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THE OBJECTIVE OF THE DAY

Presentation of quantum error correcting codes! But we will start with the classical case

 
Quantum error correcting code are

(
roughly

)
:

▶ a clever use of classical codes and
(
syndrome

)
projective measurements
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COURSE OUTLINE

1. Classical Error Correcting Codes: to be Protected Against Classical Errors

2. A First Quantum Error Correcting Code: Shor’s Code

3. Calderbank-Shor-Steane (CSS) Codes

4. Stabilizer Codes

5. Threshold Theorem
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INTRODUCTION

Building an efficient quantum computer?

Let’s go
(
good luck. . .

)
! But it is impossible to build architectures that are completely isolated

from the environment: decoherence
(
pure states 7→ mixed states

)
Decoherence (←→ Quantum Noise):

There will be “noise” during computations that will modify the results. . .

▶ What does the “noise” mean in the quantum case?

▶ How to be “protected” against the “noise”? Can we also add redundancy as in the classical

case?

−→ Do the classical computation also suffer of errors during computations?

Yes!

How do we proceed to be protected against errors in classical computations?
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INTRODUCTION: CLASSICAL WORLD

In the early age: errors in computation, big issue!

−→ Read the story of R. Hamming in the Bell labs (1947):

https://en.wikipedia.org/wiki/Richard_Hamming

Classically:
▶ Resource that we need to protect: the bits 0 and 1

▶ Errors: bits are flipped
{

0 7→ 1
1 7→ 0

 

Breakthrough: Shannon (1948/1949) gave the foundations to protect classical computations
against errors but not only!

Protection against errors in computation ⊊ Information theory
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INTRODUCTION: QUANTUM WORLD, THOUGH ISSUES?

Protect against errors in the quantum world: a much harder problem!

• Problem 1: Not enough to protect |0〉 and |1〉, every linear combinations α |0〉 + β |1〉 must
be protected as well

• Problem 2: Much richer error model than for classical bits (not only “flip”. . . )

• Problem 3: Impossibility to copy qubits before working on it (no cloning theorem)

• Problem 4: Measurements modify the qubits. . .

To overcome these issues: take a look on how we proceed in the classical case!
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CLASSICAL ERROR CORRECTING CODES



THE PROBLEM

Suppose that we send bits across a noisy channel

001011⇝ 001111

How can the receiver detect that an error occurred and correct it?

Do what you do in your everyday life:

Add redundancy!

An example: spell your name over the phone, send first names!

M like Mike, O like Oscar, R like Romeo, A like Alpha, I like India and N like November

7



THE PROBLEM

Suppose that we send bits across a noisy channel

001011⇝ 001111

How can the receiver detect that an error occurred and correct it?

Do what you do in your everyday life:

Add redundancy!

An example: spell your name over the phone, send first names!

M like Mike, O like Oscar, R like Romeo, A like Alpha, I like India and N like November

7



THE SOLUTION

An example: over the phone

M like Mike, O like Oscar, R like Romeo, A like Alpha, etc. . .

▶ We perform an encoding (i.e., adding redundancy),

M 7→ Mike, O 7→ Oscar, R 7→ Romeo, A 7→ Alpha, etc. . .

▶ We send the names across the noisy channel (given by a bad communication over the
phone),

Mike noise−−−→ “ ike”, Oscar noise−−−→ “scar”, Romeo noise−−−→ “meo”, Alpha noise−−−→ “ alph”

▶ The receiver can perform a decoding: recovering the first names and then the letters,

“ ike”→ Mike→ M, “sca”→ Oscar→ O, “meo”→ Romeo→ R, “alph”→ Alpha→ A
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THE SOLUTION WITH BITS

A naive solution: the 3-bits repetition code

Encode bits as:
0 7→ 000 and 1 7→ 111

Binary Symmetric Channel:

Suppose that bits are independently flipped with probability p < 1/2

For instance:

000⇝ 010 with probability p(1− p)2 , 000⇝ 011 with probability (1− p)p2 , etc. . .

▶ Decoding: given b1b2b3 choose the bit that has the majority

010 7→ 0 and 110 7→ 1

Does the 3-bits repetition code offer a better protection against errors than just sending the bit?

−→ Yes! The probability that choosing the majority bit is the correct choice:

3(1− p)2p + (1− p)3 > 1− p
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MORE FORMALLY: LINEAR CODES

 
How to transmit k bits over a noisy channel?

1. Linear code: fix C subspace ⊆ Fn2 of dimension k < n

2. Encoding: map (m1, . . . ,mk) −→ c = (c1, . . . , cn) ∈ C task adding n− k bits redundancy

−→ as C is linear the encoding is easy
(
only linear algebra

)
3. Send c across the noisy channel, bits of c are independently flipped with probability p

Sender

m

Encoding

c

Noisy Channel

Error e

c⊕ e

Decoding

c? m

Decoding:

−→ from c⊕ e: recover e and then c (using the linearity, we easily recover m from c)
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BASIC DEFINITIONS

Linear Code:

A linear code C of length n and dimension k ([n, k]-code): subspace of Fn2 of dimension k

Dual code:

Given C, its dual C⊥ is the [n, n− k]-code

C⊥ def
=

{
c⊥ ∈ Fn2 : ∀c ∈ C, 〈c, c⊥〉 =

n∑
i=1

cic⊥i = 0 ∈ F2

}

Remark: C⊥ orthogonal group of C in the character theory

The repetition code:

The n-repetition code is the following [n, 1]-code:(0, . . . , 0︸ ︷︷ ︸
n times

), (1, . . . , 1︸ ︷︷ ︸
n times

)



−→ Using majority voting enables to correct < n/2 errors!

But, huge cost of protection: n bits to protect 1 bit. . . 11



HOW TO REPRESENT A CODE?

C is a subspace of Fn2 of dimension k: choose a basis b1, . . . , bk to represent it!

−→ Many times this representation is not the most “useful”

Parity-check matrix:

Let h1, . . . , hn−k be a basis of C⊥ , then

C =
{
c ∈ Fn2 : Hc⊺ = 0

}
where the rows of H ∈ F(n−k)×n

2 are the hi ’s

The matrix H is called a parity-check matrix of C
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A QUICK REMINDER: QUOTIENT SPACE

Given two finite subspaces of Fn2 : F ⊆ E.

Equivalence relation: x ∼ y ⇐⇒ x− y ∈ F.

E/F = {x : x ∈ E} where x def
= {y ∈ E : x ∼ y} = x + F

−→ It defines a linear space!

k = dim E/F = dim E− dim F, in particular: ♯E/F = 2k

Rough analogy:

E/F Z/4Z

{x1, . . . , x2k} {0, 1, 2, 3}
xi = xi + F ℓ = ℓ + 4Z

x = y ⇐⇒ x− y ∈ F ℓ = m ⇐⇒ ℓ− m ∈ 4Z
E =

⊔
1≤i≤2k xi Z =

⊔
ℓ∈{0,1,2,3} ℓ
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COSETS: MODULO THE CODE

Decoding: given c⊕ e, recover e

−→ Make modulo C to extract the information about e

Coset space: Fn2/C

♯ Fn2/C = 2n−k and Fn2/C =
{
xi : 1 ≤ i ≤ 2n−k

}
=
{
xi + C : 1 ≤ i ≤ 2n−k

}
where the xi ’s are the representatives of Fn2/C. The xi + C’s are disjoint!

A natural set of representatives via a parity-check H: syndromes

xi + C ∈ Fn2/C 7−→ Hx⊺i ∈ Fn−k
2

(
called a syndrome

)
is an isomorphism

Fn2 =
⊔

s∈Fn−k
2

{
z ∈ Fn2 : Hz⊺ = s⊺

}

c⊕ e mod C = H(c⊕ e)⊺ = Hc⊺︸︷︷︸
=0

⊕He⊺ = He⊺ which gives information to recover e (decoding)

−→ c⊕ e mod C is only function of e!
14



A FIRST EXAMPLE: HAMMING CODE

Let CHam be the [7, 4]-code with parity-check matrix:

H def
=

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



Let c⊕ e where
{

c ∈ CHam
only one bit of e is 1 : how to easily recover e?

 

1. Compute the associated syndrome:

H(c⊕ e)⊺ = Hc⊺ ⊕ He⊺ = He⊺

2. e has only one non-zero bit, He⊺ is a column of H

3. Columns of H are the binary representation of 1, 2, . . . , 7: He⊺ gives
(
in binary

)
the position

where there is an error!

Hamming codes can correct one error!

−→ There are more clever codes than repetition or Hamming codes. . . In particular these codes

don’t seem “good”. We will see later a criteria
(
minimum distance

)
for “good codes”
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IF YOU ARE INTERESTED

▶ Nice lecture notes by Alain Couvreur
(
with a focus on algebra

)
:

http://www.lix.polytechnique.fr/~alain.couvreur/doc_ens/lecture_notes.pdf

▶ The “bible” of error correcting codes: The theory of error correcting codes, F.J. MacWilliams ,
N.J.A. Sloane (1978)

Error correcting codes have a huge impact in theoretical computer science, cryptography,

communications, quantum key distribution
(
QKD

)
, etc. . .

−→ Let’s go back to the quantum case!
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SHOR’S QUANTUM CODE



BE INSPIRED BY THE CLASSICAL CASE

Inspired by the classical case: repetition code?

α |0〉 + β |1〉 7−→ (α |0〉 + β |1〉)⊗3

But is it possible?

No! No-cloning theorem. . .

Instead consider the following encoding to “mimic the repetition code”:

(α |0〉 + β |1〉)⊗ |00〉 7−→ α |000〉 + β |111〉

−→ It is not a repetition code!

To perform encoding, following quantum circuit:

α |0〉 + β |1〉

|0〉

|0〉
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ERRORS OF TYPE X (FLIPPING)

Inspired by the classical case: flip the qubits, i.e. apply X

Error X on the second qubit:

α |000〉 + β |111〉⇝ α |010〉 + β |101〉

But how to correct this error?

Use a parity-check matrix!

H def
=

(
0 1 1
1 1 0

)
parity-check matrix of the 3-repetition code

{
(000), (111)

}
−→ applying to either (010) or (101) gives

(
1
1

)
showing an error occurred to the second bit

Quantumly: implement |x〉 ⊗ |00〉 7→ |x〉 ⊗
∣∣xH⊺〉 and apply it to

(α |010〉 + β |101〉)⊗ |00〉 7−→ (α |010〉 + β |101〉)⊗ |11〉

Measure the last two registers and deduce where the X error occurred

−→ apply X on the qubit where there is an error leading to the original quantum state
(
X2 = I2

)

This method enables to correct any X on one qubit

But is it necessary to introduce two ancillary qubits?
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DECODING WITHOUT PARITY-CHECK MATRIX

Using two auxiliary qubits and H was an artefact to mimic the classical case!

α |000〉 + β |111〉⇝ error?

(i) No error,
α |000〉 + β |111〉 ∈ C0

def
= Vect (|000〉 , |111〉)

If an error X occurs we will be in one of the following situations:

(ii) First qubit,
α |100〉 + β |011〉 ∈ C1

def
= Vect (|100〉 , |011〉)

(iii) Second qubit,
α |010〉 + β |101〉 ∈ C2

def
= Vect (|010〉 , |101〉)

(iv) Third qubit,
α |001〉 + β |110〉 ∈ C3

def
= Vect (|001〉 , |110〉)

The Cx ’s are the cosets and are orthogonal!
−→ It defines a measurement: we can decide in which space we live and removing the error
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DECODING WITH SYNDROME MEASUREMENT

(I) Fundamental idea: decompose the three qubits space as
(
coset decomposition

)
(
C2
)⊗3

= C0
⊥
⊕C1

⊥
⊕C2

⊥
⊕C3 (1)

where,

C0
def
= Vect (|000〉 , |111〉) , C1

def
= Vect (|100〉 , |011〉) , C2

def
= Vect (|010〉 , |101〉)

C3
def
= Vect (|001〉 , |110〉)

−→ The Cx ’s are orthogonal: it defines a projective measurement!

(II) Fundamental idea: syndrome measurement

Measure according to Eq. (1). Then apply X on a qubit according to the result x. For instance:

0 7→ do nothing, 1 7→ apply X on the first qubit, 2 7→ apply X on the second qubit, etc

But why does it work?

If one error X occurred, the quantum state will belong with certainty to some Cx and X2 = I2
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AN EXAMPLE: X-ERROR ON THE 2ND QUBIT

Error X on the second qubit:

α |000〉 + β |111〉⇝ α |010〉 + β |101〉

▶ Measure according to the orthogonal projections over

C0 = Vect (|000〉 , |111〉) , C1 = Vect (|100〉 , |011〉) , C2 = Vect (|010〉 , |101〉)

C3 = Vect (|001〉 , |110〉)

▶ With probability one we measure 2
(
“we are in C2”

)
and the quantum state does not change

α |010〉 + β |101〉

▶ Apply X on the second qubit

α |010〉 + β |101〉 7−→ α |000〉 + β |111〉

Remarkable fact:

Measurement does not change the quantum state!
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MORE GENERAL X ERRORS

Error of type-X on some “random qubit”:

α |000〉 + β |111〉⇝ a (α |100〉 + β |011〉) + b (α |010〉 + β |101〉) + c (α |001〉 + β |110〉)

Same decoding algorithm: measure according to C0
⊥
⊕C1

⊥
⊕C2

⊥
⊕C3 but this times the quantum

states changes

• With probability |a|2 observe “error on the first qubit”, the quantum state collapses to

α |100〉 + β |011〉
and apply X on the first qubit,

• With probability |b|2 observe “error on the second qubit”, the quantum state collapses to

α |010〉 + β |101〉
and apply X on the second qubit,

• etc. . .

23



OTHER KIND OF ERRORS?

What is the most important sentence of MDC_51002_EP?

−→ Quantum computation offers you a huge power with the “-1”

It is the same for errors, errors have a huge power, phase-flip can happen Z :

{
|0〉 7→ |0〉
|1〉 7→ − |1〉

But is our previous quantum code with its decoding algorithm useful against errors of type-Z?

−→ No!

Applying Z on some qubit:

α |000〉 − β |111〉
▶ Decoding: measuring leads to we are in C0 : “no error” and we do nothing. . .

24
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HOW TO PROTECT AGAINST ERROR OF TYPE-Z?

Fundamental remark:

errors of type Z ≡ errors of type X in the Fourier basis |+〉 , |−〉

Z :

{
|+〉 7→ |−〉
|−〉 7→ |+〉 and X :

{
|+〉 7→ |+〉
|−〉 7→ − |−〉

Natural idea: apply H⊗3 to α |000〉 + β |111〉:

α |+ + +〉 + β |− − −〉

As above we can correct any error of type Z on one qubit with this encoding!

−→ But we are stuck, we cannot correct errors of type-X anymore. . .

25



CORRECTING BOTH TYPES OF ERRORS: SHOR’S CODE

Idea: concatenation trick

Encode to protect against Z-errors and then encode this to protect against X-errors!

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

1 qubit

Protection against Z-errors Protection against X-errors 26



ENCODING

|0〉 1st−−→ |+ + +〉 =
1

2
√
2
(|0〉 + |1〉)⊗3 2nd−−−→

1
2
√
2
(|000〉 + |111〉)⊗3

|1〉 1st−−→ |− − −〉 =
1

2
√
2
(|0〉 − |1〉)⊗3 2nd−−−→

1
2
√
2
(|000〉 − |111〉)⊗3

▶ 1st step: protecting against errors of type-Z

▶ 2nd step: protecting against errors of type-X

Encoding:(
α |0〉 + β |1〉

)
⊗
∣∣∣08〉 7−→ α

2
√
2
(|000〉 + |111〉)⊗3 +

β

2
√
2
(|000〉 − |111〉)⊗3

27



DECODING (I)

α

2
√
2
(|000〉 + |111〉)⊗3 +

β

2
√
2
(|000〉 − |111〉)⊗3

−→ The encoding belongs to the linear code of dimension 3 generated by

(111000000), (000111000), (000000111)

As previously, one can define the syndrome measurement according to the cosets:

C0
def
= Vect (|111000000〉 , |000111000〉 , |000000111〉) ,

C1
def
= Vect (|011000000〉 , |100111000〉 , |100000111〉) , etc . . .

−→ 9 subspaces of dimension 3 in orthogonal sum! It defines a
(
syndrome

)
measurement

enabling, as previously, to correct any one X-error

Remark:

This syndrome measurement: any interference with any possible Z-error(
change signs not switch vectors of the computational basis

)
28



DECODING (II)

Once we have removed a possible X-error we are left to deal with

α

2
√
2
(|000〉 + |111〉)⊗3 +

β

2
√
2
(|000〉 − |111〉)⊗3 = α |+3 +3 +3〉 + β |−3 −3 −3〉

|+3〉
def
=
|000〉 + |111〉
√
2

and |−3〉
def
=
|000〉 − |111〉
√
2

−→ One Z-error on any qubit of |+3〉 leads to |−3〉!

Z-error on either 1st, 2nd or 3rd
(
resp. 4th, 5th or 6th

)
qubit yields:

α |−3 +3 +3〉 + β |+3 −3 −3〉 (resp. α |+3 −3 +3〉 + β |−3 +3 −3〉)

▶  We can define the syndrome measurement:
(
C2)⊗9

= E0
⊥
⊕E1

⊥
⊕E2

⊥
⊕E3

⊥
⊕ F where: 

E0
def
= Vect (|+3 +3 +3〉 , |−3 −3 −3〉) , E1

def
= Vect (|−3 +3 +3〉 , |+3 −3 −3〉) , . . . , F

def
=

(∑
i

Ei

)⊥

Decoding:

Measure
(
it does not change the quantum state

)
and then apply Z on the either the 1st, 2nd

or 3rd qubit if the answer is 1, etc. . .  29



TO SUMMARIZE

Shor’s quantum error correcting code:

It can correct one error of type-X and one error of type-Z!

Exercise:

Find an error on two qubits which cannot be corrected by Shor’s code

▶ Are the errors of type-X and Z be the only possible errors?

▶ Can Shor’s quantum code correct these other potential errors?

−→ As in classical world: many reasonable models of errors

But there is a moral:

Errors on qubits: apply Pauli matrices
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PAULI MATRICES

Single qubit Pauli group P1:

{±I2,±X,±Y,±Z,±iI2,±iX,±iY,±iZ}

−→ This set forms a group for the multiplication!

• X2 = Y2 = Z2 = I2

• The 6= Pauli matrices anti-commute: XZ = −ZX = −iY etc. . .

Exercise Session:

Any 2× 2 matrix M on one qubit can be written as:

M = e0I2 + e1X + e2Z + e3XZ
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FUNDAMENTAL CONSEQUENCES

One reasonable model of error: on each qubit we independently apply a linear operator

Any linear operator M on one qubit can be written as:

M = e0I2 + e1X + e2Z + e3XZ

−→ We reduce a continuous set of errors to a discrete set of errors given by X, Z and XZ

Correcting a discrete set of errors by syndrome measurement: X and Z

−→ We can automatically correct a much larger
(
continuous!

)
class of errors

Intuitively: if the syndrome measurement is correct with certainty, performing this measurement

after applying M will collapse the quantum state into no error, error of type-X and Z

Shor’s code can correct all errors of type X and Z!
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QUANTUM CHANNEL?

Depolarizing channel:

Each qubit independently undergoes an error X, Z or Y = iXZ with probability p/3 and is not

modified with probability p

On a single qubit, in terms of density operator:

ρ 7−→ E(ρ) def
= (1− p)ρ +

p
3
XρX +

p
3
YρY +

p
3
ZρZ

−→ Somehow the quantum analogue of the Binary Symmetric channel

Exercise:

Show that when p = 3
4 , then E(ρ) =

I2
2 . How do you interpret this result? What would be the

“classical” equivalent with the Binary Symmetric channel?

Quantum channels:

It belongs to a more general theory: quantum measurements, Krauss operators
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CONCLUSION

Errors against which we need to be protected:

X and Z

Decoding Shor’s quantum code:

Shor’s quantum code can correct any
(
continuous

)
error provided they only affect a single qubit

−→ But to protect one qubit we need nine qubits. . .

Is it useful, namely better than doing nothing?

−→ Yes! See Exercise Session for a rigorous proof of this statement(
for the depolarizing channel

)

Can we do better?

−→ Yes, let’s go! But before break. . .
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CSS CODES



AIM

We study now Calderbank-Shor-Steane
(
CSS
)
codes

Aim:

A more systematic way of encoding quantum states using
(
classical

)
linear codes

CSS construction is based on two classical codes:

▶ the first one corrects errors of type-X

▶ the second one corrects errors of type-Z
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NOTATION

For any v = (v1, v2, . . . , vn) ∈ Fn2 ,

Xv def
= Xv1 ⊗ Xv2 ⊗ · · · ⊗ Xvn and Zv def

= Zv1 ⊗ Zv2 ⊗ · · · ⊗ Zvn

 

Lemma:

(i) XuZv = (−1)⟨u,v⟩ZvXu

(ii) H⊗nXu = ZuH⊗n and H⊗nZu = XuH⊗n

(iii) Zu |x〉 = (−1)⟨u,x⟩ |x〉

Proof:

Consequence of the fact that XZ = −ZX and XH = HZ
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A CRUCIAL LEMMA

Lemma:

For any linear code C,

H⊗n |C〉 =
∣∣∣C⊥〉 where |C〉 def=

1
√
♯C

∑
c∈C
|c〉 and

∣∣∣C⊥〉 def
=

1√
♯C⊥

∑
c⊥∈C⊥

∣∣∣c⊥〉

Proof:

See Exercise Session

But from which result this lemma comes from?

−→ Poisson summation formula
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ENCODING IN CSS CODES

▶ Defined from two linear codes
(
CX, CZ

)
of length n such that CZ ⊆ CX ⊆ Fn2

k def
= dim CX/CZ = dim CX − dim CZ

−→ CX =
⊔

1≤i≤2k
(xi + CZ) for 2k vectors xi ∈ CX being coset representatives of CX/CZ

There are efficient one-to-one mappings:

i ∈ {0, 1}k 7−→ xi ∈ {0, 1}n and xi ∈ {0, 1}n 7−→ i ∈ {0, 1}k

CSS quantum codes:

CSS codes encodes k qubits as∑
i∈{0,1}k

αi |i〉︸︷︷︸
k qubits

⊗
∣∣∣0n−k

〉
7−→

∑
xi

αi |xi + CZ〉︸ ︷︷ ︸
n qubits

where, |x + CZ〉
def
=

1
√
♯CZ

∑
y ∈ CZ

|x + y〉

Exercise Session:

How to efficiently build CSS encodings?
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DECODING CSS CODES

−→ As for Shor’s code, use: syndrome measurement

Syndrome measurement:

Let C be a linear code of length n, dimension k and with parity-check matrix H.

We associate to C and H the following measurement(
C2
)⊗n

=
⊥⊕

s∈Fn−k
2

ECs

where,

ECs
def
= Vect

 |z〉︸︷︷︸
n qubits

: Hz⊺ = s⊺
 = Vect

(
|z〉 : z ∈ x + C where Hx⊺ = s⊺

)

−→ The ECs ’s are generated by the vectors of different cosets

But as the cosets are disjoint, the ECs ’s are orthogonal!

A crucial remark:

If |ψ〉 ∈ EC0 , then Xe |ψ〉 ∈ ECs where He⊺ = s⊺ .

−→ If the He⊺i ’s are distinct and we can recover ei from He⊺i : when measuring X
ei |ψ〉 ∈ ECHe⊺i

we

recover He⊺i , then ei and we can remove X
ei .
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CORRECTING x-ERROR

(
|x + C〉 =

1
√
♯C

∑
c∈C
|x + c〉

)

Starting from the encoding and applying the noise XeZf:

|ψ〉 =
∑

x∈CX/CZ

αx |x + CZ〉 ∈ E
CX
0 ⇝ XeZf |ψ〉 =

∑
x∈CX/CZ

αxXeZf |x + CZ〉

−→ Zf only modifies signs! Therefore:

∑
x∈CX/CZ

αxXeZf |x + CZ〉 ∈ E
CX
HXe

⊺ where HX be a parity-check matrix of CX ⊇ CZ

(
because: ∀x ∈ CX, cZ ∈ CZ , HX(x + cZ)⊺ = 0 as x ∈ CX and cZ ∈ CZ ⊆ CX

)

Syndrome measurement:

It does not modify the quantum state, supposing that we can recover e from HXe⊺ : remove Xe
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CORRECTING z-ERROR

|ψ〉 =
∑

x∈CX/CZ

αx |x + CZ〉 ∈ E
CX
0 ⇝ XeZf |ψ〉 1st decoding−−−−−−→ Zf |ψ〉 =

∑
x∈CX/CZ

αxZf |x + CZ〉

Fundamental remark:

We have the following identities:

Zf |ψ〉 =
∑

x∈CX/CZ

αxZf |x + CZ〉 =
∑

x∈CX/CZ

αxZfXx |CZ〉

By applying H⊗n:

H⊗nZf |ψ〉 =
∑

x∈CX/CZ

αxH⊗nZfXx |CZ〉

=
∑

x∈CX/CZ

αxXfZxH⊗n |CZ〉

= Xf
∑

x∈CX/CZ

Zx
∣∣∣C⊥Z 〉 ∈ in the coset given by HZf⊤ with HZ parity-check of C⊥Z

Syndrome measurement with C⊥Z :

Measuring: we can recover f, then we apply H⊗n leading to Zf |ψ〉 and we remove Zf
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ABILITY TO CORRECT CLASSICAL ERRORS?

Up to now we used the fact that we can “decode” CX and C⊥Z

Let, HX and HZ be a parity-check matrix of CX and C⊥Z

▶ To remove errors Xe1 , or Xe2 , . . . , or Xeℓ :

the HXe⊺i ’s have to be distinct and we can efficiently recover ej from HXe⊺j

▶ To remove errors Zf1 , or Zf2 , . . . , or Zfℓ :

the HZf⊺i ’s have to be distinct and we can efficiently recover fj from HZf⊺j

But, can we find classical codes offering such “properties”?

−→ Yes! To understand why it is theoretically possible: minimum distance
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MINIMUM DISTANCE OF LINEAR CODES

Hamming weight:

∀x = (x1, · · · , xn) ∈ Fn2 , |x|
def
= ♯ {i ∈ J1, nK, xi 6= 0}

Minimum distance:

Let C ⊆ Fn2
(
linear code

)
, its minimum distance is defined as

dmin(C)
def
= min {|c| : c ∈ C and c 6= 0}

−→ The minimum distance quantifies how “good” is a code in terms of decoding ability!

Lemma
(
see Exercise Session

)
:

Let H be any parity-check matrix of C, then

the He⊺ ’s are distinct when |e| < dmin(C)

2

−→ C can theoretically be decoded if there are < dmin(C)

2 errors

Be careful: it does not show the existence of an efficient decoding algorithm, which is far from

being guaranteed
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MINIMUM DISTANCE OF LINEAR CODES

▶ What is the best minimum distance can we expect?

−→ It is typically large ≈ n/10 when C has dimension n/2s
(
see Exercise Session

)
▶ Do we know linear codes with a large minimum distance and for which we can remove a large

number of errors?

−→ Hard question. . . Yes we can
(
hopefully for telecommunication

)
but to understand

how deserves at least three lectures. . .

To take away:

It exists codes with a large minimum distance d and we can hope to be able to decode up to d/2

But: hard to find codes with a large d and for which we can efficiently decode many errors(
even� d/2

)
−→ Active research topic with a lot a consequences, event recent

(
for instance the 5G . . .

)
To build CSS codes: choose C such that (i) can correct many errors and (ii) C⊥ ⊆ C(

weekly auto-dual
)
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CONCLUSION

Theorem: decoding CSS codes

Let CX and CZ be linear codes such that CZ ⊆ CX

If e
(
resp. f

)
can be recovered from its syndrome by the code CX

(
resp. C⊥Z

)
, then the quantum

error pattern XeZf can be corrected by the CSS quantum code associated to the pair
(
CX, CZ

)
In particular, we can hope to decode up to dmin(CX)/2 errors-X and dmin(C⊥Z )/2 errors-Z

(
even

combined
)

See Exercise Session:

• Shor’s code
(
9 qubits to protect 1 qubit

)
is a CSS code

• Steane’s code
(
7 qubits to protect 1 qubit

)
is a CSS code using Hamming codes
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STABILIZER CODES



STABILIZER CODES

▶ A class of codes containing CSS codes

▶ Many similarities with classical linear codes

▶ Powerful framework for defining/manipulating/constructing/understanding quantum codes
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THE PAULI ERROR GROUP

XZ = −ZX = −iY
XY = −YX = iZ
YZ = −ZY = iX

−→ The elements of G1 = {±1,±i} × {X, Z, Y} commute or anti-commute

Gn-group:

The set of operators of the form ±XeZf or ±iXeZf , where e, f ∈ Fn2 , form a multiplicative group
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ADMISSIBLE GROUP

Admissible subgroup:

A subgroup S of Gn is said to be admissible if: −I⊗n /∈ S

−→ We will only consider admissible subgroups!

Lemma:

Any admissible subgroup S is Abelian
(
its elements commute

)

Proof:

Let E, F ∈ S ⊆ Gn , then
E2 = ±I, F2 = ±I and EF = ±FE

But E2, F2 ∈ S and −I /∈ S. Therefore:
E2 = F2 = I

Suppose by contradiction that EF = −FE, then

EFEF = −EF2E = −I ∈ S: contradiction
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STABILIZER CODES: DEFINITION

Stabilizer code:

S be an admissible subgroup of Gn

The stabilizer code C associated to S is defined as

C def
=
{
|ψ〉 : ∀M ∈ S, M |ψ〉 = |ψ〉

}

An example:

Vect (|000〉 , |111〉) is a stabilizer code associated to{
I⊗ I⊗ I, Z⊗ Z⊗ I, Z⊗ I⊗ Z, I⊗ Z⊗ Z

}
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INDEPENDENT GENERATORS: MINIMAL SET OF GENERATORS

Given S an admissible subgroup of Gn :

▶ Generators set: M1, . . . ,Mℓ such that

∀M ∈ S, M = Me1
1 · · ·M

eℓ
ℓ for e1, . . . , eℓ ∈ {0, 1}

Notation:

〈M1, . . . ,Mℓ〉
def
=
{
Me1
1 · · ·M

eℓ
ℓ for e1, . . . , eℓ ∈ {0, 1}

}

▶ Minimal generators set
(
independent generators in the literature

)
: M1, . . . ,Mℓ such that

∀i, 〈M1, . . . ,Mi−1,Mi+1, . . . ,Mℓ〉 ⊊ 〈M1, . . . ,Mℓ〉

Proposition
(
admitted

)
:

S admits a minimal generator set M1, . . . ,Mr for some r and
♯S = 2r.
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SYNDROME FUNCTION

S ⊆ Gn admissible subgroup

♯S = 2r and M1, . . . ,Mr minimal set of generators

The syndrome function:

σ : Gn −→ {0, 1}r

E 7−→


s1
s2
...
sr

 with si
def
=

{
0 if EMi = MiE
1 if EMi = −MiE

Remark:

For any M ∈ S: σ(M) = 0
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SYNDROME AND MEASUREMENT

Syndrome: σ(E) =


s1
s2
...
sr

 with si
def
=

{
0 if EMi = MiE
1 if EMi = −MiE

C(s) def
=
{
|ψ〉 , ∀i, Mi |ψ〉 = (−1)si |ψ〉

}

−→ C(0) = C

Proposition (admitted): a quantum measurement that extracts the syndrome

1. For any E ∈ Gn and any |ψ〉 ∈ C:
E |ψ〉 ∈ C(σ(E))

2.
(
C2)⊗n decomposes into the orthogonal direct sum:(

C2
)⊗n

=
⊥⊕

s∈Fr2

C(s)

−→ The C(s)’s define a measurement!

Proposition (admitted):

For any s ∈ Fr2 , there exists E ∈ Gn such that s = σ(E)

We have dimC(C) = 2n−r
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ANALOGIES

Linear codes Stabilizer codes

k bits encoded in n bits k qubits encoded in n qubits
subspace of dimension k subspace of dimension 2k

parity-check matrix H minimal generators set of S
r = n− k rows, n columns r = n− k generators
syndrome ∈ {0, 1}n−k syndrome ∈ {0, 1}n−k
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DECODING: MEASUREMENT, WHAT ELSE?

Error: E ∈ Gn

|ψ〉 ∈ C ⇝ E |ψ〉 ∈ C(σ(E)) measurement−−−−−−−→ E |ψ〉 with the knowledge of σ(E)

▶ But how to extract E?
−→ classically

▶ What are the errors that can be corrected?
−→ Subtle question!
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DECODING PROCESS

Suppose: |ψ〉⇝ E |ψ〉 where E ∈ Gn

−→ We want to remove E, i.e., to apply E−1

Decoding process:

We compute E′ ∈ Gn such that E′E |ψ〉 ∈ C = C(0). In other words,
σ(EE′) = 0

Is E′ = E−1? Is it necessary?

−→ We don’t need E = E−1 , we only need E′E |ψ〉 = |ψ〉
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CORRECTABLE ERRORS?

Suppose: |ψ〉⇝ E |ψ〉 ∈ C(0) = C measurement−−−−−−−→ syndrome 0, no error. . .

Is it a problem? It depends of E . . . Is E |ψ〉 = |ψ〉 or not?

We can distinguish two types of error E with syndrome 0:

• Harmless error
(
type-G like “Good”

)
: E ∈ S, in that case

∀ |ψ〉 ∈ C, E |ψ〉 = |ψ〉

• Harmful error
(
type-B like “Bad”

)
: E /∈ S, in that case

(
proof: use the “minimality” of

generators
)

∃ |ψ〉 ∈ C, E |ψ〉 6= |ψ〉

Type-B errors: cannot be detected and thus cannot be corrected while it may happen E |ψ〉 6= |ψ〉

To overcome this issue: introduce the minimum distance

Remark:

An harmful error E verifies by definition σ(E) = 0
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MINIMUM DISTANCE

Recall: if E ∈ Gn , then E = XeZf
(
up to ×{±1,±i}

)
for some e, f ∈ Fn2 ,

Weight Pauli group elements:

For any E ∈ Gn , we define its weight as,

|E| def= ♯
{
i : ei 6= fi or ei = fi = 1

}
= ♯
{
X, Y, Z that appear in E

}

For instance: ∣∣∣X(1,0,1,0)Z(0,0,1,1)∣∣∣ = |X⊗ I⊗ XZ⊗ Z| = |X⊗ I⊗ (−iY)⊗ Z| = 3

Admissible subgroup minimum distance:

Given an admissible subgroup S of Gn , we define its minimum distance as,

d def
= min

(
|E| : E error of type B

)
= min

(
|E| : E /∈ S

)

Exercise:

What is the minimum distance of Vect(|000〉 , |111〉)? Don’t forget to exhibit the associated

admissible subgroup
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DECODING

Theorem:

C stabilizer code of minimum distance d, and |ψ〉 ∈ C be corrupted by an error E ∈ Gn of weight

t < d/2, then |ψ〉 can be recovered

Proof:

1. E |ψ〉 measurement−−−−−−−→ E |ψ〉 giving the classical information σ(E)

2. Find classically minimum weight E′ ∈ Gn such that σ(E′) = σ(E), in particular |E′| ≤ |E| = t

−→ We need: efficient classical algorithm coming with the stabiliser group for this task

3. Apply E′ . But why does it work?

σ(E′E) = σ(E′) + σ(E) = 0 and |E′E| ≤ |E′| + |E| ≤ 2t < d

Therefore, by definition of the minimum distance: E′E ∈ S and E′E |ψ〉 = |ψ〉
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CONCLUSION

▶ Decoding stabilizer codes:

• Computing the syndrome by a projective measurement : quantum step

• Determining the most likely error: classical step

• Inverting the error: quantum step

▶ Decoding with certainty up to d/2 where d = min
(
|E| : E ∈ Gn\S

) (
minimum distance

)
−→ Be careful: to be efficient, we need to be efficient during the classical step

▶ We have seen quantum codes
(
and their decoding algorithm

)
:

Shor ⊊ CSS ⊊ Stabilizer

See Exercise Session:

• Shor’s code
(
9 qubits to protect 1 qubit

)
is a CSS code

• Steane’s code
(
7 qubits to protect 1 qubit

)
is a CSS code using Hamming codes

• There is a stabilizer code
(
5 qubits to protect 1 qubit

)
which is not CSS
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TO GO FURTHER

If you are interested by quantum error correcting codes:

▶ Kitaev’s toric code in the lecture notes, Section 5, by Gilles Zémor

https://www.math.u-bordeaux.fr/~gzemor/QuantumCodes.pdf
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THRESHOLD THEOREM



BUT. . .

I cheated during all this lecture. . .

Why?

Noisy quantum gates?

To encode qubits: use quantum gates. . .

If quantum gates are noisy, then our encodings are not valid and our analysis is false. . .

Do we conclude that quantum codes are only useful with perfect quantum gates?

−→ No! Hopefully. . .
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THE THRESHOLD THEOREM

Threshold theorem (admitted, see Nielsen & Chuang):

A quantum circuit containing p(n) gates may be simulated with probability of error at most ε using

O
(
poly

(
log

(p(n)
ε

)
p(n)

) )
gates on hardware whose components fail with probability at most p, if p is below some constant

threshold, p < pth , and given reasonable assumptions about the noise in the hardware.

If the error to perform each gate is a small enough constant: arbitrarily long

quantum computations to arbitrarily good precision with small overhead in the number of gates

Proof strategy:

Build recursively from noisy quantum gates better
(
and larger

)
gates with the help of codes

−→ The threshold pth depends of the used quantum correcting codes

To take away: Scott Aaronson

“ The entire content of the Threshold Theorem is that you’re correcting errors faster than they’re

created. That’s the whole point, and the whole non-trivial thing that the theorem shows. That’s

the problem it solves.”
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