LECTURE 5 GROVER'S SEARCH ALGORITHM AND INTRODUCTION TO THE QUANTUM FOURIER TRANSFORM

Quantum Information and Computing

Thomas Debris-Alazard

Inria, École Polytechnique

- *•* Grover's algorithm
- Introduction to the Quantum Fourier Transform (QFT) but by starting with the *classical* case!
- 1. Grover's Search Algorithm
- 2. Amplitude Amplification
- 3. Introduction to the Discrete Fourier Transform
- 4. Quantum Fourier Transform $\big(\mathsf{QFT}\big)$ over $\mathbb{Z}/2^n\mathbb{Z}$ $\big(\text{integers modulo }2^n\big)$: $\mathsf{QFT}_{\mathbb{Z}/2^n\mathbb{Z}}$

GROVER'S SEARCH ALGORITHM

*Given some list L, what is the cost for classically finding a fixed x*0*?*

−→ It is, a priori, *♯L*!

But is it always the case?

*Given some list L, what is the cost for classically finding a fixed x*0*?*

−→ It is, a priori, *♯L*!

But is it always the case? No!

If the list *L* has some "structure" it can be helpful:

- ▶ Sorted list: time log *♯L* with a binary search
- \blacktriangleright Hash table: constant time (in the average/amortized complexity model)

Our aim with Grover's algorithm: treating quantumly the case where we are given a list without any structure

Search problem:

- *•* Input: a function *f* : *{*0*,* 1*} ⁿ −→ {*0*,* 1*}*
- Goal: find $x \in \{0, 1\}^n$ such that $f(x) = 1$

→ Can be viewed as a model of data search in an <mark>unstructured database $\big(x, f(x)\big)_{x \in \{0,1\}^n}$ </mark> of size 2ⁿ (exponential)

Finding a solution:

Let
$$
N \stackrel{\text{def}}{=} \sharp \{0, 1\}^n = 2^n
$$
 and $t \stackrel{\text{def}}{=} \sharp \{x \in \{0, 1\}^n : f(x) = 1\}$

- \bullet Classically a randomized algorithm would need $\Theta\Big(\frac{N}{t}\Big)$ queries to *f* and in time $O\Big(\frac{N}{t}\,\text{Cost}(f)\Big)$
- \bullet Grover can solve this problem with only $O\left(\sqrt{\frac{N}{t}}\right)$ queries to f and in time $O\left(\sqrt{\frac{N}{t}}\text{ Cost}(f)\right)$

GROVER: AN IMPORTANT IMPROVEMENT

Symmetric cryptography: exhaustive search for the secret key with 128 bits in AES $\,(\mathrm{encryption})\,$ requires 2^{128} classical operations

−→ Quantumly: 2⁶⁴ operations which is reachable*. . .*

Consequence:

→ All secret keys in symmetric encryption have to be size ×2 (at least. . .)

Grover offers a generic attack against symmetric encryption schemes, but there are many other ways of taking advantage of quantum computers*. . .*

• Breaking Symmetric Cryptosystems using Quantum Period Finding. M. Kaplan, G. Leurent, A. Leverrier, M. Naya-Plasencia

https://arxiv.org/pdf/1602.05973

AN OPTIMAL COMPLEXITY

Lower bound:

Any algorithm solving the search problem for $f : \{0,1\}^n \longrightarrow \{0,1\}$ with *t* solutions needs to

make

$$
\Omega\left(\sqrt{\frac{2^n}{t}}\right)
$$
 queries to *f*

→ Grover's algorithm is "optimal" (up to constants) in the number of queries to *f*

A good/bad news:

If Grover's search problem was solvable in time $\log^c 2^n = n^c$: any NP-problem could be solvable (with good probability) in polynomial time with a quantum computer. . .

−→ There are lower-bounds for the running time of quantum algorithms solving some problems!

• Lecture notes by Ronald de Wolf , Chapter 11

IDEA: SPLIT YOUR QUANTUM STATE

First, with quantum parallelism, we build:

$$
|\psi\rangle \stackrel{\text{def}}{=} \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \{0,1\}^n} |\mathbf{x}\rangle |f(\mathbf{x})\rangle
$$

(I) Fundamental idea of Grover's algorithm:

Write
$$
|\psi\rangle
$$
 as:
\n
$$
|\psi\rangle = \sin \theta \, |\psi_{\text{good}}\rangle + \cos \theta \, |\psi_{\text{bad}}\rangle \quad \text{where}
$$
\n
$$
|\psi_{\text{bad}}\rangle = \frac{1}{\sqrt{t}} \sum_{\substack{x \in \{0,1\}^n \\ f(x) = 1}} |x\rangle |f(x)\rangle
$$
\nwith $|\psi_{\text{good}}\rangle$ and $|\psi_{\text{bad}}\rangle$ are quantum states by definition of t (number of solutions)

But what is the value of *θ*?

IDEA: SPLIT YOUR QUANTUM STATE

First, with quantum parallelism, we build:

$$
|\psi\rangle \stackrel{\text{def}}{=} \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \{0,1\}^n} |\mathbf{x}\rangle |f(\mathbf{x})\rangle
$$

(I) Fundamental idea of Grover's algorithm:

Write
$$
|\psi\rangle
$$
 as:
\n
$$
|\psi\rangle = \sin \theta \left| \psi_{\text{good}} \right\rangle + \cos \theta \left| \psi_{\text{bad}} \right\rangle \quad \text{where}
$$
\n
$$
\begin{cases}\n|\psi_{\text{good}}\rangle = \frac{1}{\sqrt{t}} \sum_{\substack{x \in \{0,1\}^n \\ f(x) = 1}} |x\rangle |f(x)\rangle \\
|\psi_{\text{bad}}\rangle = \frac{1}{\sqrt{2^n - t}} \sum_{\substack{x \in \{0,1\}^n \\ f(x) = 0}} |x\rangle |f(x)\rangle\n\end{cases}
$$
\nwith $|\psi_{\text{good}}\rangle$ and $|\psi_{\text{bad}}\rangle$ are quantum states by definition of t (number of solutions)

But what is the value of *θ*?

$$
\longrightarrow \theta \text{ is such that } \frac{\sin \theta}{\sqrt{t}} = \frac{1}{\sqrt{2^n}} \iff \theta = \arcsin \sqrt{\frac{t}{2^n}} \quad \left(\text{we need to know } t \text{ to know } \theta\right)
$$

(II) Fundamental idea of Grover's algorithm:

Move $θ$ to $\frac{π}{2}$!

$|\psi\rangle = \sin \theta |\psi_{\text{good}}\rangle + \cos \theta |\psi_{\text{bad}}\rangle$ where $|\psi_{\text{good}}\rangle$ uniform superposition of solutions

What is θ when there are few solutions, namely $t \ll 2^n$?

 $|\psi\rangle = \sin \theta |\psi_{\text{good}}\rangle + \cos \theta |\psi_{\text{bad}}\rangle$ where $|\psi_{\text{good}}\rangle$ uniform superposition of solutions

What is θ when there are few solutions, namely $t \ll 2^n$?

$$
\longrightarrow \sin \theta = \sqrt{\frac{t}{2^n}}, \text{ therefore } \theta \approx \sqrt{\frac{t}{2^n}} \approx 0 \text{ and } |\psi\rangle \approx |\psi_{bad}\rangle
$$

Exercise Session 4: we can make reflections over a quantum state!

We start by building |ψi

Exercise Session 4: we can make reflections over a quantum state!

*Reflection over |ψ*bad*i*

Reflection over |ψi

Exercise Session 4: we can make reflections over a quantum state!

Reflection over $|ψ$ _{bad} \rangle

Reflection over |ψi

PICTURING THE ALGORITHM

Exercise Session 4: we can make reflections over a quantum state!

*and so on up to π/*2 *. . .*

Number *k* of iterations to reach $|\psi_{\text{good}}\rangle: \theta \longrightarrow (2k+1)\theta$

Choose the number k of iterations $\big(\text{reflections over }|\psi_{\text{bad}}\rangle\text{ and }|\psi\rangle\big)$ such that

$$
(2k+1)\theta = \frac{\pi}{2} \iff k = \frac{\pi}{4\theta} - \frac{1}{2} = \frac{\pi}{4\arcsin\sqrt{\frac{t}{2^n}}} - \frac{1}{2} \approx \frac{\pi}{4}\sqrt{\frac{2^n}{t}}
$$

$$
\left|\psi_{\text{good}}\right\rangle = \frac{1}{\sqrt{t}} \sum_{\substack{\mathbf{x} \in \{0,1\}^n \\ f(\mathbf{x}) = 1}} |\mathbf{x}\rangle |f(\mathbf{x})\rangle \quad \text{and} \quad \left|\psi_{\text{bad}}\right\rangle = \frac{1}{\sqrt{2^n - t}} \sum_{\substack{\mathbf{x} \in \{0,1\}^n \\ f(\mathbf{x}) = 0}} |\mathbf{x}\rangle |f(\mathbf{x})\rangle
$$

$$
\text{Reflection R}_{|\psi_{\text{bad}}\rangle} \text{ over } |\psi_{\text{bad}}\rangle \text{:}
$$

$$
Id \otimes Z : |x\rangle |b\rangle \longmapsto (-1)^b |x\rangle |b\rangle
$$

Reflection R*|ψ⟩* over *|ψi*:

Exercise Session 4: we can build a reflection $\mathbf{R}_{|\psi\rangle}$ over $|\psi\rangle$ with $O(n)$ elementary gates and two calls to U which is such that

$$
U |0^n\rangle |0\rangle = |\psi\rangle \ \left(= \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle |f(x)\rangle \right)
$$

$$
\longrightarrow \text{Choose } U = U_f \cdot \left(H^{\otimes n} \otimes Id \right)
$$

−→ In Grover's algorithm we crucially used that *|ψi* can be built!

ALGEBRAIC STATEMENT

Proposition:

We have:

$$
\cos\alpha\ket{\psi_{\text{bad}}}+\sin\alpha\ket{\psi_{\text{good}}}\frac{\text{R}_\ket{\psi}\text{R}_{\ket{\psi_{\text{bad}}}}}{\text{Cos}\left(2\theta+\alpha\right)\ket{\psi_{\text{bad}}}+\sin\left(2\theta+\alpha\right)\ket{\psi_{\text{good}}}}
$$

Proof:

$$
|\psi\rangle = \cos\theta \, |\psi_{\text{bad}}\rangle + \sin\theta \, |\psi_{\text{good}}\rangle \perp |\psi^{\perp}\rangle = \sin\theta \, |\psi_{\text{bad}}\rangle - \cos\theta \, |\psi_{\text{good}}\rangle
$$

From there:

$$
|\psi_{bad}\rangle = \cos\theta |\psi\rangle + \sin\theta |\psi^{\perp}\rangle
$$
 and $|\psi_{good}\rangle = \sin\theta |\psi\rangle - \cos\theta |\psi^{\perp}\rangle$

By definition of the reflections and trigonometric rules:

$$
R_{|\psi\rangle}R_{|\psi_{bad}\rangle} (\cos \alpha |\psi_{bad}\rangle + \sin \alpha |\psi_{good}\rangle) = R_{|\psi\rangle} (\cos \alpha |\psi_{bad}\rangle - \sin \alpha |\psi_{good}\rangle)
$$

\n
$$
= R_{|\psi\rangle} (\cos \alpha \cos \theta - \sin \alpha \sin \theta) |\psi\rangle + (\cos \alpha \sin \theta + \sin \alpha \cos \theta) |\psi^{\perp}\rangle
$$

\n
$$
= \cos(\alpha + \theta) |\psi\rangle - \sin(\alpha + \theta) |\psi^{\perp}\rangle
$$

\n
$$
= (\cos(\alpha + \theta) \cos \theta - \sin \alpha \sin(\theta + \alpha)) |\psi_{bad}\rangle + (\cos(\alpha + \theta) \sin \theta + \sin(\alpha + \theta) \cos \theta) |\psi_{good}\rangle
$$

\n
$$
= \cos(2\theta + \alpha) |\psi_{bad}\rangle + \sin(2\theta + \alpha) |\psi_{good}\rangle
$$

Grover's algorithm:

- 1. Build $|\psi\rangle = \cos \theta |\psi_{\text{bad}}\rangle + \sin \theta |\psi_{\text{good}}\rangle$
- 2. Apply *k* times the unitary $\mathsf{R}_{\ket{\psi}}\mathsf{R}_{\ket{\psi_{\mathrm{bad}}}}$ on the quantum state $\ket{\psi}$
- 3. Measure, if the last qubit is 1 return the first *n* qubits; otherwise repeat from Step 1

Probability of success $($ use the previous proposition $):$

 $P_k = \sin^2(2k\theta + \theta)$

How to choose the number of iterations *k*?

Grover's algorithm:

- 1. Build $|\psi\rangle = \cos \theta |\psi_{\text{bad}}\rangle + \sin \theta |\psi_{\text{good}}\rangle$
- 2. Apply *k* times the unitary $\mathsf{R}_{\ket{\psi}}\mathsf{R}_{\ket{\psi_{\mathrm{bad}}}}$ on the quantum state $\ket{\psi}$
- 3. Measure, if the last qubit is 1 return the first *n* qubits; otherwise repeat from Step 1

Probability of success $($ use the previous proposition $):$

 $P_k = \sin^2(2k\theta + \theta)$

How to choose the number of iterations *k*?

Choose
$$
k \stackrel{\text{def}}{=} \left\lceil \left(\frac{\pi}{2} - \theta \right) \frac{1}{2\theta} \right\rceil
$$
, then (again some calculations):

$$
P_k \ge \frac{1}{4} \quad \text{and } k = O\left(\sqrt{\frac{2^n}{t}}\right) \text{ as } \theta = \arcsin\sqrt{\frac{t}{2^n}}
$$

Grover's algorithm finds a solution with constant probability

bounded away from 0 by a constant

by running the unitary $\mathsf{R}_{\ket{\psi}}\mathsf{R}_{\ket{\psi_{\mathrm{bad}}}}$ a $\mathcal{O}\left(\sqrt{\frac{2^n}{t}}\right)$ number of times

▶ $R_{\vert \psi_{\text{bad}} \rangle} = \text{Id} \otimes Z$: one quantum gate

▶ $R_{\vert \psi \rangle}$: *O*(*n*) quantum gates + 2 calls to $U = U_f(H^{\otimes n} \otimes Id)$

Cost of Grover's algorithm:

The cost of Grover's algorithm to find a solution, with constant probability, in the quantum gate model is given by

$$
O\left(\sqrt{\frac{2^n}{t}}\max(n, T_f)\right)
$$

where *T^f* is the classical running time to compute *f*

- Need to run the algorithm $\left\lceil \left(\frac{\pi}{2} \theta \right) \right\rceil \frac{1}{2\theta}$ where $\theta = \arcsin \sqrt{\frac{t}{2^n}}$ and therefore to know *t*. —→ If number of iterations chosen too large, the success probability $\sin((2k+1)\theta)^2$ goes down!
- if *t* is known, can we tweak the algorithm to end up in exactly the good state, namely $P_h = 1$?

−→ Exercise Session to overcome these issues!

AMPLITUDE AMPLIFICATION

 ${\cal A}$ be a classical/quantum algorithm that can find a solution **x** $\big(i.e.,f({\sf x})=1\big)$ with probability p

→ One can repeat O $\left(\frac{1}{p}\right)$ times ${\cal A}$ to find a solution with constant probability

Why?

 ${\cal A}$ be a classical/quantum algorithm that can find a solution **x** $\big(i.e.,f({\sf x})=1\big)$ with probability p

→ One can repeat O $\left(\frac{1}{p}\right)$ times ${\cal A}$ to find a solution with constant probability

Why?

Amplitude amplification: Assume you have a classical or quantum algorithm ${\cal A}$ $\big($ without measurement $\big)$ that can find a solution **x** to the search problem $\big(f(\mathbf{x}) = 1\big)$ in time T with probability p If f is computable in time T_f , then we can compute $\big($ quantumly $\big)$ a solution in time *O* $\left(\frac{7}{\sqrt{p}} \max(n, T_f)\right)$ with success probability ≥ *C* $\left(\text{constant}\right)$

Pick a random $\mathbf{x} \in \{0, 1\}^n$ and output **x**

−→ This algorithm runs in time *O*(*n*) and it finds a solution with probability *p* = *^t* 2 *n*

Using amplitude amplification: you can find a solution in time $\approx \sqrt{\frac{2^n}{t}}$

Grover: quantization of the random search in an unstructured data set*. . .*

Amplitude amplification is more useful when we know algorithms better than random search

−→ It also gives a quadratic speed-up for these algorithms!

THE ALGORITHM

Lecture 4:

If ${\cal A}$ is quantum: measurements only at the end of the computation and starts from $\ket{0^m}$

−→ Before the final measurement: *A* outputs a state *|ψi*, and measuring the output register

gives a solution x with probability *p*

$$
\mathcal{A}\left|0^{m}\right\rangle =\left|\psi\right\rangle =\sum_{x\in\{0,1\}^{n}}\alpha_{x}\left|x\right\rangle \left|\varphi_{x}\right\rangle ,\;\text{where}\;\sum_{x:\text{f}(x)=1}|\alpha_{x}|^{2}=p
$$

Write:

$$
|\psi\rangle=\sin\theta\left|\psi_{\text{good}}\right\rangle+\cos\theta\left|\psi_{\text{bad}}\right\rangle\quad\text{where}\;\left|\psi_{\text{good}}\right\rangle\overset{\text{def}}{=}\frac{1}{\sin\theta}\sum_{\substack{\mathbf{x}\in\{0,1\}^n\\f(\mathbf{x})=1}}\alpha_{\mathbf{x}}\left|\mathbf{x}\right\rangle\left|\varphi_{\mathbf{x}}\right\rangle
$$
 where $\sin\theta=\sqrt{p}$

THE ALGORITHM

Lecture 4:

If ${\cal A}$ is quantum: measurements only at the end of the computation and starts from $\ket{0^m}$

−→ Before the final measurement: *A* outputs a state *|ψi*, and measuring the output register gives a solution x with probability *p*

$$
\mathcal{A}\left|0^{m}\right\rangle = |\psi\rangle = \sum_{x\in\{0,1\}^{n}}\alpha_{x}\left|x\right\rangle\left|\varphi_{x}\right\rangle,\;\text{where}\;\sum_{x: f(x)=1}|\alpha_{x}|^{2} = p
$$

Write:

$$
|\psi\rangle=\sin\theta\left|\psi_{\text{good}}\right\rangle+\cos\theta\left|\psi_{\text{bad}}\right\rangle\quad\text{where}\;\left|\psi_{\text{good}}\right\rangle\overset{\text{def}}{=}\frac{1}{\sin\theta}\sum_{\substack{\mathbf{x}\in\{0,1\}^n\\f(\mathbf{x})=1}}\alpha_{\mathbf{x}}\left|\mathbf{x}\right\rangle\left|\varphi_{\mathbf{x}}\right\rangle
$$

 R **lun Grover's algorithm with the reflections** $R_{\ket{\psi_{\text{bad}}}}: \ket{\mathsf{x}}\ket{\mathsf{y}} \mapsto (-1)^{f(\mathsf{x})}\ket{\mathsf{x}}\ket{\mathsf{y}}\text{ (see Exercise 1)}$ Session 1 to compute this unitary $\Big)$ and $\textsf{R}_{\ket{\psi}}$ over $\ket{\psi}$ but:

 $R_{\ket{\psi}} \neq O(n)$ quantum gates + 2 calls to $U = U_f (H^n \otimes I_2)$ which was designed to build

$$
\frac{1}{\sqrt{2^n}}\sum_{\mathbf{x}}|\mathbf{x}\rangle |f(\mathbf{x})\rangle \ldots
$$

Amplitude amplification: $R_{\vert\psi\rangle}$ is $O(n)$ quantum gates + 1 call to U = $\mathcal A$ and 1 call to U⁻¹ = $\mathcal A^{-1}$

When performing amplitude amplification on a quantum algorithm *A*, we supposed it performs no measurements $($ at least we restrict ${\mathcal A}$ before its final measurement $)$

−→ To be able to perform *A−*¹

Grover's search algorithm in amplitude amplification shows a strong statement. Given

$$
|\psi\rangle = \alpha |\psi_V\rangle + \beta \left| \psi_V^{\perp} \right\rangle \text{ where } |\psi_V\rangle \in Span\Big(|x\rangle : f(x) = 1\Big) \text{ and } \left| \psi_V^{\perp} \right\rangle \in Span\Big(|x\rangle : f(x) = 1\Big)^{\perp}
$$

 $\langle \text{After amplitude amplification: } |\psi'\rangle \approx |\psi_{V}\rangle$

(even equal with exact grover when amplitude α is known)

Be careful:

To run amplitude amplification: you need to be able to build $|\psi\rangle$...

APPLICATION: HOW DO WE QUANTUMLY COMPUTE RANDOMIZED ALGORITHMS?

Lecture 4: given a deterministic \mathcal{A} , one can run **∪**_{\mathcal{A} in ≈ same time}

If *A* is randomized?

Classical modelization $($ think of **R** as the seed of a pseudo-random generator $)$:

 \mathcal{A} : pick a random $\mathsf{R} \in \{0,1\}^r,$ compute $\mathcal{A}(\mathsf{R})$ to get some outcome x_R

−→ Randomness chosen at the beginning: the algorithm can be interpreted as deterministic

Lecture 4: given a deterministic \mathcal{A} , one can run **∪**_{\mathcal{A} in ≈ same time}

If *A* is randomized?

Classical modelization $($ think of **R** as the seed of a pseudo-random generator $)$:

 \mathcal{A} : pick a random $\mathsf{R} \in \{0,1\}^r,$ compute $\mathcal{A}(\mathsf{R})$ to get some outcome x_R

−→ Randomness chosen at the beginning: the algorithm can be interpreted as deterministic

 $U_A(|R\rangle |y\rangle) = |R\rangle |y + x_R\rangle$

$$
\left|0'\right>\left|0''\right>\xrightarrow{H^{\otimes r}\otimes Id} \frac{1}{\sqrt{2^r}}\sum_{R\in\{0,1\}^r}\left|R\right>\left|0''\right>\xrightarrow{U_{\mathcal{A}}} \frac{1}{\sqrt{2^r}}\sum_{R\in\{0,1\}^r}\left|R\right>\left|x_R\right>
$$

measuring outputs a solution with probability *p*

−→ We can use amplitude amplification on this algorithm!

(the quantum algorithm finds a solution in time $\frac{\text{Cost}(\mathcal{A})}{\sqrt{p}}$ instead of $\frac{\text{Cost}(\mathcal{A})}{p}$ classically)

DISCRETE FOURIER TRANSFORM

A LITTLE BIT OF FINITE GROUP THEORY

- *•* (*G,* +) be a finite Abelian group
- *•* Character group: $\widehat{G} = \{ \chi_g : g \in G \}$ \cong *G*
- Set of characters: homomorphism from *G* to the unit complex circle $\mathbb{U} = \{z \in \mathbb{C} : |z| = 1\}$

 $\chi_g : G \longrightarrow \mathbb{U}$ *x* \longmapsto $\chi_g(x)$ *, such that ∀x, y* \in *G,* $\chi_g(x + y) = \chi_g(x) \cdot \chi_g(y)$

Examples: ▶ *G* = \mathbb{F}_2^n = $\underbrace{\mathbb{F}_2 \times \cdots \times \mathbb{F}_2}_{n \text{ times}}$ with \mathbb{F}_2 binary field $\{0,1\}$ embedded with \oplus $\Big($ addition modulo 2 $\Big)$ *y***x**, $y \in \mathbb{F}_2^n$, $\chi_x(y) = (-1)^{x \cdot y}$ where $x \cdot y = \sum^n$ $\sum_{i=1}^{n} x_i y_i$ ▶ $G = \mathbb{Z}/2^n \mathbb{Z}$, $\forall x, y \in \mathbb{Z}/2^n\mathbb{Z}, \quad \chi_x(y) = e^{-\frac{2i\pi xy}{2^n}}$

Nice reading about characters on finite Abelian groups:

https://kconrad.math.uconn.edu/blurbs/grouptheory/charthy.pdf

$$
\sum_{g \in G} \chi_x(g) \overline{\chi_y}(g) = \begin{cases} \n\sharp G & \text{if } \chi_x = \chi_y \\ \n0 & \text{otherwise} \n\end{cases} \quad \text{and} \quad \sum_{\chi \in \widehat{G}} \chi(x) \overline{\chi}(y) = \begin{cases} \n\sharp G & \text{if } x = y \\ \n0 & \text{otherwise} \n\end{cases}
$$

• The matrix
$$
\left(\frac{x \times 0}{\sqrt{\sharp G}}\right)_{x,y \in G}
$$
 is unitary, in particular:

$$
\left(\frac{x}{\sqrt{\sharp G}}\right)_{x \in G}
$$
is an orthonormal basis for the scalar product $\langle f, g \rangle = \sum_{y \in G} f(y)\overline{g}(y)$

$$
\left(\frac{XX}{\sqrt{\sharp G}}\right)_{X \in G}
$$
 sometimes called the "Fourier basis"

• The translation operator is diagonal in the Fourier basis

$$
\tau_a: (G \to \mathbb{C}) \longrightarrow (G \to \mathbb{C})
$$
\n
$$
f \longmapsto \tau_a(f): x \in G \mapsto f(x+a) \text{ then}
$$
\n
$$
\tau_x(\chi_y) = \underbrace{\chi_y(a)}_{\text{eigenvalue}} \cdot \underbrace{\chi_y}_{\text{eigenvalue}}
$$

SOME EXERCISES OF THE EXERCISE SESSION

Exercise:

1. Prove that for any character $\chi \in \widehat{G}$,

$$
\sum_{g \in G} \chi(g) = \begin{cases} \n\sharp G & \text{if } \chi = 1 \\ \n0 & \text{otherwise} \n\end{cases}
$$

2. How do you deduce from that

$$
\sum_{g \in G} \chi_x(g) \overline{\chi_y}(g) = \begin{cases} \n\sharp G & \text{if } \chi_x = \chi_y \\ \n0 & \text{otherwise} \n\end{cases}
$$

3. Consider the function *f^g*

$$
\begin{array}{ccc}\nf_g: \widehat{G} & \longrightarrow & \mathbb{C} \\
& \chi & \longmapsto & \chi(g)\n\end{array}
$$

What can you say about *fg*?

4. How can you deduce from the previous point that we also have

$$
\sum_{x \in \widehat{G}} x(x) \overline{x}(y) = \begin{cases} \n\sharp G & \text{if } x = y \\ \n0 & \text{otherwise} \n\end{cases}
$$

Orthogonal subgroup:

For a subgroup *H* of *G* we denote by *H [⊥]* the orthogonal subgroup defined by

$$
H^{\perp} \stackrel{\text{def}}{=} \left\{ g \in G \; : \; \forall h \in H, \; \chi_g(h) = 1 \right\}
$$

—→ Important concept in Simon's algorithm and Shor's algorithm! $($ see Lecture 4&6 $)$

$$
\sum_{h \in H} \chi_g(h) = \left\{ \begin{array}{ll} \sharp H & \text{if } g \in H^\perp \\ 0 & \text{otherwise} \end{array} \right.
$$

Fourier transform:

Given a finite abelian group *G* and *f* : *G −→* C, its Fourier transform is

$$
\forall x \in G, \quad \widehat{f}(x) \stackrel{\text{def}}{=} \frac{1}{\sqrt{\sharp G}} \sum_{y \in G} f(y) \overline{\chi_x}(y)
$$

Notice that:

$$
\widehat{f}(x) = \left\langle f, \frac{x^x}{\sqrt{\sharp G}} \right\rangle \text{ where } \langle \cdot, \cdot \rangle \text{ is the standard scalar product over functions, } \langle f, g \rangle \stackrel{\text{def}}{=} \sum_{x \in G} f(x) \overline{g}(x)
$$
\n
$$
\left(\frac{x^x}{\sqrt{\sharp G}}\right)_{x \in G} \text{ orthonormal basis for this scalar product and } \widehat{f}(x): x \text{-th coefficient of } f \text{ in this basis}
$$

Exercise:

Compute the Fourier transform of the following functions F *n* ² *−→* C,

- $f(0) = 1$ and 0 otherwise
- \forall **x** ∈ \mathbb{F}_2^n , f (**x**) = $\frac{1}{2^n}$
- *•* Does it remind you of something?

−→ In particular: *∀x ∈ G*, QFT*^G |xi* = *[√]*¹ *♯G* P *^y∈^G χy*(*x*) *|yi*

 $\left(\text{It corresponds to the fact that } \widehat{\delta}_x(y) = \frac{\overline{x}y(x)}{\sqrt{\sharp G}} \text{ where } \delta_x \text{ is the Kronecker symbol and } \delta_x = \|x\| \text{ and } \delta_y = \overline{\delta}_x \text{ and } \delta_z = \overline{\delta}_z \text{ and } \delta_z = \overline{\delta}_z \text{ and } \delta_z = \overline{\delta}_z \text{ and } \delta_z = \over$

Exercise:

Show that $|\psi_f\rangle$ is a quantum state

Formally, given any finite group G: $\big(\ket{\mathsf{x}}\big)_{\mathsf{x}\in\mathsf{G}}$ denotes an orthonormal basis of an Hilbert space of dimension *♯G*

Given **x**, what is the cost for $\left($ classically $\right)$ computing $\widehat{f}(x)$?

Given **x**, what is the cost for $\left($ classically $\right)$ computing $\widehat{f}(x)$?

 \longrightarrow It costs \sharp *G* (it is needed \sharp *G* additions) \ldots Be careful: in practice \sharp *G* = 2ⁿ

What is the cost for $\left($ classically $\right)$ computing \widehat{f} , namely all the $\widehat{f}(\mathsf{x})$'s?

Given **x**, what is the cost for $\left($ classically $\right)$ computing $\widehat{f}(x)$?

 \longrightarrow It costs \sharp *G* (it is needed \sharp *G* additions) \ldots Be careful: in practice \sharp *G* = 2ⁿ

What is the cost for $\left($ classically $\right)$ computing \widehat{f} , namely all the $\widehat{f}(\mathsf{x})$'s?

→ It costs naively $(\sharp G)^2$

We can do much better to compute \widehat{f}

The Fast Fourier Transform (FFT): computing \widehat{f} costs *O* (♯G log ♯G) $\,\,\bigg(\,$ in most cases. . . $\bigg)$

Suppose that
$$
G = \mathbb{Z}/2^n\mathbb{Z}
$$
, in particular $\sharp G = 2^n$

$$
N \stackrel{\text{def}}{=} 2^n
$$
 and $\omega_N \stackrel{\text{def}}{=} e^{-\frac{2i\pi}{N}}$

Divide and conquer strategy:

$$
\widehat{f}(j) = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{N-1} f(k) \omega_N^{jk}
$$
\n
$$
= \frac{1}{\sqrt{N}} \left(\sum_{k \text{ even}} f(k) \omega_N^{-jk} + \omega_N^j \sum_{k \text{ odd}} f(k) \omega_N^{j(k-1)} \right)
$$
\n
$$
= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{N/2}} \sum_{k \text{ even}} f(k) \omega_{N/2}^{j/2k} + \omega_N^{-j} \frac{1}{\sqrt{N/2}} \sum_{k \text{ odd}} f(k) \omega_{N/2}^{j/2(k-1)} \right)
$$

→→ Therefore we reduce the computation of $\widehat{f}(j)$ to two Fourier transforms over $\mathbb{Z}/2^{n-1}\mathbb{Z}$

Cost:
$$
T(2^n) = 2T(2^{n-1}) + O(2^n)
$$
, therefore $T(2^n) = O(2^n \log(2^n)) = O(n2^n)$
rec. calls

FAST QUANTUM FOURIER TRANSFORM

Computing the quantum Fourier transform:

- \bullet QFT_G can be implemented in the quantum gate model in time *O* (log³ ‡G) for any finite Abelian group *G*
- \bullet $\mathsf{QFT}_{\mathbb{Z}/\mathbb{N}\mathbb{Z}}$ can be implemented in time $\mathit{O}\Big(\mathsf{log}^3\,\mathsf{N}\Big)$ in the quantum gate model
- \bullet $\mathsf{QFT}_{\mathbb{Z}/2^n\mathbb{Z}}$ can be implemented in time $\mathit{O}\left(n^2\right)$ in the quantum gate model $\bigl($ here $n = \log 2^n = \log \sharp (\mathbb{Z}/2^n \mathbb{Z})$
- \bullet $\mathsf{QFT}_{\mathbb{Z}/2^n\mathbb{Z}}$ can be implemented up to some accuracy a in time $O\Big(n\log n\Big)$ in the quantum gate model
- \bullet $\mathsf{QFT}_{\mathbb{F}_2^n}$ can be implemented in time $\mathsf{only}\ O(n)$ in the quantum gate model

a for the norm operator

−→ Exponentially faster than computing the classical Fourier transform, even with the FFT trick which is for instance $O(n2^n)$ in the case of $\mathbb{Z}/2^n\mathbb{Z}$

Quantum Fourier Transform over \mathbb{F}_2^n $\big(\text{the set }\{0,1\}^n$ with the \oplus operation term by term $\big)$?

 $→$ Characters are given by $χ_x(y) = (-1)^{x \cdot y}$ where $x \cdot y = \sum_{i=1}^{n} x_i y_i$

$$
\widehat{f}(\mathsf{x}) = \frac{1}{\sqrt{2^n}} \sum_{\mathsf{y} \in \mathbb{F}_2^n} (-1)^{\mathsf{x} \cdot \mathsf{y}} f(\mathsf{y})
$$

Quantum Fourier Transform in $\mathbb{F}_{2}^{n}\left(\mathsf{QFT}_{\mathbb{F}_{2}^{n}}\right)$:

$$
QFT_{\mathbb{F}_2^n} |x\rangle = \frac{1}{\sqrt{2^n}} \sum_{y \in \mathbb{F}_2^n} (-1)^{x \cdot y} |y\rangle
$$

→→ QFT_{\mathbb{F}_2^n} = H^{⊗*n*} and its cost: *O*(*n*)

QUANTUM FOURIER TRANSFORM QFT*z/*² *nz*

Give an efficient quantum circuit for computing $\mathsf{QFT}_{\mathbb{Z}/2^n\mathbb{Z}}$

Gates that we will use:

$$
H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} Hadamard \end{pmatrix} \quad R_s = \begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{2i\pi}{2}} \end{pmatrix} \text{ (Phase rotation)}
$$

$$
C\text{-}R_s : \begin{cases} |0\rangle |x\rangle \mapsto |0\rangle |x\rangle \\ |1\rangle |x\rangle \mapsto |1\rangle R_s |x\rangle \end{cases} \text{ (Controlled-Rs)}
$$

FIRST REMARK: DECOMPOSE THE OPERATOR

Notation:

For any integer $j \in [0, 2^n - 1]$, binary decomposition $j = j_1 \ldots j_n$ where j_1 is the most significant bit

$$
j=\sum_{\ell=1}^n 2^{n-\ell}j_\ell
$$

For any $x \in [0, 2^n - 1]$,

$$
|X\rangle=|X_1,\ldots,X_n\rangle
$$

$$
QFT_{\mathbb{Z}/2^{n_{\mathbb{Z}}}}|k\rangle = \frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1} e^{\frac{2i\pi k \cdot j}{2^{n}}} |j\rangle
$$

\n
$$
= \frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1} e^{2i\pi k \cdot (\sum_{\ell=1}^{n} 2^{-\ell} i_{\ell})} |j_{1}, \dots, j_{n}\rangle
$$

\n
$$
= \frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1} \prod_{\ell=1}^{n} e^{2i\pi k \cdot 2^{-\ell} i_{\ell}} |j_{1}, \dots, j_{n}\rangle
$$

\n
$$
= \bigotimes_{\ell=1}^{n} \left(\frac{|0\rangle + e^{2i\pi k \cdot 2^{-\ell}}|1\rangle}{\sqrt{2}} \right)
$$

 \longrightarrow **QFT**_{ℤ/2}n_ℤ |k⟩ is a separable quantum state!

Be careful: we crucially use the fact that we work in $\mathbb{Z}/2^n\mathbb{Z}$ *ⁿ*^Z ³⁶

FIRST REMARK: DECOMPOSE THE OPERATOR

How to compute
$$
\bigotimes_{\ell=1}^n \left(\frac{|0\rangle + e^{2i\pi k \cdot 2^{-\ell}}|1\rangle}{\sqrt{2}} \right)
$$
?

Idea: write the binary decomposition of *k ·* 2 *−ℓ*

$$
e^{2i\pi k \cdot 2^{-\ell}} = e^{2i\pi \left(\sum_{m=1}^{n} 2^{n-m-\ell} k_m\right)}
$$

\n
$$
= e^{2i\pi \left(\sum_{m=n-\ell+1}^{n} 2^{n-m-\ell} k_m\right)} \quad \text{(if } m \le n-\ell, \text{ then } 2^{n-m-\ell} \in \mathbb{N}\text{)}
$$

\n
$$
= e^{2i\pi \left(\sum_{m=1}^{\ell} 2^{-m} k_{n-\ell+m}\right)} \quad (n-\ell - m_{\text{old}} \longleftrightarrow -m_{\text{new}})
$$

$$
\frac{|0\rangle + e^{2i\pi k \cdot 2^{-\ell}}|1\rangle}{\sqrt{2}} = \frac{|0\rangle + e^{2i\pi 0 \cdot k_n - \ell + 1 \cdots k_n}|1\rangle}{\sqrt{2}}
$$

where for any integer $j = j_1 \ldots j_p$

$$
0.j_1 \t\t\t\ldots j_p \stackrel{\text{def}}{=} \frac{j}{2^p} = \sum_{\ell=1}^p 2^{-\ell} j_\ell
$$

$\mathsf{QFT}_{\mathbb{Z}/2^n\mathbb{Z}}\ket{k}$ is equal to:

$$
\left(\frac{|0\rangle + e^{2i\pi 0.\,k_{n}}\,|1\rangle}{\sqrt{2}}\right)\bigotimes \left(\frac{|0\rangle + e^{2i\pi 0.\,k_{n-1}k_{n}}\,|1\rangle}{\sqrt{2}}\right)\bigotimes \cdots \bigotimes \left(\frac{|0\rangle + e^{2i\pi 0.\,k_{1}k_{n-1}}e^{\cdots k_{n}}\,|1\rangle}{\sqrt{2}}\right)
$$

where

$$
k = \sum_{\ell=1}^n 2^{n-\ell} k_\ell \in [\![0,2^n-1]\!]\! \text{ and } 0.k_n \ldots k_{n+1-p} = \sum_{\ell=1}^p 2^{-\ell} k_{n+1-\ell} \in [0,1]
$$

To build this quantum state, we will crucially use:

$$
\mathbf{C}\cdot\mathbf{R}_s |b\rangle |1\rangle = |b\rangle e^{\frac{2i\pi b}{2^5}} |1\rangle = |b\rangle e^{2i\pi 0.0^{5}-1}b |1\rangle \quad \text{where } 0.0^{5-1}b = 0.\underbrace{0...0b}_{s \text{ times}}
$$
\n
$$
\mathbf{C}\cdot\mathbf{R}_s |b\rangle |0\rangle = |b\rangle |0\rangle
$$

Aim: starting from $|R_1, k_2, k_3\rangle$ building

$$
\left(\frac{|0\rangle+e^{2i\pi 0. k_3}\,|1\rangle}{\sqrt{2}}\right)\bigotimes \left(\frac{|0\rangle+e^{2i\pi 0. k_2 k_3}\,|1\rangle}{\sqrt{2}}\right)\bigotimes \left(\frac{|0\rangle+e^{2i\pi 0. k_1 k_2 k_3}\,|1\rangle}{\sqrt{2}}\right)
$$

1. Sending $|R_3\rangle$ through H:

$$
|k_3\rangle \xrightarrow{H} \frac{|0\rangle + (-1)^{k_3} |1\rangle}{\sqrt{2}} = \frac{|0\rangle + e^{2i\pi 0.k_3} |1\rangle}{\sqrt{2}} \qquad \left(0.k_3 = 0 \text{ if } k_3 = 0 \text{ or } \frac{1}{2} \text{ if } k_3 = 1\right)
$$

1. Sending $|k_3\rangle$ $|k_2\rangle$ through $I_2 \otimes H$ and then C-R₂:

$$
|k_3\rangle |k_2\rangle \xrightarrow{l_2 \otimes H} |k_3\rangle \xrightarrow{|0\rangle + e^{2i\pi 0.k_2} |1\rangle} \xrightarrow{c - R_2} |k_3\rangle \xrightarrow{|0\rangle + e^{2i\pi 0.0k_3} e^{2i\pi 0.k_2} |1\rangle} = |k_3\rangle \xrightarrow{|0\rangle + e^{2i\pi 0.k_2k_3} |1\rangle}
$$

3. Sending $|k_3\rangle$ $|k_2\rangle$ $|k_1\rangle$ through the following circuit:

Combining this with the previous circuit gives almost the good state not in the good order: swap!

3. Sending $|k_3\rangle$ $|k_2\rangle$ $|k_1\rangle$ through the following circuit:

Combining this with the previous circuit gives almost the good state not in the good order: swap!

GENERAL CASE

The general case $\mathbb{Z}/2^n\mathbb{Z}$ will follow the same pattern: $O(n^2) + n \cdot \textsf{SWAP} = O(n^2) = O\left(\frac{(\log 2^n)^2}{n^2}\right)$ gates

−→ In particular gates *R*2*, . . . , Rⁿ* are used!

But
$$
R_s = \begin{pmatrix} 1 & 0 \ 0 & \frac{2i\pi}{2^s} \end{pmatrix}
$$
 is very close to the identity if $s \gg \log n$

If one allows errors: removing all the R_s for $\mathsf{s}\geq\mathsf{C}\log n$ $\big(\mathsf{with}\ \mathsf{C}\ \mathsf{constant}\big)$ will lead to the result with accuracy $\leq \frac{1}{n}$

GENERAL CASE: THE QUANTUM CIRCUIT

EXERCISE SESSION