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THE OBJECTIVE OF THE DAY

Presentation of Shor’s algorithm and hidden Abelian subgroup problem!

 
It will rely

(
partly

)
on:

▶ phase estimation and consequences: QFT over finite Abelian groups and order finding
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COURSE OUTLINE

1. Phase Estimation

2. Application 1: Quantum Fourier Transform on Z/NZ and any Finite Abelian Group

3. Application 2: Order Finding

4. Shor’s Algorithm

5. Hidden Subgroup Problem
(
HSP
)
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PHASE ESTIMATION



THE PHASE ESTIMATION PROBLEM

Phase estimation:

• Input: a unitary U and an eigenstate |u〉:

U |u〉 = e2iπφ |u〉

• Output: φ ∈ [0, 1), i.e., the knowledge of the associate eigenvalue of |u〉

−→ Essential for computing QFTZ/NZ and Shor’s algorithm!

Proposition:

We can determine
(
by using QFTZ/2tZ

)
the first n bits of φ with probability 1− ε using

O(t2) elementary gates where t = n +

⌈
log

(
2 +

1
2ε

)⌉

−→ n bits of φ with probability 1− e−Cn but working in the space of t-qubits with t = O(n)
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IMPORTANT NOTATION

Notation:

Given j1, j2, . . . , jm ∈ {0, 1}:

0.j1j2 . . . jm
def
=

j1
2
+
j2
4

+ · · · +
jm
2m

=
m∑
i=1

ji
2i

Example:

0.101 =
1
2
+
1
8

= 0.625, 0.111 =
1
2
+
1
4
+
1
8

= 0.875 and 0.011 =
1
4
+
1
8

= 0.325

2m 0.j1j2 . . . jm = 2m−1j1 + 2m−2j2 + · · · + jm = j1 . . . jm ∈ J0, 2m − 1K(
binary representation with m bits

)

2ℓ 0.j1j2 . . . jm = 2ℓ−1j1 + · · · + jℓ︸ ︷︷ ︸
∈N

+ 0.jℓ+1 . . . jm

−→ e2iπ2
ℓ·0.j1 j2...jm = e2iπ0.jℓ+1...jm
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PHASE ESTIMATION ALGORITHM

The quantum algorithm to determine the phase starts from
(
|u〉 being the eigenstate

)
∣∣∣0t〉 |u〉

−→ t function of: (i) accuracy and (ii) probability we wish to be successful

Phase estimation, two stages algorithm:

1. Build the following quantum state:

1
2t/2

(
|0〉 + e2iπ2

t−1φ |1〉
)
⊗
(
|0〉 + e2iπ2

t−2φ |1〉
)
⊗ · · · ⊗

(
|0〉 + e2iπ2

0φ |1〉
)
⊗ |u〉

2. Apply the QFT−1
Z/2tZ

to reach:

≈
∣∣∣b2tφc〉⊗ |u〉 = |φ1 . . . φt〉 ⊗ |u〉

Does the first step remind you of something?
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FIRST STAGE

The controlled U2j -unitary:

|1〉 |u〉 7−→ |1〉U2
j
|u〉 = e2iπφ2

j
|1〉 |u〉

|0〉 |u〉 7−→ |0〉 |u〉

Be careful: U2j = U · · ·U︸ ︷︷ ︸
2j iterates

, in particular U2j |u〉 6= (U |u〉)2j

The algorithm:

1. Start with
∣∣0t〉 |u〉

2. Apply H⊗t ⊗ I

3. For i = 1 to n:

apply the controlled U2j -gate to the i-th register

 
Resulting quantum state:

1
2t/2

(
|0〉 + e2iπ2

t−1φ |1〉
)
⊗
(
|0〉 + e2iπ2

t−2φ |1〉
)
⊗ · · · ⊗

(
|0〉 + e2iπ2

0φ |1〉
)
⊗ |u〉
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THE QUANTUM CIRCUIT

. . .

...
...

. . .

. . .

. . .

. . .

t qubits

|0〉 H |0⟩+e2iπφ2t−1
|1⟩√

2

|0〉 H |0⟩+e2iπφ22 |1⟩√
2

|0〉 H |0⟩+e2iπφ21 |1⟩√
2

|0〉 H |0⟩+e2iπφ20 |1⟩√
2

Second register |u〉 U20 U21 U22 U2t−1 |u〉

But what is the cost for computing U2j ? Is it 2j?
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BE CAREFUL (I)

Given an arbitrary U, computing the controlled-U2j costs 2j × Cost(U) . . .

 
An example:

If f : {0, 1}n → {0, 1}n is a bijection efficiently computable, then the unitary

U : |x〉 7→ |f(x)〉
is efficiently computable. But, is

U2j : |x〉 7→
∣∣∣∣f2j (x)〉 (

f2
j
composition, not exponentiation

)
efficiently computable? It depends of the particular shape of f . . .

−→ Does it imply that phase estimation has an exponential cost?

No. . . or Yes. . . It depends!

As in the classical case: computing f 2
j
is expensive

(
2j × Cost(f)

)
except for some functions. . .

Phase estimation: be careful, in the general case

Computing U2j costs 2j × Cost(U) unless one succeeds to use the particular shape of U . . .
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BE CAREFUL (II)

All the game in phase estimation lies in computing efficiently
(
designing an efficient circuit

)
z1, . . . , zt ∈ {0, 1}t , V : |z1 . . . zt〉 |u〉 7→ |z1 . . . zt〉 |ψz〉

where V is the following unitary

. . .

...
...

. . .

. . .

. . .

|zt〉 |zt〉

|z2〉 |z1〉

|z1〉 |z0〉

|y〉 U20 U21 U2t−1 |ψz〉

Phase estimation: be careful

Computing U2j costs 2j × Cost(U) unless one succeeds to use the particular shape of U . . .

−→ Let us take a look at the classical case! 10



CLASSICAL EXPONENTIATION: FAST OR TERRIBLY SLOW, CHOOSE!

What is the cost to compute x2
j
? Is it 2j?

Of course not. . . fast exponentiation

• Stupid algorithm: y = 1 and then 2j times: y← yx; output y

• Clever algorithm: if j even, y← 22
j/2
; outputs y2 ; otherwise y← 22

(j−1)/2
then outputs 2y2 .

−→ To compute 22
j/2

or 22
(j−1)/2

: recursive call

Cost?

• Stupid algorithm: 2j multiplications!

• Clever algorithm: log 2j = j recursive calls and 1 or 2 multiplications for each call

−→ It costs j× j2︸︷︷︸
cost of squaring

−→ The “clever” algorithm is exponentially faster. . .

Be careful: we have used the particular shape of x 7→ x2
j

Usually f 2
j
(x) 6= f 2

j/2
(x)2 but f 2

j
(x) = f 2

j/2
(
f 2

j/2
(x)
)
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REBOOT: ANALYSIS OF THE FIRST STEP IN PHASE ESTIMATION

U |u〉 = e2iπφ |u〉 =⇒ U2
j
|u〉 = e2iπ2

jφ |u〉

C-U2
j
|0〉 |u〉 = |0〉 |u〉 and C-U2

j
|1〉 |u〉 = e2iπ2

jφ |1〉 |u〉

. . .

...
...

. . .

. . .

. . .

. . .

t qubits

|0〉 H |0⟩+e2iπφ2t−1
|1⟩√

2

|0〉 H |0⟩+e2iπφ22 |1⟩√
2

|0〉 H |0⟩+e2iπφ21 |1⟩√
2

|0〉 H |0⟩+e2iπφ20 |1⟩√
2

Second register |u〉 U20 U21 U22 U2t−1 |u〉

• First Step: 1
√
2t

(|0〉 + |1〉)⊗t ⊗ |u〉

• Second Step:
1
√
2t

(
|0〉 + e2iπ2

t−1φ |1〉
)
⊗
(
|0〉 + e2iπ2

t−2φ |1〉
)
⊗ · · · ⊗

(
|0〉 + e2iπ2

0φ |1〉
)
⊗ |u〉
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NEXT STEP: APPLYING QFT−1z/2tz

Suppose that
φ = 0.φ1 . . . φt

See Lecture 5:

1
2t/2

(
|0〉 + e2iπ2

t−1φ |1〉
)
⊗
(
|0〉 + e2iπ2

t−2φ |1〉
)
⊗ · · · ⊗

(
|0〉 + e2iπ2

0φ |1〉
)
⊗ |u〉

=
1
2t/2

(
|0〉 + e2iπ0.φt |1〉

)
⊗
(
|0〉 + e2iπ0.φt−1φt |1〉

)
⊗ · · · ⊗

(
|0〉 + e2iπ0.φ1φ2...φt |1〉

)
⊗ |u〉

= QFTZ/2tZ |φ1 . . . φt〉

 

Applying QFT−1
Z/2tZ

leads to:

|φ1 . . . φt〉 −→ we have recovered φ!

−→ But what does happen if φ = 0.φ1 . . . φtφt+1φt+2 . . . φℓ . . . ?
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THE GENERAL CASE

Important convention:

When working in Z/2tZ the considered Hilbert space is C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
t times

and for all x ∈ Z/2tZ,

|x〉 def
= |x1 . . . xt〉

where x1 . . . xt being the binary decomposition of x, i.e., x =
t∑

k=1
xk2t−k

 

 

1
2t/2

(
|0〉 + e2iπ2

t−1φ |1〉
)
⊗
(
|0〉 + e2iπ2

t−2φ |1〉
)
⊗ · · · ⊗

(
|0〉 + e2iπ2

0φ |1〉
)
⊗ |u〉

=
1
2t/2

2t−1∑
ℓ=0

e2iπℓφ |ℓ〉 ⊗ |u〉

Applying QFT−1
Z/2tZ

⊗ Id leads to:

QFT−1
Z/2tZ ⊗ Id

 1
2t/2

2t−1∑
ℓ=0

e2iπℓφ |ℓ〉 ⊗ |u〉

 =
1
2t

2t∑
k,ℓ=0

e2iπℓ(φ− k
2t

) |k〉 ⊗ |u〉
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ARBITRARY LONG EIGENVALUE, HOW TO PROCEED

Best approximation of φ for the first t bits:

Le b ∈ J0, 2t − 1K be such that b/2t = 0.b1 . . . bt and

0 ≤ φ−
b
2t
≤ 2−t : b/2t best t bits approximation of φ

Up to now we have the following quantum state:

1
2t

2t−1∑
k,ℓ=0

e2iπℓ(φ− k
2t

) |k〉 |u〉

Let αj be the amplitude of
(
b + j mod 2t

)
in the first register:

|αj|
2 =

1
22t

∣∣∣∣∣∣
2t−1∑
ℓ=0

(
e
2iπ
(
φ− b+j

2t

))k
∣∣∣∣∣∣
2

Measure (see Exercise Session):

Let m ∈ {0, 1}t be the outcome after measuring the first register in the computational basis(
defining an integer in J0, 2t − 1K). We have

P (|b− m| > α) ≤
1

2(α− 1)
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ARBITRARY LONG EIGENVALUE, HOW TO PROCEED

Best approximation of φ for the first t bits:

Le b ∈ J0, 2t − 1K be such that b/2t = 0.b1 . . . bt and

0 ≤ φ−
b
2t
≤ 2−t : b/2t best t bits approximation of φ

Measure:

Let m be the outcome after measuring the first register in the computational basis. We have

P (|b− m| > α) ≤
1

2(α− 1)

−→ Determining φ with n bits of accuracy thanks to the output of the measure m
(
t > n

)
:∣∣∣∣ b2t − m

2t

∣∣∣∣ < 2−n

−→ Therefore: choosing α = 2t−n − 1 in the above probability. . .

But to reach a probability of success≥ 1− ε:

1
2(α− 1)

=
1

2(2t−n − 2)
≤ ε ⇐⇒ t = n +

⌈
log

(
2 +

1
2ε

)⌉
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SUMMARY

Phase estimation:

• Input: a unitary U and an eigenstate |u〉:
U |u〉 = e2iπφ |u〉

• Output: φ ∈ [0, 1), i.e., the knowledge of the associate eigenvalue of |u〉

Proposition:

The phase estimation
(
before the last step measuring in the computational basis

)
computes,∣∣0t〉 |u〉 7→ |ψu〉 |u〉

such that |ψu〉 is an approximation of φ, i.e. when measuring the first register we obtain

φ̃ ∈ {0, 1}t admitting the same first n bits than φ with probability ≥ 1− ε if t is chosen as

t = n +

⌈
log

(
2 +

1
2ε

)⌉
Furthermore, the algorithm uses O(t2) elementary gates and t calls to controlled-U2j for 0 ≤ j < t
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SOME WARNINGS

▶ Be careful: we need to compute
(
U2j
)
0≤j≤t

which has a cost ≥ 2t unless one uses the

particular shape of U. . .

▶ Accuracy with a probability exponentially close to 1 at the cost of a “constant” overhead:

n bits of φ with probability 1− e−Cn but with t = O(n)

▶ Be careful: to run phase estimation we also need to be able to compute the eigenvector

|u〉 . . .
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APPLICATION 1: QFT OVER Z/NZ



AIM

Recall that characters of

▶ Fn2 : χx(y) = (−1)x·y

▶ Z/2nZ: χx(y) = e
2iπxy
2n

▶ Z/NZ: χx(y) = e
2iπxy
N

Lecture 5: computing efficiently
(
O(n) and O(n2)

)

QFTFn2
= H⊗n : |x〉 7→

1
√
2n

∑
y∈{0,1}n

(−1)x·y |y〉 and QFTZ/2nZ : |x〉 7→
1
√
2n

∑
y∈Z/2nZ

e
2iπxy
2n |y〉

Aim: computing efficiently QFTZ/NZ
(
when N not a power of 2

)
QFTZ/NZ : |x〉 7−→

1
√
N

∑
y∈Z/NZ

e
2iπxy
N |y〉
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HOW TO PROCEED?

Computing QFTZ/NZ : use phase estimation!
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COMPUTING TWO UNITARIES

U1
(
|k〉 |0〉

)
7→ |k〉QFTZ/NZ |k〉 and U2

(
QFTZ/NZ |k〉 |0〉

)
7→ QFTZ/NZ |k〉 |k〉

−→ These two unitaries are enough to compute QFTZ/NZ |k〉!

We can perform QFTZ/NZ as:

|k〉 |0〉
U1−→ |k〉QFTZ/NZ |k〉

SWAP−−−→ QFTZ/NZ |k〉 |k〉
U−1
2−−−→ QFTZ/NZ |k〉 |0〉
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COMPUTATION OVER QUDITS

U1
(
|k〉 |0〉

)
7→ |k〉QFTZ/NZ |k〉 and U2

(
QFTZ/NZ |k〉 |0〉

)
7→ QFTZ/NZ |k〉 |k〉

Be careful: |k〉 here is such that k ∈ Z/NZ and N may not be a power of two. . . In particular

|k〉 cannot be written as |0010 . . . 1〉 

  (
|k〉
)
k∈Z/NZ

is an orthonormal basis of an Hilbert space of dimension N

−→ This quantum space is called the space of qudits!

Two possibilities to perform computation with qudits: (i) encode qudits in qubits or

(ii) implement your quantum device directly with Hilbert spaces of dimension > 2

It is the same issue with classical computer! How to implement trits, namely Z/3Z?

23



COMPUTING THE FIRST UNITARY U1

To build the unitary |k〉 |0〉 7→ |k〉QFTZ/NZ |k〉
(
admitting we can perform efficiently the

different unitaries over qudits
)

1. Start from |k〉 |0〉 |0〉

2. Apply the “uniform superposition” over the second register

|k〉
1
√
N

∑
j∈Z/NZ

|j〉 |0〉

3. Apply the multiplication operator
(
|x〉 |y〉 |0〉 7→ |x〉 |y〉 |xy mod N〉

)
|k〉

1
√
N

∑
j∈Z/NZ

|j〉 |kj mod N〉

4. Apply the “phase flip in Z/NZ”
(
|x〉 7→ e2iπ

x
N |x〉

)
on the third register

|k〉
1
√
N

∑
j∈Z/NZ

e2iπ
kj
N |j〉 |kj mod N〉

5. Apply the inverse of the multiplication operation:

|k〉
1
√
N

∑
j∈Z/NZ

e2iπ
kj
N |j〉 |0〉 = |k〉QFTZ/NZ |k〉 |0〉
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COMPUTING THE SECOND UNITARY U2: USE PHASE AMPLIFICATION

U : |k〉 7→ |k + 1 mod N〉

−→ U2j : |k〉 7→
∣∣∣k + 2j mod N

〉
can be built in time O(log N)(

x 7→ x + 2j mod N can be classically computed in time O(log N)
)

We have the following computation:

U
(
QFTZ/NZ |k〉

)
=

1
√
N

∑
y∈Z/NZ

e
2iπky
N U|y〉

=
1
√
N

∑
y∈Z/NZ

e
2iπky
N |y + 1〉

= e
−2iπk
N

1
√
N

∑
y∈Z/NZ

e
2iπky
N |y〉

= e2iπ
N−k
N QFTZ/NZ |k〉

−→ QFTZ/NZ |k〉 is an eigenvector of U with eigenvalue e2iπφ where φ def
= N−k

N(
remember: Fourier basis is the basis where translation operator is diagonal

)
25



COMPUTING THE SECOND UNITARY U2: USE PHASE AMPLIFICATION

The translation operator U is diagonal in the Fourier basis

QFTZ/NZ |k〉 is an eigenvector of U with eigenvalue e2iπφ where

φ
def
=

N− k
N

Applying phase estimation with n = dlog Ne
(
bits of precision

)
enables to compute:

QFTZ/NZ
(
|k〉
)
|0〉 7−→ QFTZ/NZ |k〉 |N− k〉

−→ Be careful: phase estimation gives only an approximation of the transform!

Therefore: after applying the unitary |x〉 7→ |N− x〉 we obtain an approximation of

QFTZ/NZ
(
|k〉
)
|0〉 7−→ QFTZ/NZ

(
|k〉
)
|k〉

Cost:

Given t = O(log N), we have a cost of O(t2) plus the cost to run U2j : |k〉 7→
∣∣∣k + 2j mod N

〉
for

0 ≤ j < t which can be done in time O(t3)
(
clever combination of the U2j -controlled

)
−→ Final cost to compute QFTZ/NZ : O

(
log3 N

)
26



WHAT ABOUT THE GENERAL CASE?

Is it possible to efficiently build QFTG where G is any arbitrary finite abelian group? 

−→ Yes!

How to proceed
(
rough explanation

)
:

Any finite abelian group G of size N is isomorphic to the product of cyclic groups:

Z/n1Z× · · · × Z/nkZ 

Then
(
admitted

)
,

QFTG can be written as QFTZ/n1Z ⊗ · · · ⊗ QFTZ/nkZ

−→ We deduce that QFTG can be computed in time O
(
log3 ♯G

)

Be careful, given a finite Abelian group it is classically hard to compute its decomposition as

cyclic groups. . . Quantum case: end of the lecture
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APPLICATION 2: ORDER FINDING



THE ORDER FINDING PROBLEM

Order finding problem:

• Input: integers x,N where gcd(x,N) = 1

• Output: least positive integer r such that xr = 1 mod N

Solving the factorization reduces to this problem(
solving order finding =⇒ solving factorization

)
Proposition:

We can quantumly determine the order r
(
with high probability

)
in time

O
(
log3 N

)

−→ Best classical algorithms are sub-exponential in N:

exp
(
(c + o(1)) logα(N) log1−α(log N)

)
where c, α are constants
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BINARY DECOMPOSITION AND n QUBITS

Suppose that we work in the space of L qubits

Given y ∈ J0, 2L − 1K, we will naturally identify |y〉 to |y1 . . . yL〉
where y1 . . . yL binary decomposition of y

For instance:

Given 3, 5 ∈ J0, 23 − 1K,
|3〉 = |011〉 and |5〉 = |101〉
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IT REDUCES TO PHASE ESTIMATION

x integer : gcd(x,N) = 1 and r its order, smallest positive integer such that xr = 1 mod N

Phase estimation applied to the following unitary and eigenvector:

Let,
L def
= dlog Ne

(
work in the space of L-qubits

)

∀y ∈ {0, 1}L = J0, 2L − 1K, U |y〉 def=
{
|xy mod N〉 if 0 ≤ y ≤ N− 1
|y〉 otherwise

(
N− 1 < y < 2⌈log N⌉

)
∀s ∈ J0, rK, |us〉 def= 1

√
r

r−1∑
k=0

e−
2iπsk
r
∣∣∣xk mod N〉 eigenvector of U with eigenvalue e2iπ

s
r

−→ We work here in the space of qubits
(
natural trick, identity if integers ≥ N− 1

)

U |us〉 =
1
√
r

r−1∑
k=0

e−
2iπsk
r U

∣∣∣xk mod N〉

=
1
√
r

r−1∑
k=0

e−
2iπsk
r
∣∣∣xk+1 mod N〉

= e2iπ
s
r |us〉

−→ Be careful: in the last equality we used: x has order r modulo N, thus xr = 1 mod N 31



BUT TWO QUESTIONS

For the eigenvalue s
r : we work in Z/NZ and with L = dlog Ne qubits

To perform efficiently phase estimation, two issues:

▶ How to compute efficiently the U2j ’s?

▶ How to compute the eigenvector |us〉?

 

−→ We will be able to recover approximations of s
r , not r. . .

Be patient!

Parameter of phase estimation:

We will determine the first 2L + 1 bits of s
r with probability 1− ε

−→ Choose in phase estimation t = 2L + 1 + dlog
(
2 + 1

2ε
)
e qubits

In particular: t = O(L) even if ε = e−CL with C > 0
(
constant

)
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MODULAR EXPONENTIATION

U |y〉 = |xy mod N〉 (0 ≤ y ≤ N− 1)

. . .

...
...

. . .

. . .

. . .

|zt〉 |zt〉

|z2〉 |z1〉

|z1〉 |z0〉

|y〉 U20 U21 U2t−1 ?

The above circuit (used in the phase estimate) performs the following computation:

|zt . . . z1〉 |y〉 −→ |z〉Uzt2
t−1
· · · Uz12

0
|y〉

= |z〉
∣∣∣∣xzt2t−1

× · · · × xz12
0
y mod N

〉
= |z〉

∣∣yxz mod N〉
−→ To perform efficiently phase estimation: compute |z〉 |y〉 7→ |z〉 |yxz mod N〉 efficiently(

modular exponentiation
)

33



MODULAR EXPONENTIATION

Aim: computing efficiently

|z〉 |y〉 7→ |z〉
∣∣yxz mod N〉

1. Let UEM : |z〉 |y〉 7→ |z〉 |y⊕ (xz mod N)〉
(
be careful z 7→ xz mod N not bijective

)
|z〉 |y〉 |0〉

UEM−−→ |z〉 |y〉
∣∣xz mod N〉 mult−−−→ |z〉

∣∣yxz mod N〉 ∣∣xz mod N〉 U−1
EM−−−→ |z〉

∣∣yxz mod N〉 |0〉

2. Computing efficiently UEM : classically

x 7→ xz mod N

can by computed in O (log z) = O(log t) = O (log N) squaring, therefore O
(
log3 N

)
operations

Conclusion: using phase estimation

We determine the first 2L + 1 bits of s
r with probability 1− e−CL in time O(L3) where L = dlog Ne
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COMPUTING THE EIGENVECTOR: A TRICK

Aim: computing

|us〉 =
1
√
r

r−1∑
k=0

e−
2iπsk
r
∣∣∣xk mod N〉

But we do not know r . . . Our aim is to find it!

The trick:

1
√
r

r−1∑
s=0
|us〉 = |1〉

−→ Plugging |1〉 in the phase estimation algorithm will give the first 2L + 1 bits of s
r for some(

uniform and unknown
)
s ∈ J0, r− 1K with probability 1− ε

Exercise Session:

Proof of this statement
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WE ARE NOT DONE. . .

Up to now we have recovered
(
with high probability

)
in quantum time O(L3) the first 2L+ 1 bits of

s
r where 0 ≤ s < r and s ∈ J1,N− 1K
−→ It does not give r, even s

r . . .

36



CONTINUED FRACTION ALGORITHM

Theorem
(
admitted

)
about continued fractions:

Let φ̃ be a rational given as input, let s and r be L bits integers such that∣∣ s
r − φ̃

∣∣ < 1
2r2

Then, there exists an algorithm
(
using “continued fractions”

)
that outputs

(
s′, r′

)
which verifies

gcd(s′, r′) = 1 and s′
r′ = s

r

using O(L3) classical operations

In our case:

With probability 1− ε: phase estimation outputs φ̃ an approximation of s
r accurate to 2L + 1 bits,

therefore: ∣∣ s
r − φ̃

∣∣ ≤ 1
22L+1

≤ 1
2r2

(
as r ≤ N− 1 ≤ L = dlog Ne

)

−→ In time O(L3) we compute s′, r′ co-prime such that s′
r′ = s

r
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ISSUE

s′, r′ are co-prime such that s′
r′ = s

r

−→ If gcd(s, r) > 1 then r′ 6= r, only r′ | r . . .

A solution
(
but inefficient. . .

)
:

The number of prime numbers < r is ≈ r/ log(r)

−→ P(gcd(s, r) = 1) ≈ log(r)/r as s is uniformly picked in J0, r− 1K
Therefore we need to repeat ≈ r = O(L) number of times the algorithm before reaching

gcd(s, r) = 1. It will increase the cost from O(L3) to O(L4).
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REPEAT JUST A CONSTANT NUMBER OF TIMES!

Fundamental remark:

s′1
r′1

=
s1
r

=⇒ r s′1 = s1 r′1 and
s′2
r′2

=
s2
r

=⇒ r s′2 = s2 r′2

We have gcd(s′1, r
′
1) = gcd(s′2, r

′
2) = 1, supposing that gcd(s′1, s

′
2) = 1 implies that r = lcm(r′1, r

′
2)

−→ Therefore: obtaining two estimations (s′1, r
′
1) and (s′2, r

′
2) and supposing that gcd(s

′
1, s

′
2) = 1

we can recover r = lcm(r′1, r
′
2).

What is the probability that gcd(s′1, s
′
2) = 1 given that s′1 and that s

′
2 are uniformly distributed inJ0, r− 1K?

−→ It is ≥ 1
4

(
see Exercise Session

)

In conclusion:

Repeating the algorithm a constant number of times enables to recover r with probability

exponentially close to one
(
times (1− ε)

)
!
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ORDER FINDING ALGORITHM

To compute the order r of x mod N
(
where gcd(x,N) = 1

)
we first run a constant number of times

the phase estimation with t = 2dlog Ne + 1 + log
(
2 + 1

2ε
)
. It has been necessary to compute:

▶ QFTZ/2tZ : done in time O(t
2) = O(log2 N)

▶ modular exponentiation |z〉 |y〉 7→ |z〉 |yxz mod N〉: done in time O(log3 N)

It outputs a 2dlog Ne + 1 approximation of some s
r where s ∈ J0, r− 1K is uniform and unknown

Then after collecting some approximations of si
r , apply continued fraction algorithm to obtain

(s′i , r
′
i ) in time O

(
log3 N

)
with

s′i
r′i

=
si
r . It enables to get r by computing some lcm(r′i , r

′
j ).

−→ This procedure works with probability (1− e−C log N)(1− ε) for constant C > 0 depending on

the number of repetitions

Final cost:

O
(
log3 N

)

−→ This could be done in time O
(
log2(N)poly(log logN)

)
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A LAST REMARK, THE REAL BREAKTHROUGH: QFT

Order finding algorithm is efficient because we know quantumly how to perform classical

computations and the quantum Fourier transform over Z/2tZ
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SHOR’S ALGORITHM



AIM

Factoring problem:

• Input: an integer N

• Output: a non-trivial factor of N

−→ Security of public-key encryption scheme RSA relies on the hardness of this problem. . .

Classically best algorithms have a complexity:

exp
(
(c + o(1)) logα(N) log1−α(log N)

)
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SHOR’S ALGORITHM: COROLLARY OF ORDER FINDING

Shor’s algorithm is basically applying order finding for some random x ∈ J0,N− 1K . . .
But why?
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NUMBER THEORETIC RESULTS

Theorem 1:

Suppose N is a L bits not prime integer and 1 ≤ y ≤ N be a non-trivial integer such that

y2 = 1 mod N

Then, at least gcd(y− 1,N) or gcd(y + 1,N) is a non-trivial factor of N that can be computed in

time O(L3)

Theorem 2:

Suppose that N = pα11 · · · p
αm
m where the pi ’s are different primes. Let x be an integer chosen

uniformly at random, subject to the requirements that 1 ≤ x ≤ N− 1 and gcd(x,N) = 1. Let r be

the order of x. Then,
P
(
r is even and xr/2 6= −1 mod N

)
≥ 1−

1
2m

−→ Let x be picked according to Theorem 2, then with
(
at least

)
a constant probability

xr/2 is a solution 6= ±1 of
(
X2 = 1 mod N

)
According to Theorem 1: gcd(xr/2 − 1,N) or gcd(xr/2 + 1,N) is a 6= ±1 factor of N

Given x, we just need to compute its order r to find a non-trivial factor!
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SHOR’S ALGORITHM

1. Pick x uniformly at random in J1,NK
2. Compute d = gcd(x,N). If d > 1, output d

3. Use the quantum order-finding subroutine to find the order r of x mod N

4. If r is even and xr/2 6= −1 mod N then compute gcd(xr/2 − 1,N) or gcd(xr/2 + 1,N) and test

if one of these is a non-trivial factor of N. Otherwise go back to Step 1.

By using the law of total probability:

P (success) ≥ P (success | Step 3 succeeds) · P ( Step 3 succeeds)

= P
(
r is even and xr/2 6= −1 mod N

)
· P ( order finding succeeds)

≥
(
1−

1
2m

)
· (1− e−C log N)(1− ε)

(
m number of prime factors of N

)

−→ Repeating the algorithm a constant amount of times gives a non-trivial factor

Final cost:

O
(
log3 N

)
cost of phase estimation + Step 4
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HIDDEN SUBGROUP PROBLEM



SHOR’S ALGORITHM, WHAT ELSE?

Shor’s algorithm relies on the order-finding which itself crucially used QFTZ/2tZ(
in the phase estimation

)
−→ It turns out that what we did is extremely “general”

Techniques we have presented enable to compute the “period” of a wide class of functions. . .

▶ What do we mean by “general”?

▶ Computing the “period” of which class of functions and does it imply some interesting

statements?

−→ Hidden Subgroup Problem!
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HIDDEN SUBGROUP PROBLEM

Hidden Subgroup Problem (HSP):

• Input: a function f : G→ S where G is a known groupa and S is a finite set

• Promise: f satisfies
f(x) = f(y) if and only if y ∈ xH

i.e., y = xh for some h ∈ H

for an unknown subgroup H ⊆ G

• Output: H

a see later for a precise definition

−→ We say that f hides the subgroup H

Left-cosets:

The set:
  xH def

= {xh : h ∈ H}
is called a left-coset of H

−→ A function f that hides H is constant on each left-coset of H and distinct on different left
cosets
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WHY IS THIS PROBLEM IMPORTANT?

HSP may be seen as a purely abstract problem. . . But no!

 

Here are particular instantiations of HSP

▶ Simon’s problem:

G = Fn2 , H =
{
0, s
}
and f being the input in Simon’s problem

▶ Order finding:

G = Z/Φ(N)Z
(
Φ be the Euler function

)
, H =

{
rx : x ∈ Z/Φ(N)Z

}
and f(a) = xa mod N

▶ Discrete logarithm problem: see Exercise Session!

▶ etc. . .

Be careful:

In Shor’s algorithm, when using a solver for the order finding problem we don’t know Φ(N)

and therefore we don’t know G . . .
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HOW TO SOLVE IT IN THE ABELIAN CASE: QFT! (KITAEV, INSPIRED BY SHOR)

We suppose that G is Abelian
(
we note G in additive notation

)

f : G −→ S that hides some subgroup H

1. Start with |0〉 |0〉, where the two registers have dimensions ♯G and ♯S, respectively

2. Create a uniform superposition over G in the first register: 1√
♯G
∑

g∈G |g〉 |0〉

3. Compute f in superposition: 1√
♯G
∑

g∈G |g〉 |f(g)〉

4. Measure the second register. This yields some value s ∈ G. The second register collapses to(
using the promise over f

)
1
√
♯H
∑
h∈H
|s + h〉

5. Apply QFTG giving: 1√
♯H
∑

h∈H |χs+h〉 for some quantum state |χs+h〉
(
χg characters of G

)
6. Measure and output the resulting g ∈ G
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WHY DOES IT WORK?

G is Abelian, be
(
χg
)
g∈G

be its characters

|χs+h〉 = QFTG
∑
h∈H
|s + h〉

=
1
√
G

∑
h∈H

QFTG |s + h〉

=
1
√
G

∑
h∈H

∑
g∈G

χg(s + h) |g〉

=
1
√
G

∑
g∈G

∑
h∈H

χg(h)

χg(s) |g〉 from Lecture 5:
∑
h∈H

χg(h) =
{

♯H if g ∈ H⊥

0 otherwise

=
1
√
G

∑
g∈H⊥

♯H χg(s) |g〉

−→ The quantum step before measurement is:
√

♯H
♯G

∑
g∈H⊥

χg(s) |g〉
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WHY DOES IT WORK?

The quantum state before measurement is:√
♯H
♯G

∑
g ∈ H⊥

χg(s) |g〉 where H⊥ =
{
g ∈ G : ∀h ∈ H, χg(h) = 1

}

−→ Measuring gives a uniform g ∈ H⊥ giving some information about H . . .

repeating a poly(log ♯G) times enables to recover H with high probability!

▶ For a rigorous proof of this statement: see Chapter 6 in the lecture notes by Andrew Childs

An example: Simon’s problem

G = Fn2 , ∀x, y ∈ Fn2 , χx(y) = (−1)x·y and H =
{
0, s
}

−→ H⊥ =
{
x ∈ Fn2 : x · s = 0

}
In other words, we recover Simon’s algorithm. . .
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HOW TO COMPUTE QFT OVER G?

G is an Abelian group

Recall that we compute QFTG as QFTZ/n1Z ⊗ · · · ⊗ QFTZ/nkZ where we used the isomorphism:

G ∼= Z/n1Z× · · · × Z/nkZ (1)

But is it easy to compute this isomorphism/decomposition even if we “know” G?

−→ Yes! At least quantumly for a “good” definition of knowing G . . .

Quantum decomposition of Abelian groups:

Suppose we have (i) a unique encoding of each element of G, (ii) the ability to perform group

efficiently operations on these elements, and (iii) a generating set for G.

Then, there exists an efficient quantum algorithm that decomposes G, namely outputs the

isomorphism given in Equation (1)

−→ See Chapter 6 in the lecture notes by Andrew Childs
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GENERALIZATION TO THE NON-ABELIAN CASE?

To solve HSP we crucially used that we restrict ourself to the Abelian case. . .(
in the Abelian case, H⊥ gives linear relations enabling to recover H

)

−→ And the non-Abelian case?

No efficient algorithm is known for the non-Abelian case(
even if nothing indicates that it is impossible

)
. . .

−→ Finding such an algorithm would have a huge impact in theoretical computer science,(
post-quantum

)
cryptography. . .

 
If you are interested by this topic:

▶ Nice reading about Fourier transform (classical & quantum) over non-Abelian group: Chapter

11 in the lectures by Andrew Child https://www.cs.umd.edu/~amchilds/qa/

▶ The hidden nonabelian subgroup problem and the Kuperberg algorithm, see Chapters 11-13 in

the lectures by Andrew Child https://www.cs.umd.edu/~amchilds/qa/
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