LECTURE 6
PHASE ESTIMATION, SHOR'S ALGORITHM AND

HIDDEN SUBGROUP PROBLEM
Quantum Information and Computing

Thomas Debris-Alazard

Inria, Ecole Polytechnique

THE OBJECTIVE OF THE DAY

Presentation of Shor’s algorithm and hidden Abelian subgroup problem!

It will rely (partly) on:

» phase estimation and consequences: QFT over finite Abelian groups and order finding

COURSE OUTLINE

1. Phase Estimation
2. Application 1: Quantum Fourier Transform on Z/NZ and any Finite Abelian Group
3. Application 2: Order Finding

4. Shor's Algorithm

5. Hidden Subgroup Problem (HSP)

PHASE ESTIMATION

THE PHASE ESTIMATION PROBLEM

Input: a unitary U and an
Ulu) = e |u)

Output: » € [0, 1), i.e, the knowledge of the associate eigenvalue of |u)

— Essential for computing QFT and Shor’s algorithm!

Proposition:

We can determine (by using QFT) the first n bits of ¢ with probability 1 — e using

1
O(tz) elementary gates where t=n+ ’VIog (2 + 2—>—‘
=z

— n bits of ¢ with probability 1 — e™"" but working in the space of t-qubits with t = O(n)

IMPORTANT NOTATION

Notation:
Given ji, 2, - - . ,jm € {0,1}:
o Cdef J1 | J2 Jm b
Ojihojn E S+ 7+ + 0 => 3
i=1

Example:

! o625, 0am=2+ 4l _0gs and 00m=
) g T

-

0.101 = = + + - =0.325

0| =

4

N =
~

2" 012 =2 A 2" =1 m € [0,2™ —1]

(binary representation with m bits)

22012 jm =2 i+ - e+ Oesr - . - jm
——————
en

Y S .
eZwrZ 0.j1jp -+ dm — eZ/wO.MH,.,/m

PHASE ESTIMATION ALGORITHM

The quantum algorithm to determine the phase starts from (|u) being the eigenstate)

o)1

— t function of: (i) accuracy and (ii) probability we wish to be successful

Phase estimation, two stages algorithm:

1. Build the following quantum state:
1 imot—1 imat—2 220
77 (0 +e™ 7 m) @ (10 + & m) oo (0 +™) @ v

2. Apply the QFT™", to reach:

~ |12l ® u) = ler .. 00 ® |u)

Does the first step remind you of something?

FIRST STAGE

The controlled U” -unitary:

1) luy — 1)U Juy = 777 1) Ju)
10) Ju) —> 10) |u)

v —u...u i J 2
Be careful: U2 = U---U, in particular U |u) # (U |u))

2 iterates

The algorithm:
. Start with |0°) |u)

2. Apply H®' @ 1

Fori=1ton:
apply the controlled Uz/fgate to the i-th register)
Resulting quantum state:
1 t—1 et —2 im0
7 (0 +e7 7 m) @ (10 + & m) oo (0 +™) @ 1
y

THE QUANTUM CIRCUIT

t—1
0 . 0)+e2™P2 1)
19 all vz
|0) H \m#’}*’?z 1
2
t qubits
1
0) loy+e2ime?' 11y
0) H DR
|0 loy+e?m 2’ 1)
7z

Second register { |u) T |uy

But what is the cost for computing U ? Is it 2'?

Given an arbitrary U, computing the controlled-U~ costs 2/ x Cost(U) ...

An example:
Iff: {0,1}" — {0,1}" is a bijection efficiently computable, then the unitary
U [x) — If(x))

is efficiently computable. But, is

v %) o

lid (x)> (le composition, not exponentiation)

efficiently computable? It depends of the particular shape of f. ..

— Does it imply that phase estimation has an exponential cost?

Given an arbitrary U, computing the controlled-U~ costs 2/ x Cost(U) ...

An example:
Iff: {0,1}" — {0,1}" is a bijection efficiently computable, then the unitary
U [x) — If(x))

is efficiently computable. But, is

v %) o

lid (x)> (le composition, not exponentiation)

efficiently computable? It depends of the particular shape of f. ..

y
— Does it imply that phase estimation has an exponential cost?
No... orYes... It depends!
As in the classical case: computing f* is expensive (Cost(f)) except for some functions. . .
Phase estimation: be careful, in the general case
Computing U costs 2/ < Cost(U) unless one succeeds to use the particular shape of U.. .. J

All the game in phase estimation lies in computing efficiently (designing an efficient circuit)

Ziyooze € {01, Viziz) |u) = |z ze) |42)

where V is the following unitary

|zt) : |zt)
|z2) : |z1)
|z1) 20}

- E|Z|E Iy2)

Phase estimation: be careful

Computing U~ costs 2/ x Cost(U) unless one succeeds to use the particular shape of U.. .. J

— Let us take a look at the classical case! 10

CLASSICAL EXPONENTIATION: FAST OR TERRIBLY SLOW, CHOOSE!

What is the cost to compute x* ? Is it 2/?

1

CLASSICAL EXPONENTIATION: FAST OR TERRIBLY SLOW, CHOOSE!

What is the cost to compute x* ? Is it 2/?

Of course not. . .

Stupid algorithm: y = 1 and then 2 times: Y+ yx; outputy

Clever algorithm: if j even, y < 2°'"; outputs y%; otherwise y < 2 then outputs 2y°.

— To compute 2277 o U7V,

Cost?
e Stupid algorithm: 2/ multiplications!

e Clever algorithm: log 2 = j recursive calls and 1 or 2 multiplications for each call

— It costsj x I

cost of squaring

— The “clever” algorithm is exponentially faster. . .
: we have used the particular shape of x — X

Usually £ () # £2/° 7 but 29 = 127 (5279 "

REBOOT: ANALYSIS OF THE FIRST STEP IN PHASE ESTIMATION

Uluy =™ juy = U u) =™ 7 |u)
c-U? [0y Juy = 0) Juy and C-U? |1} [u) = 27 1) [u) J

-1
0 _D . 0)+e2792 1)
10) H VZ

)
0) +¢27 02 1)
v

t qubits

-l
0)+e2im#2 1)
vz

0y +e2m 92 1y
VZ

Second register {

e First Step: 1 ®t
—(|0) + |1 R |u
5t (10) +11)) [u)

e Second Step:

% <\o> I |1>) ® (\o> e m) ® - ® (|o> i |1>) ® |u)

NEXT STEP: APPLYING QFT,),

Suppose that

See Lecture 5:

1 aot—1 a2t—2 20
7 (0 +e™ 7) o (1047 m) @0 (10 + &7) @l

1 . " .
_ 7 (|0> 4 im0t “)) ® <|0> 1m0 pt—1et |1>) Q- ® (\O) 4 im0 100t |1>) ® |u)

— QFT ler...p

Applying QFT , leads to:

l¢1 ... pr) — we have recovered ¢!

— But what does happenif o = 0.01... 0101 1010 .0r... 7

THE GENERAL CASE

Important convention:

When working in Z/2'Z the considered Hilbert space is C* ® - - - ® C* and for all x € Z/2'Z,
————

t times
def

X)

[X1. .. Xt)

t
where x; . . . x; being the binary decomposition of x, i.e, x = 3 x,2: "
=

1 t—1) 0
7 (0 + ™7 m) @ (10 + & m) oo (0 +™m) @ v
2t—1

1 dim!
=57 2¢O ®lu)

(=0

14

THE GENERAL CASE

Important convention:

When working in Z/2'Z the considered Hilbert space is C* ® - - - ® C* and for all x € Z/2'Z,
————

t times
def

X)

[X1. .. Xt)

t
where x; . . . x; being the binary decomposition of x, i.e, x = 3 x,2: "
=

1 t—1) 0
7 (0 + ™7 m) @ (10 + & m) oo (0 +™m) @ v

2tq

1 ks
=575 2T FIN®)
£=0
Applying QFT ' ® Id leads to:

2t—q o
_ 1 - 1 2ine(p— L)
QFT) ® 1d (z/ DL |e>®|u>> =2 > M Ve

£=0 k,£=0

14

ARBITRARY LONG EIGENVALUE, HOW TO PROCEED

Le b € [0,2" — 1] be such that b/2" = 0.b; ... by

b . N
0< p— 5t < 27t . b/2" best t bits approximation of ¢

Up to now we have the following quantum state:

Let a; be the amplitude of in the first register:

)

=0

2
loyl” =

Measure (see Exercise Session):
Let m € {0,1}" be the outcome after measuring the first register in the computational basis

(deﬁning an integer in [0, 2t — 1]]). We have

P(\b7m|>a)§2(17)

ARBITRARY LONG EIGENVALUE, HOW TO PROCEED

Best approximation of for the first t bits:

Le b € [0,2" — 1] be such that b/2" = 0.b; ... b; and
b : N
0< p— = < 27" . b/2" best t bits approximation of
4
Measure:
Let m be the outcome after measuring the first register in the computational basis. We have
P(lb—m| > < —
(I =ml > 0) < 5]

— Determining ¢ with n bits of accuracy thanks to the output of the measure m (t > n):

b m

x &

—n

<2

16

ARBITRARY LONG EIGENVALUE, HOW TO PROCEED

Best approximation of for the first t bits:

Le b € [0,2" — 1] be such that b/2" = 0.b; ... b; and

b : N

0<p— < 27" . b/2! best t bits approximation of ¢

2 4
Measure:
Let m be the outcome after measuring the first register in the computational basis. We have

P(lb—m| > < —
(I =ml > 0) < 5]

— Determining ¢ with n bits of accuracy thanks to the output of the measure m (t > n):

b m

x &

—n

<2

— Therefore: choosing o = 2!=" — 1in the above probability. . .

But to reach a probability of success

2(041—1) = z(zrfl —2) Se &= t=n+ [IOg (2+ ;—sﬂ

16

SUMMARY

Input: a unitary U and an

Uluy =™ |u)

Output: » € [0, 1), i.e, the knowledge of the associate eigenvalue of |u)

Proposition:

The phase estimation (before the last step measuring in the computational basis) computes,
0% Ju) = |ebu) u)

such that ,i.e. when measuring the first register we obtain

& € {0,1}" admitting the same first n bits than ¢ with probability > 1 — ¢

core [er)]

Furthermore, the algorithm uses O(t?) elementary gates and t calls to controlled-U? for 0 <j<t
y

SOME WARNINGS

P> Be careful: we need to compute (U2J> which has a cost > 2* unless one uses the
0<j<t
particular shape of U. ..
» Accuracy with a probability exponentially close to 1 at the cost of a “constant” overhead:

n bits of ¢ with probability 1 — e ™" but with t = O(n)

P> Be careful: to run phase estimation we also need to be able to compute the eigenvector

|uy ...

APPLICATION 1: QFT OVER Z/NZ

AIM

Recall that characters of

> Fx(y) = (=)

> Z/2"Z xx(y) = e 7"

217r)<y

> Z/NZ: xx(y) = e

Lecture 5: computing efficiently (O(n) and O(nz))

erxy
QFT =HE") —= > (=D))y) and QFT, 0, S oe
Y€{0 13n B v yez/z”z
Aim: computing efficiently QFT; (vvhen N not a power ofz\)
217rxy
QFTz/nz © |X) \f Z e
YEZ/NZ

20

HOW TO PROCEED?

Computing QFTz,yz: use phase estimation!)

21

COMPUTING TWO UNITARIES

Ur (1RY10)) = 1K) QFTznz R) - and Uz (QFTzuz 1) 10)) = QFTzuz [f) 1) |

— These two unitaries are enough to compute QFTz/pz [R)!

We can perform QFTy /7 as:

u v’
IRY 10) = |R) QFTz/nz |R) %5 QFT; vz |R) |R) —— QFTznz |k) [0)

22

COMPUTATION OVER QUDITS

Ur(1k) 10) = [R) QFTz/nz [k) and U (QFTzuz [R) 10)) = QFTz/uz [R) [k))

Be careful: |R) here is such that k € Z/NZ and N may not be a power of two. . . In particular
|[R) cannot be written as [0010. .. 1) J

(|R)) is an orthonormal basis of an Hilbert space of dimension N
REZ/NZ

— This quantum space is called the space of qudits!

Two possibilities to perform computation with qudits: (i) encode qudits in qubits or

(i) implement your quantum device directly with Hilbert spaces of dimension > 2

It is the same issue with classical computer! How to implement trits, namely Z/3Z?

23

COMPUTING THE FIRST UNITARY U4

To build the unitary |R) |0) — [R) QFTzyz |R) (admitting we can perform efficiently the

different unitaries over q udits)

1. Start from |R) |0) |0)

2. Apply the “uniform superposition” over the second register

1 .
WW > Il

jez/NZ.

3. Apply the multiplication operator (|x> V) 10) = [x) Iy) [xv mod N))

1

IR) Wi > 1) Ik mod N)

JEZ/NZ
4. Apply the “phase flip in Z/NZ" (|x> s 2N \x)) on the third register
B <= > ™ 1)) |6 mod m)
i — e
VN

JEZ/NZ

5. Apply the inverse of the multiplication operation:

1 /.
Wﬁ S €N [j)|0) = [R) QFTz,z |k) [0)
JEZ/NZ

24

COMPUTING THE SECOND UNITARY U;: USE PHASE AMPLIFICATION

U |k) — |k+1mod NY J

— 7 [RY — |k + 2/ mod N> can be built in time O(log N)

(x — X+ 2/ mod N can be classically computed in time O(log N))

We have the following computation:

U (QFTz/nz k) f > *F uly)

YEL/NL

f > IRy + 1)

YEZ/NZ
—erk erky

=e \FZe

YEL/NL

= z" QFTZ/NZ|k>

— QFTz 2 |R) is an eigenvector of U with eigenvalue e?™% where ¢ = & N &

(remember: Fourier basis is the basis where translation operator is diagonal)

25

COMPUTING THE SECOND UNITARY U;: USE PHASE AMPLIFICATION

The translation operator U is diagonal in the Fourier basis
QFTz,nz |R) s an eigenvector of U with eigenvalue ™% where
d_ef N — l?

TN

Applying phase estimation with n = [log N (bits of precision) enables to compute:

QFTz/z (1R)) 10) =— QFTz/z) [N — K)

— : phase estimation gives only an approximation of the transform!

Therefore: after applying the unitary |x) — [N — x) we obtain an approximation of
QFTZ/NZ([R)) [0) —> QFTZ/NZ(W) [R)
Cost:
Given t = O(log N), we have a cost of O(t?) plus the cost to run UZ : |k) ’k + 2 mod N> for
0 < j < twhich can be done in time O(£) (clever combination of the Uzifcontrolled>

— Final cost to compute QFT7/yz: O (log’ N)

26

WHAT ABOUT THE GENERAL CASE?

Is it possible to efficiently build QFT; where G is any arbitrary finite abelian group?)

27

WHAT ABOUT THE GENERAL CASE?

Is it possible to efficiently build QFT; where G is any arbitrary finite abelian group?)

— Yes!

How to proceed (rough explanation):
Any finite abelian group G of size N is isomorphic to the product of cyclic groups:
Z/I’HZ XK ooco X Z/ﬂpZ
Then (admitted),
QFT; can be written as QFTz/p,z ® - - - ® QFTz 2

— We deduce that QFT, can be computed in time O (log® §G) J

Be careful, given a finite Abelian group it is classically hard to compute its decomposition as

cyclic groups. .. Quantum case: end of the lecture

27

APPLICATION 2: ORDER FINDING

THE ORDER FINDING PROBLEM

Order finding problem:

o Input: integers x, N where ged(x, N) =1

o Output: least positive integer r such that X" = 1 mod N

Solving the factorization reduces to this problem

(solving order finding = solving factorization)

Proposition:

We can quantumly determine the order r (with high probability) intime

o) (log3 N)

— Best classical algorithms are sub-exponential in N:
exp ((c +0(1)) log®™ (N) log'~* (log N))
where ¢, o are constants

29

BINARY DECOMPOSITION AND n QUBITS

Suppose that we work in the space of L qubits
Giveny € [0, 2" — 1], we will naturally identify [y) to [ys...y.)

where y; ...y, binary decomposition of y

For instance:

Given 3,5 € [0,2° — 1],
13y =]011) and|5) = [101)

30

IT REDUCES TO PHASE ESTIMATION

x integer : ged(x, N) = 1and r its order, smallest positive integer such that x = 1 mod N

Phase estimation applied to the following unitary and eigenvector:
Let,

| def

L log N (vvork in the space of quubits)

[xy mod N) ifo<y<N-—1
Wy e {013 = 0,28 —1], Uy &
yel{onr =1 I uw ly) otherwise (N —1<y< 2“"“”)

7 = _ 2imsk . . . s
vs € [0,r], [us) & 7 E o |Xk mod N> eigenvector of U with eigenvalue ¢™
r
k=0

— We work here in the space of qubits (natural trick, identity if integers > N — 1)

r—1

2imsk
Ulus) = —Ze_ N U’xk mod N>

1 X _aimsk | pp
= — g e X7 mod N>
NG |
k=0

_ eziw—‘ ‘Us)

— Be careful: in the last equality we used: x has order r modulo N, thus x" = 1 mod N 31

BUT TWO QUESTIONS

For the eigenvalue 2: we work in Z/NZ and with L = [log N] qubits

To perform efficiently phase estimation, two issues:

» How to compute efficiently the v?'s? J

» How to compute the eigenvector |us)?

— We will be able to recover approximations of =, not r...

32

BUT TWO QUESTIONS

For the eigenvalue 2: we work in Z/NZ and with L = [log N] qubits

To perform efficiently phase estimation, two issues:

» How to compute efficiently the v?'s? J

» How to compute the eigenvector |us)?

— We will be able to recover approximations of =, not r...

Be patient!

Parameter of phase estimation:

We will determine the first 2L + 1 bits of 2 with probability 1 — e

— Choose in phase estimation t = 2L + 1+ [log(2 + 5=)] qubits

In particular: t = O(L) even ife = e~ with C > 0 (constant)

32

MODULAR EXPONENTIATION

Uly) =|xymod N) (0<y<N-—1))

|z¢) . zt)

|z2) . |21}

\ZO

|zo)

The above circuit (used in the phase estimate) performs the following computation:
—1 0
2.z Iy — U)

X ><---><x“0ymodN>

t—1
= |2 |2

= |z) |yx* mod N)

— To perform efficiently phase estimation: compute |2) |y) — |2) |yx* mod N) efficiently

(modular exponentiation) 33

MODULAR EXPONENTIATION

Aim: computing efficiently
12) ly) — |2) |yx mod N) J

1. LetUem : |2) |y) = |2) |y & (¥* mod N) (be careful z — x* mod N not bijective)

—1

12) I9) 10) 224 12) 1y) | mod NY U |2y [y mod N [mod NY s |2) [yx¢ mod N [0)

34

MODULAR EXPONENTIATION

Aim:

computing efficiently
12) ly) — |2) |yx mod N) J

Let Uem : |2) |y) — |2) |y & (X* mod N) (be careful z — x* mod N not bijective)

=
12)) 10) 2 12y 1y) ¥ mod NY MUY 12y |y mod N [mod Ny s |2) [y mod N) [0)

Computing efficiently Ugm: classically

x — X mod N

can by computed in O (log z) = O(log t) = O (log N) squaring, therefore O (Iog3 N) operations

34

MODULAR EXPONENTIATION

Aim: computing efficiently
|2) ly) = |2) [y mod N) J
1. LetUem : |2) ly) — |z (x¥* mod N) (be careful z — x* mod N not bijective)
Uf‘\
12) 19) 10) 22 12y |y) | mod W) U 12y [y mod NY [mod NY ~ELs |2 |y mod N [0)
2. Computing efficiently Ugw: classically
x +— X mod N
can by computed in O (log z) = O(log t) = O (log N) squaring, therefore O (Iog3 N) operations
Conclusion: using phase estimation
We determine the first 2L + 1 bits of $ with probability 1 — e~ in time O(L’) where L = [log N] J

34

COMPUTING THE EIGENVECTOR: A TRICK

_ 2imwsk

1 r—1 B
lusy = —> e™ 7 ’x mod N
Vs)

But we do not know r... Our aim is to find it!
The trick:
1 r—1
— > |us) = 1)
w s=0

— Plugging [1) in the phase estimation algorithm will give the first 2L 4 1 bits of 2 for some

(umform and) s € [0, r — 1] with probability 1 — &

Exercise Session:

Proof of this statement J

85

WE ARE NOT DONE. ..

Up to now we have recovered (vvith high probabmty) in quantum time O(L®) the first 2L 41 bits of

2 where 0<s<r and se€[1,N=1]

7

— It does not giver, even 3 ... J

36

CONTINUED FRACTION ALGORITHM

Theorem (admitted) about continued fractions:
Let @ be a rational , let s and r be L bits integers such that
|3 -&l < 3
Then, there exists an algorithm (using “continued fractions") that outputs (s’, r") which verifies
’

ged(s’,r’) =1 and =3

r T

o,

using O(L?) classical operations

In our case:
With probability 1 — e: phase estimation outputs @ an approximation of 2 accurate to 2L + 1 bits,

therefore:
3 < =2

IN

"
|

& (asrgN—1gL=ﬂogm)

— Intime O(L*) we compute s’, r’ co-prime such that % =:

37

ISSUE

N !/
s’,r’ are co-prime such that % = 2

— If ged(s,r) > 1thenr’ #ronlyr' |r...

A solution (but inefficient. . .):
The number of prime numbers < ris & r/ log(r)

— P(ged(s, r) = 1) & log(r)/r as s is uniformly picked in [0,r — 1]
Therefore we need to repeat ~ r = O(L) number of times the algorithm before reaching

ged(s, r) = 1. It will increase the cost from O(L?) to O(L*).

38

REPEAT JUST A CONSTANT NUMBER OF TIMES!

Fundamental remark:

’ /

S Sq S Sy

T = —=rsi=s5r and 2= =rsy=570
-/ !

oo oo

We have ged(s/, 1) = ged(sy, r7) = 1, supposing that ged(s;, s5) = 1implies that r = lem(ry, r5)

— Therefore: obtaining two estimations (s7, ry) and (s, ry) and supposing that ged(s, s5) = 1

we can recover r = lem(ry, rj).

What is the probability that ged(s], s;) = 1 given that s; and that s are uniformly distributed in
[o,r—17? J

39

REPEAT JUST A CONSTANT NUMBER OF TIMES!

Fundamental remark:

S-? S ’ ’ S2 ’ ’
—/:7:>I'SWIS1!’1 and 7:7:}!’52:Szf’2
r r 2 r

We have ged(s/, 1) = ged(sy, r7) = 1, supposing that ged(s;, s5) = 1implies that r = lem(ry, r5)

— Therefore: obtaining two estimations (s7, ry) and (s, ry) and supposing that ged(s, s5) = 1

we can recover r = lem(ry, rj).

What is the probability that ged(s], s;) = 1 given that s; and that s are uniformly distributed in
[o,r—17? J

— Itis> 1 (see Exercise Session)

In conclusion:
Repeating the algorithm a constant number of times enables to recover r with probability

exponentially close to one (times - s))!

39

ORDER FINDING ALGORITHM

To compute the order r of x mod N (where ged(x, N) = 1) we first run a constant number of times
the phase estimation with t = 2[log N 4+ 1+ log (2 + 5L). It has been necessary to compute:

> QFT, ,t,: done in time O(t”) = O(log N)

» modular exponentiation |z) |y) — |2) |yx’ mod N): done in time O(log® N)

It outputs a 2[log N + 1 approximation of some 2 where s € [0, r — 1] is uniform and unknown

40

ORDER FINDING ALGORITHM

To compute the order r of x mod N (where ged(x, N) = 1) we first run a constant number of times
the phase estimation with t = 2[log N 4+ 1+ log (2 + 5L). It has been necessary to compute:

> QFT, ,t,: done in time O(t”) = O(log N)

» modular exponentiation |z) |y) — |2) |yx’ mod N): done in time O(log® N)
It outputs a 2[log N + 1 approximation of some 2 where s € [0, r — 1] is uniform and unknown
Then after collecting some approximations of 57’ apply continued fraction algorithm to obtain

/
(sf,r{) in time O (log® N) with 57‘, = 57’ It enables to get r by computing some lem(rf, rf).
I

40

ORDER FINDING ALGORITHM

To compute the order r of x mod N (where ged(x, N) = 1) we first run a constant number of times
the phase estimation with t = 2[log N 4+ 1+ log (2 + 5L). It has been necessary to compute:

> QFT, ,t,: done in time O(t”) = O(log N)

» modular exponentiation |z) |y) — |2) |yx’ mod N): done in time O(log® N)
It outputs a 2[log N + 1 approximation of some 2 where s € [0, r — 1] is uniform and unknown
Then after collecting some approximations of 57’ apply continued fraction algorithm to obtain

/
(sf,r{) in time O (log® N) with 57‘, = Z. Itenables to get r by computing some lem(r/,).
I

— This procedure works with probability (1 — e ~¢'°V)(1 — ¢) for constant C > 0 depending on J

the number of repetitions

Final cost:
o) (log3 N) J

— This could be done in time O(logz(N)poly(log logl\l)) 40

A LAST REMARK, THE REAL BREAKTHROUGH: QFT

Order finding algorithm is efficient because we know quantumly how to perform classical

computations and the quantum Fourier transform over Z /2

4

SHOR’'S ALGORITHM

AIM

Factoring problem:

o Input: an integer N

e Output: a non-trivial factor of N

— Security of public-key encryption scheme RSA relies on the hardness of this problem. ..

Classically best algorithms have a complexity:

exp ((C + 0(1)) log™(N) log' = (log N)) J

43

SHOR’S ALGORITHM: COROLLARY OF ORDER FINDING

Shor’s algorithm is basically applying order finding for some random x € [O,N — 1] ...

But why?

44

NUMBER THEORETIC RESULTS

Theorem 1:
Suppose N is a L bits not prime integer and 1 < y < N be a non-trivial integer such that
v = 1mod N
Then, at least ged(y — 1, N) or ged(y + 1, N) is a non-trivial factor of N that can be computed in
time O(L%))
Theorem 2:
Suppose that N = pf” -+ - pma™ where the p;'s are different primes. Let x be an integer chosen
uniformly at random, subject to the requirements that 1 < x < N — 1and ged(x, N) = 1. Let r be
the order of x. Then,
P(riseven and x/? # —1mod N) >1— Zim
y

— Let x be picked according to Theorem 2, then with (at least) a constant probability
x/? is a solution # +1 of (X2 =1 mod N)

According to Theorem 1: ged(x/2 — 1, N) or ged(x'/? 4+ 1, N) is a # =41 factor of N

45

NUMBER THEORETIC RESULTS

Theorem 1:
Suppose N is a L bits not prime integer and 1 < y < N be a non-trivial integer such that
v = 1mod N
Then, at least ged(y — 1, N) or ged(y + 1, N) is a non-trivial factor of N that can be computed in
time O(L%))
Theorem 2:
Suppose that N = pf” -+ - pma™ where the p;'s are different primes. Let x be an integer chosen
uniformly at random, subject to the requirements that 1 < x < N — 1and ged(x, N) = 1. Let r be
the order of x. Then,
P(riseven and x/? # —1mod N) >1— Zim
y

— Let x be picked according to Theorem 2, then with (at least) a constant probability
x/? is a solution # +1 of (X2 =1 mod N)

According to Theorem 1: ged(x/2 — 1, N) or ged(x'/? 4+ 1, N) is a # =41 factor of N

Given x, we just need to compute its order r to find a non-trivial factor!

45

SHOR'S ALGORITHM

1. Pick x uniformly at random in [1, N]
2. Compute d = ged(x, N). If d > 1, output d
3. Use the quantum order-finding subroutine to find the order r of x mod N

4. If ris even and x”/2 # —1 mod N then compute ged(x"/? — 1, N) or ged(x/2 + 1, N) and test

if one of these is a non-trivial factor of N. Otherwise go back to Step 1.

By using the law of total probability:

P (success) > P (success | Step 3 succeeds) - P (Step 3 succeeds)

=P (ris even and x”/? # —1 mod N) - P (‘order finding succeeds)

1 —Clog N :
> (1 — 27') (1—e)1 —¢) (m number of prime factors of N)

— Repeating the algorithm a constant amount of times gives a non-trivial factor

Final cost:

o] (Iog3 N) cost of phase estimation + Step 4
46

HIDDEN SUBGROUP PROBLEM

SHOR’S ALGORITHM, WHAT ELSE?

Shor’s algorithm relies on the order-finding which itself crucially used QFT /1,

(m the phase estimation)

— It turns out that what we did is extremely “general”

Techniques we have presented enable to compute the “period” of a wide class of functions. . .

» What do we mean by “general’?

» Computing the “period” of which class of functions and does it imply some interesting

statements?

— Hidden Subgroup Problem!

48

HIDDEN SUBGROUP PROBLEM

Hidden Subgroup Problem (HSP):

o Input: a function f: G — S where G is a known group? and S is a finite set

o Promise: f satisfies
f(x) = f(y) ifand only if y € xH

ie,y = xhforsomeh e H

for an unknown subgroup H C

e Output: H

— We say that f hides the subgroup H

Left-cosets:

The set:

xH % [xh:h € HY

is called a left-coset of H

— A function f that hides H is constant on each left-coset of H and distinct on different left

cosets
49

WHY IS THIS PROBLEM IMPORTANT?

HSP may be seen as a purely abstract problem. .. But no!

Here are particular instantiations of HSP
» Simon'’s problem:

G=F),H= {0,5} and f being the input in Simon'’s problem
» Order finding:

G=Z/®(N)Z (q> be the Eulerfunction), H= {rx xe Z/<I>(N)Z} and f(a) = x* mod N

P Discrete logarithm problem: see Exercise Session!

> etc...

Be careful:
In Shor’s algorithm, when using a solver for the order finding problem we don’t know ®(N)

and therefore we don't know G.. . .

50

HOW TO SOLVE IT IN THE ABELIAN CASE: QFT! (KITAEV, INSPIRED BY SHOR)

We suppose that G is Abelian (we note G in additive notation) J

f: G — S that hides some subgroup H

1. Start with |0) |0), where the two registers have dimensions #G and #S, respectively

2. Create a uniform superposition over G in the first register: |0)

= Tes 19)
3. Compute f in superposition: \)ﬁ Yes 19) 1f(9))

4. Measure the second register. This yields some value s € G. The second register collapses to

(using the promise overf>

ﬁz]sww

heH

5. Apply QFT; giving: \)ﬁ > hen |Xstn) for some quantum state |xsip) (Xg characters of G)

6. Measure and output the resultingg € G

51

WHY DOES IT WORK?

G is Abelian, be (Xg) . be its characters J
g€

[Xs+h) = QFTG > [s + h)
heH

1

=— > QFTg|s+h)
Ve o

:% 35 xels +) Ig)

heH get

L S (s)lg) from Lecture 5: > (h)—{ fH ifgeH”
V6 hGHXQ X9(5)19 : hEHXQ ~ L 0 otherwise
1

VG

S 81 xo(5)19)

— The quantum step before measurement is: ,/g—g > xq(s)19)
=l

52

WHY DOES IT WORK?

The quantum state before measurement is:

\/ijg > xo(s)lg) where H' = {9 €G:Vh e H xq(h) = 1}

— Measuring gives a uniform g € H* giving some information about H . . .
repeating a poly(log #G) times enables to recover H with high probability!

P For a rigorous proof of this statement: see Chapter 6 in the lecture notes by Andrew Childs

An example: Simon’s problem

G=F}, Wxy€eF, xy) = (1" andH={os}
—>HL:{xng:x-s:0}

In other words, we recover Simon’s algorithm. . .

58

HOW TO COMPUTE QFT OVER G?

G is an Abelian group

Recall that we compute QFTs as QFTz /5,7 ® - -+ ® QFTz/n,2 where we used the isomorphism:

GXZ/MZ X -+ X ZL/npZ (1)

But is it easy to compute this isomorphism/decomposition even if we “know” G?

54

HOW TO COMPUTE QFT OVER G?

G is an Abelian group

Recall that we compute QFTs as QFTz /5,7 ® - -+ ® QFTz/n,2 where we used the isomorphism:

GXZ/MZ X -+ X ZL/npZ (1)

But is it easy to compute this isomorphism/decomposition even if we “know” G?

— Yes! At least quantumly for a “good” definition of knowing G. ..

Quantum decomposition of Abelian groups:

Suppose we have (i) a unique encoding of each element of G, (ii) the ability to perform group
efficiently operations on these elements, and (iii) a generating set for G.

Then, there exists an efficient quantum algorithm that decomposes G, namely outputs the

isomorphism given in Equation (1)

— See Chapter 6 in the lecture notes by Andrew Childs

54

GENERALIZATION TO THE NON-ABELIAN CASE?

To solve HSP we crucially used that we restrict ourself to the Abelian case. . .

(in the Abelian case, H* gives linear relations enabling to recover H)

— And the non-Abelian case?

No efficient algorithm is known for the non-Abelian case

(even if nothing indicates that it is impossible) .

—— Finding such an algorithm would have a huge impact in theoretical computer science,

(post-quantum) cryptography. . .

If you are interested by this topic:

» Nice reading about Fourier transform (classical & quantum) over non-Abelian group: Chapter
11in the lectures by Andrew Child https://www.cs.umd.edu/~amchilds/qa/
» The hidden nonabelian subgroup problem and the Kuperberg algorithm, see Chapters 11-13 in

the lectures by Andrew Child https://www.cs.umd.edu/~amchilds/qa/
55

https://www.cs.umd.edu/~amchilds/qa/
https://www.cs.umd.edu/~amchilds/qa/

EXERCISE SESSION

	Phase estimation
	Application 1: QFT over Z/NZ
	Application 2: order finding
	Shor's algorithm
	Hidden Subgroup problem
	Exercise Session

