f0,f1)
2

−→ The trace distance gives how well distributions can be distinguished

But do many samples could help Bob? Yes! But how much?
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MULTIPLE SAMPLES

Let f0 and f1 be two distributions

• Alice chooses a bit b ∈ {0, 1} unknown to Bob

• Suppose that Alice gives to Bob n samples x1, . . . , xn each picked according to fb

Proposition:

Given distributions f1, . . . , fn and g1, . . . , gn we have

∆
(
(f1, . . . , fn), (g1, . . . , gn)

)
≤

n∑
i=1

∆(fi, gi)

max
{strategy}

P (Bob guesses b) =
1
2
+

∆
(
(

n times︷ ︸︸ ︷
f0, . . . , f0), (

n times︷ ︸︸ ︷
f1, . . . , f1)

)
2

≤
1
2
+
n
2
∆(f0, f1)

−→ Bob needs at least n = 1
∆(f0,f1)

samples to make the correct guess with probability 1

(
for having 1

2 + n
2∆(f0, f1) = 1

)
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CONSEQUENCE

To take away:

Given f or g but you don’t know which one:

at least 1
∆(f,g) calls to the given random variable to take the good decision with probability 1
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DATA PROCESSING INEQUALITY

One could imagine: applying a physical process/algorithm to the random variables Xf given by f

and Xg given by g could help to distinguish them

−→ No! Statistical distance can only decrease

An important property: data processing inequality

Given any function/algorithm F, then F(Xf) and F(Xg) are still random variables and

∆
(
F(Xf), F(Xg)

)
≤ ∆(Xf, Xg)

F can be randomized, but its internal randomness has to be independent from Xf and Xg

Concrete consequence:

A be an algorithm such that
ε
def
= P

(
A(X) = “success”

)
where “success” could mean: find the secret key from a public key output by X, factorise a number
output by X, etc. . .
Then,

ε− ∆(X, Y) ≤ P
(
A(Y) = “success”

)
≤ ε + ∆(X, Y)

−→ Extremely useful in cryptography!

13



DATA PROCESSING INEQUALITY

One could imagine: applying a physical process/algorithm to the random variables Xf given by f

and Xg given by g could help to distinguish them

−→ No! Statistical distance can only decrease

An important property: data processing inequality

Given any function/algorithm F, then F(Xf) and F(Xg) are still random variables and

∆
(
F(Xf), F(Xg)

)
≤ ∆(Xf, Xg)

F can be randomized, but its internal randomness has to be independent from Xf and Xg

Concrete consequence:

A be an algorithm such that
ε
def
= P

(
A(X) = “success”

)
where “success” could mean: find the secret key from a public key output by X, factorise a number
output by X, etc. . .
Then,

ε− ∆(X, Y) ≤ P
(
A(Y) = “success”

)
≤ ε + ∆(X, Y)

−→ Extremely useful in cryptography! 13



CONCLUSION

The statistical distance between two distributions:

▶ Cannot increase after applying an algorithm, physical process
(
data processing inequality

)
▶ Minimum amount of resources to distinguish distributions: at least 1

∆(f,g) queries to

distinguish f and g

In many scenarii this lower-bound is optimistic. . .

−→ Sometimes necessarily: 1
∆(f,g)2

≫ 1
∆(f,g) calls to be able to distinguish(

statistical distance is a brutal tool
)

Statistical distance: quantify how close are distributions

But how to quantify how close are quantum states?
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DISTANCE BETWEEN QUANTUM STATES



OUR AIM

Define a distance between quantum states why verifies:

▶ Cannot increase after “quantum” operations
(
data processing inequality

)
▶ Quantify the “minimum amount of resources” to distinguish

More about the distances can be found in
(
particularly proofs are omitted here

)
:

Quantum computation and quantum information, Chapter 9, Nielsen and Chuang
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TRACE DISTANCE

Trace distance:

Let ρ, σ be two density operators, their trace distance is defined as

∆(ρ, σ)
def
=

1
2

|ρ− σ|tr where |M|tr
def
= tr

(√
M†M

)

Be careful: ∆(ρ, σ) ̸= tr(ρ− σ)

∆(·, ·) is a metric over density operators:

• ∆(ρ, σ) = 0 ⇐⇒ ρ = σ

• ∆(ρ, σ) ∈ [0, 1]

• ∆(ρ, σ) = ∆(σ, ρ)
(
symmetry

)
• ∆(ρ, τ) ≤ ∆(ρ, σ) + ∆(σ, τ)

(
triangle inequality

)
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EXAMPLE OF TRACE DISTANCES

• If ρ and σ are co-diagonalizable
(

⇐⇒ ρσ = σρ
)
, in an orthonormal basis (|ei⟩)i :

ρ =
∑
i

pi |ei⟩⟨ei| and σ =
∑
i

qi |ei⟩⟨ei|

where p def
= (pi)i and q

def
= (qi)i are distributions

∆(ρ, σ) = 1
2
∑

i |pi − qi| = ∆(p, q)

−→ We recover the classical statistical distance!

• If ρ and σ are pure states, ρ = |ψ⟩⟨ψ| and σ = |φ⟩⟨φ|, then:

∆(ρ, σ) =
√
1− | ⟨ψ|φ⟩ |2

−→ If quantum states are orthogonal, their trace distance is maximal!

Is it intuitive?

−→ Yes! Orthogonal pure states are perfectly distinguishable. . .(
see Lecture 2

)
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AN INTERPRETATION OF THE TRACE DISTANCE

Let ρ0 and ρ1 be two known density operators

• Alice has a bit b ∈ {0, 1} unknown to Bob

• Suppose that Alice send ρb to Bob

What is the best probability for Bob to guess b?

Proposition (see Exercise Session):

max
{strategy}

P (Bob guesses b) =
1
2
+

∆(ρ0,ρ1)
2

−→ The trace distance gives how well quantum states can be distinguished

Be careful: we know the strategy which reaches the maximum, but in most cases

it is non-effective
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TRACE DISTANCE AND UNITARY EVOLUTIONS

One could imagine: applying a unitary evolution to quantum states help to distinguish?

i.e., increase ∆(ρ, σ)

−→ No!

Invariance under unitary evolutions:

∆(UρU†
,UσU†) = ∆(ρ, σ),  for any unitary U
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TRACE DISTANCE AND MEASUREMENTS

Given ρ and σ: can we detect a difference when measuring? How to quantify it?

∆(ρ, σ) = max
P projector

tr (P(ρ− σ))

Theorem:

Let {Em} be a POVM with p def
= (tr(Emρ))m and q def

= (tr(Emσ))m be the distributions of outcomes

m. Then,
∆(ρ, σ) = max

{Em}
∆(p, q)

In particular, whatever is the measurement

∆(p, q) ≤ ∆(ρ, σ)

Concrete consequence:

One needs at least ≥ 1
∆(ρ,σ) measures to distinguish ρ and σ with probability 1
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TRACE DISTANCE AND GENERAL QUANTUM OPERATIONS

And what about more general “quantum operations”?

Definition:

A quantum operation Φ is defined from a collection of matrices A1, . . . , Ak such that
k∑
i=1

AiA†i = I and Φ(ρ) =
k∑
i=1

AiρA†i

−→ Most general “quantum operation”

It captures: measurements, unitary, tracing out, noisy channel, etc. . .

Example: depolarizing channel

Quantum operation defined from (1− p)I, p3 X,
p
3 Y and

p
3 Z.

Quantum data processing inequality:

For any quantum operation Φ,
∆(Φ(ρ),Φ(σ)) ≤ ∆(ρ, σ)
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FIDELITY

Another important “distance” in the quantum world:

Fidelity:

Let ρ, σ be two density operators, their fidelity is defined as

F(ρ, σ) def
= Tr

√√
ρσ

√
ρ

Following properties:

• F(σ, ρ) = 1 ⇐⇒ σ = ρ

• F(σ, ρ) ∈ [0, 1]

• F(σ, ρ) = F(ρ, σ)
(
symmetry

)

Be careful: fidelity not a metric
(
triangular inequality not verified

)

23



EXAMPLE OF FIDELITIES

• If ρ and σ are co-diagonalizable
(

⇐⇒ ρσ = σρ
)
, in an orthonormal basis (|ei⟩)i :

ρ =
∑
i

pi |ei⟩⟨ei| and σ =
∑
i

qi |ei⟩⟨ei|

where p def
= (pi)i and q

def
= (qi)i are distributions

F(ρ, σ) =
∑

i
√pi

√qi = 1− H(p, q)2
(
H(·, ·) Hellinger distance

)

−→ We recover 1− H(p, q)2 known classically as the fidelity/Bhattacharyya coefficient!

• If ρ and σ are pure states, ρ = |ψ⟩⟨ψ| and σ = |φ⟩⟨φ|, then:

F(ρ, σ) = | ⟨ψ|φ⟩ |

In particular: F(ρ, σ) = 0 when ρ, σ are orthogonal pure states
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FIDELITY AND UNITARY EVOLUTIONS

Invariance under unitary evolutions:

F(UρU†
,UσU†) = F(ρ, σ),  for any unitary U
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PURIFICATIONS AND UHLMANN’S THEOREM

Recall: trace distance is “invariant” by projection

∆(ρ, σ) = max
P projector

tr (P(ρ− σ))

−→ “Dual” operation for the fidelity: purification

Uhlmann’s theorem:

For any two density operators ρ, σ,
F(ρ, σ) = max

|ψ⟩
|⟨ψ|φ⟩|

where the maximum is taken over purifications |ψ⟩ of ρ, and a fixed purification |φ⟩ of σ

−→ Useful characterization involved in many proofs concerning the fidelity

Example:

Let ρ def
= 1

2 |0⟩⟨0| +
1
2 |1⟩⟨1| and σ

def
= 3

4 |0⟩⟨0| +
1
4 |1⟩⟨1|: diagonalizable in the same basis

F(ρ, σ) =
√
1
2

√
3
4
+

√
1
2

√
1
4

=

√
3
8
+

√
1
8

|ψ⟩ def
= |00⟩√

2
+ |11⟩√

2
and |φ⟩ def

=
√

3
4 |00⟩ +

√
1
4 |11⟩ are purifications which are optimal with

regards to Uhlmann’s theorem
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FIDELITY AND MEASUREMENTS

Quantum trace distance could be related to the classical trace distance via measurements

−→ The same holds for the fidelity

Theorem:

Let {Em} be a POVM with p def
= (tr(Emρ))m and q def

= (tr(Emσ))m be the distributions of outcomes

m. Then,

F(ρ, σ) = min
{Em}

F(p, q) where F(p, q) =
∑
m

√
pm

√
qm

(
classical fidelity

)
In particular, whatever is the measurement

F(ρ, σ) ≤ F(p, q)
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FIDELITY AND QUANTUM OPERATIONS

Trace distance: cannot increase after a quantum operation

−→ Fidelity cannot decrease

Quantum data processing inequality:

For any quantum operation Φ,
F(ρ, σ) ≤ F (Φ(ρ),Φ(σ))
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TURN THE FIDELITY INTO DISTANCE: ANGLE

Uhlmann’s theorem: fidelity is equal to the maximum inner product between two quantum states(
purification

)
It suggests: angle between states (density operators) ρ and σ as

A(ρ, σ) def
= arccos F(ρ, σ)

Proposition
(
proof uses Uhlmann’s theorem

)
:

A(·, ·) is a metric for density operators
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FUCHS - VAN DE GRAAF INEQUALITIES

A priori: only quantum trace distance matters, why did we introduce the quantum fidelity?

−→ We can relate them

Fuchs - Van de Graaf inequalities:

1− F(ρ, σ) ≤ ∆(ρ, σ) ≤
√
1− F(ρ, σ)2, or conversely 1− ∆(ρ, σ) ≤ F(ρ, σ) ≤

√
1− ∆(ρ, σ)2

But is the fidelity useful?

  −→ Yes!

Proposition:

∆(ρ⊗k
, σ

⊗k)≤k ∆(ρ, σ) and F(ρ⊗k
, σ

⊗k) = F(ρ, σ)k

−→ The strength of the fidelity comes from the above equality
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USEFULNESS OF THE FIDELITY (I)

Let’s play the following game: if you ask, Alice gives to you

ρ0
def
=

( 1
2
− ε

)
|0⟩⟨0| +

( 1
2
+ ε

)
|1⟩⟨1| or ρ1

def
=

( 1
2
+ ε

)
|0⟩⟨0| +

( 1
2
− ε

)
|1⟩⟨1|

−→ But once Alice made a first random choice, she will always make the same choice!

Your aim: find with probability 1 if Alice chose ρ0 or ρ1

How to proceed:

Make k queries to Alice, measure each time in the (|0⟩ , |1⟩) basis

• With one query,

max
{strategy}

P (We guess the correct b) =
1
2
+

∆(ρ0, ρ1)

2

• With k queries,

max
{strategy}

P (We guess the correct b) =
1
2
+

∆(ρ⊗k
0 , ρ⊗k

1 )

2
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USEFULNESS OF THE FIDELITY (II)

max
{strategy}

P (We guess the correct b) =
1
2
+

∆(ρ⊗k
0 , ρ⊗k

1 )

2

But how many queries k are needed to make the good decision
(
with high probability

)
?

∆(ρ0, ρ1) = ε

• Upper-bound on the trace distance:

∆
(
ρ
⊗k
0 , ρ

⊗k
1

)
≤ kε =⇒ Necessarily: k ≥ 1

ε to ensure ∆
(
ρ⊗k
0 , ρ⊗k

1

)
not too small

Is it optimal?

No! It turns out that ∆
(
ρ⊗k
0 , ρ⊗k

1

)
≤ kε is not-tight

• F(ρ0, ρ1) = 2
√

1
4 − ε2

4 ≈ 1− ε2/2 and F(ρ⊗k
1 , ρ⊗k

2 ) = F(ρ1, ρ2)k ≈ 1− kε2/2

k
ε2

2
≈ 1−F(ρ⊗k

0 , ρ
⊗k
1 ) ≤ ∆

(
ρ
⊗k
0 , ρ

⊗k
1

)
=⇒ Choose: k ≥ 2

ε2
to ensure ∆

(
ρ⊗k
0 , ρ⊗k

1

)
not small

−→ k ≈ 1
ε2

is the optimal number of queries to make the good decision
(
with high probability

)
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USEFULNESS OF THE FIDELITY (III)

∆(ρ0, ρ1) = ε

• Upper-bound on the trace distance

∆
(
ρ⊗k
0 , ρ⊗k

1

)
≤ kε

• Lower-bound on the trace distance
(
by using Fidelity and Fuchs - Van de Graaf inequalities

)
kε2/2 ≤ ∆

(
ρ⊗k
0 , ρ⊗k

1

)
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CONCLUSION

Compare to the trace distance, the fidelity turns out to be in many situations a finer tool to analyze

the “distance” between quantum states

−→ It gives in many scenarii the tight number of necessary samples to perform a correct

distinguishing!
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BIT COMMITMENT



COMMITMENT WITH A SAFE

▶ Commit phase:

• Alice writes x on a piece of paper

• Alice puts the paper in a safe. She is the only one to have the key of the safe

• Alice sends the safe to Bob

x

 ▶ Reveal phase:

• Alice reveals x and the key to unlock the safe

• Bob opens the safe to check x
x

x?

 
Our aim:

Use “quantum computation” to build a commitment scheme

−→ Is the quantum world will offer to us an unconditionally secure commitment?
(
Spoil: no. . .

)
36



UNCONDITIONALLY SECURE QUANTUM BIT COMMITMENT PROTOCOL?

S0
def
= {|0⟩ , |1⟩} and S1

def
= {|+⟩ , |−⟩}

−→ Alice wants to commit a bit b ∈ {0, 1} to Bob!

Exercise:

Describe a commitment protocol using S0 and S1 enabling Alice to commit her bit

(
Hint: we don’t want Bob “to have any information about the commited bit”

)
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UNCONDITIONALLY SECURE QUANTUM BIT COMMITMENT PROTOCOL?

S0
def
= {|0⟩ , |1⟩} and S1

def
= {|+⟩ , |−⟩}

Alice wants to commit b:

1. Commit phase: Alice chooses |ψ⟩ ∈ Sb uniformly at random and send |ψ⟩ to Bob

2. Reveal phase: Alice reveals ab ∈ {0, 1}2 to Bob where ab description of |ψ⟩

00 ↔ |0⟩ , 10 ↔ |1⟩ , 01 ↔ |+⟩ and 11 ↔ |−⟩

3. Verification phase: Bob measures |ψ⟩ in the basis Sb
(
b is known from ab

)

Exercise:

Is Bob can guess the committed bit?

38



CONCEALING PROTOCOL

Bob can only guess the committed bit with probability 1/2 . . .

• If Alice committed 0, Bob has
ρ0 =

1
2
|0⟩⟨0| +

1
2
|1⟩⟨1|

• If Alice committed 1, Bob has
ρ1 =

1
2
|+⟩⟨+| +

1
2
|−⟩⟨−|

−→ But: ρ0 = ρ1 =
I
2 : they are indistinguishable

(
in particular, ∆(ρ0, ρ1) = 0

)

But, is the commitment scheme secure?

Exercise:

Give a cheating strategy for Alice: she chooses the committed bit after the commit phase. . .
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CHEATING STRATEGY FOR ALICE

Alice chooses her committed value after the commit phase. . . 

1. Alice starts with an EPR-pair |00⟩+|11⟩√
2

2. Alice gives the second qubit to Bob and pretends this is her commitment
(
up to now Alice

did not make a choice
)

3. If ultimately Alice wants to reveal b = 0: Alice measures her qubit |x⟩ and gives to Bob x0

4. If ultimately Alice wants to reveal b = 1: Alice first performs an Hadamard gate on her qubit,

the state becomes
|+0⟩ + |−1⟩

√
2

=
|0+⟩ + |1−⟩

√
2

Alice measures her qubit and she reveals 01 if she measured |0⟩, otherwise she reveals 11

When Bob measures, everything is fine for him while Alice has chosen her commit after the

commit phase. . .
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IS A SAFE COMMITMENT SCHEME ACHIEVABLE?

One may wonder: maybe our approach with S0 and S1 is flawed?

−→ No! But to understand this let us being more “generic”. . .

Remark:

In what follows: a particular
(
but general

)
generic approach cannot work

−→ It turns out that any “non-interactive” bit commitment scheme can be written in the ongoing

formalism

▶ Impossibility to build an unconditionally secure bit commitment from quantum computation:

https://arxiv.org/pdf/quant-ph/9712023.pdf
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BIT COMMITMENT SCHEME: FORMAL DEFINITION

Definition: bit commitment scheme

Protocol between two parties Alice and Bob, denoted hereafter A and B. A bit commitment scheme

consists of two phases: a commit phase
(
Alice commits a bit b

)
and a reveal phase

(
Alice reveals

to Bob her bit
)

▶ Alice’s aim: Bob cannot gain any information on her committed bit b

▶ Bob’s aim: once Alice has made her commit, she cannot change her mind

Security requirements:

▶ Completeness: If both players are honest, the protocol should succeed with probability 1

▶ Hiding property: If Alice is honest and Bob is dishonest, his optimal cheating probability is

P⋆B
def
= max

strategy
P
(
Bob guesses b before the reveal phase

)
▶ Binding property: If Alice is dishonest and Bob is honest, her optimal cheating probability is

P⋆A = max
strategy

1
2

(
P (Alice successfully reveals b = 0) + P (Alice successfully reveals b = 1)

)
−→ Alice optimal possibility to reveal both b = 0 and b = 1 successfully random(

for a same commit
)
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GENERIC EXAMPLE OF COMMITMENT SCHEMES

∣∣ψ0
AB
〉
and

∣∣ψ1
AB
〉
be two

(
publicly known

)
quantum bipartite states

▶ Commit phase: Alice wants to commit b. She creates
∣∣∣ψb

AB

〉
and sends the B-part to Bob

−→ After the commit phase, Bob has trA
(∣∣∣ψb

AB

〉)
▶ Reveal phase: Alice sends the A part of the quantum state

∣∣∣ψb
AB

〉
as well as b

−→ Bob checks that he has
∣∣∣ψb

AB

〉
by projecting his (joint) state to

∣∣∣ψb
AB

〉
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CHEATING STRATEGIES

Sadly, this generic quantum bit commitment scheme cannot be made secure-efficient. . .

There is a strategy for Alice and Bob such that

P⋆A + P⋆B ≥
3
2

in particular, max
(
P⋆A , P

⋆
B
)
≥

3
4

In our instantiation:

We have described a bit commitment scheme where P⋆A = 1 and P⋆B = 1
2
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CHEATING BOB

Bob has before the commit phase:

ρ0 = trA
(∣∣∣ψ0

AB

〉)
or ρ1 = trA

(∣∣∣ψ1
AB

〉)

Bob’s optimal cheating probability:

The optimal probability of Bob to guess b is

P⋆B =
1
2
+

∆(ρ0, ρ1)

2

−→ Choose ρ0 and ρ1 such that ∆(ρ0, ρ1) is small

▶ Remark: the perfect secure situation is P⋆B = 1
2 , Bob has nothing to do better than choosing b

randomly

But how is the optimal Alice’s strategy to cheat?
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CHEATING ALICE

Alice’s optimal cheating probability:

The optimal cheating probability of Alice
(
revealing the commit of her choice after the commit

phase
)
is

P⋆A =
1
2
+
F(ρ0, ρ1)

2
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PROOF

Proof:

Fix a cheating strategy for Alice, σ be the state that Bob has after the commit phase.

During the reveal phase:

• b = 0: Alice sends qubits such that Bob has a pure state |φ0⟩

• b = 1: Alice sends qubits such that Bob has a pure state |φ1⟩

P
(
Bob accepts | b = 0

)
=

∣∣∣〈φ0∣∣∣ψ0
AB

〉∣∣∣2 and P
(
Bob accepts | b = 1

)
=

∣∣∣〈φ1∣∣∣ψ1
AB

〉∣∣∣2
By definition of the protocol: σ = trA (|φ0⟩) = trA (|φ1⟩). Therefore, by Uhlmann’s theorem

max
|φ0⟩

∣∣∣〈φ0∣∣∣ψ0
AB

〉∣∣∣2 = F(σ, ρ0)2 and max
|φ1⟩

∣∣∣〈φ1∣∣∣ψ1
AB

〉∣∣∣2 = F(σ, ρ1)2

Therefore, if Alice chooses correctly σ and its purifications |φ0⟩ and |φ1⟩, her probability of

cheating becomes:
1
2

(
F(σ, ρ0)2 + F(σ, ρ1)2

)
To conclude: see exercise session

47



CONCLUSION

Bob has before the commit phase:

ρ0 = trA
(∣∣∣ψ0

AB

〉)
or ρ1 = trA

(∣∣∣ψ1
AB

〉)

P⋆A =
1
2
+
F(ρ0, ρ1)

2
and P⋆B =

1
2
+

∆(ρ0, ρ1)

2

Fuchs-Van de Graaf inequalities: F(ρ0, ρ1) ≥ 1− ∆(ρ0, ρ1), therefore

P⋆A + P⋆B ≥
3
2

in particular, max
(
P⋆A , P

⋆
B
)
≥

3
4

There is always a strategy for Bob or Alice to cheat with probability ≥ 3
4 . . .

−→ The presented bit commitment scheme cannot be unconditionally secure. . .

But can we build some secure cryptography by using quantum computation?

−→ Yes! Quantum Key Distribution
(
QKD

)
but under some computational assumption(

classical cryptography
)
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BE CAREFUL

Don’t forget:

The QKD’s also needs “classical cryptography” to be secure. . . It is false to say “QKD is secure

because laws of physic”

−→ For the QKD to be secure we need cryptography to authenticate the channel. . .
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