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THE OBJECTIVE OF THE DAY

• Grover’s algorithm

• Introduction to the Quantum Fourier Transform
(
QFT
)
but by starting with the classical case!
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COURSE OUTLINE

1. Grover’s Search Algorithm

2. Amplitude Amplification

3. Introduction to the Discrete Fourier Transform

4. Quantum Fourier Transform
(
QFT
)
over Z/2nZ

(
integers modulo 2n

)
: QFTZ/2nZ
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GROVER’S SEARCH ALGORITHM



AT THE ORIGIN

Given some list L, what is the cost for classically finding a fixed x0?

−→ It is, a priori, ♯L!

But is it always the case?

No!

If the list L has some “structure” it can be helpful:

▶ Sorted list: time log ♯L with a binary search

▶ Hash table: constant time
(
in the average/amortized complexity model

)

Our aim with Grover’s algorithm: treating quantumly the case where we are given a list without

any structure
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THE PROBLEM

Search problem:

• Input: a function f : {0, 1}n −→ {0, 1}

• Goal: find x ∈ {0, 1}n such that f(x) = 1

−→ Can be viewed as a model of data search in an unstructured database
(
x, f(x)

)
x∈{0,1}n

of size 2n
(
exponential

)

Finding a solution:

Let N def
= ♯{0, 1}n = 2n and t def= ♯

{
x ∈ {0, 1}n : f(x) = 1

}
• Classically a randomized algorithm would need Θ

(
N
t

)
queries to f and in time O

(
N
t Cost(f)

)
• Grover can solve this problem with only O

(√
N
t

)
queries to f and in time O

(√
N
t Cost(f)

)
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GROVER: AN IMPORTANT IMPROVEMENT

Symmetric cryptography: exhaustive search for the secret key with 128 bits in AES
(
encryption

)
requires 2128 classical operations

−→ Quantumly: 264 operations which is reachable. . .

Consequence:

−→ All secret keys in symmetric encryption have to be size ×2
(
at least. . .

)

Grover offers a generic attack against symmetric encryption schemes, but there are many other

ways of taking advantage of quantum computers. . .

• Breaking Symmetric Cryptosystems using Quantum Period Finding. M. Kaplan, G. Leurent,

A. Leverrier, M. Naya-Plasencia

https://arxiv.org/pdf/1602.05973
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AN OPTIMAL COMPLEXITY

Lower bound:

Any algorithm solving the search problem for f : {0, 1}n −→ {0, 1} with t solutions needs to

make

Ω

(√
2n
t

)
queries to f

−→ Grover’s algorithm is “optimal”
(
up to constants

)
in the number of queries to f

A good/bad news:

If Grover’s search problem was solvable in time logc 2n = nc : any NP-problem could be solvable(
with good probability

)
in polynomial time with a quantum computer. . .

−→ There are lower-bounds for the running time of quantum algorithms solving some problems!

• Lecture notes by Ronald de Wolf , Chapter 11

https://arxiv.org/pdf/1907.09415.pdf

7

https://arxiv.org/pdf/1907.09415.pdf


IDEA: SPLIT YOUR QUANTUM STATE

First, with quantum parallelism, we build:

|ψ〉 def=
1
√
2n

∑
x∈{0,1}n

|x〉 |f(x)〉

(I) Fundamental idea of Grover’s algorithm:

Write |ψ〉 as:

|ψ〉 = sin θ
∣∣ψgood〉 + cos θ |ψbad〉 where



∣∣ψgood〉 = 1√
t
∑

x∈{0,1}n
f(x)=1

|x〉 |f(x)〉

|ψbad〉 = 1√
2n−t

∑
x∈{0,1}n
f(x)=0

|x〉 |f(x)〉

with
∣∣ψgood〉 and |ψbad〉 are quantum states by definition of t

(
number of solutions

)

But what is the value of θ?

−→ θ is such that sin θ√
t = 1√

2n
⇐⇒ θ = arcsin

√
t
2n

(
we need to know t to know θ

)
(II) Fundamental idea of Grover’s algorithm:

Move θ to π
2 ! 
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THE ANGLE θ?

|ψ〉 = sin θ
∣∣ψgood〉 + cos θ |ψbad〉 where

∣∣ψgood〉 uniform superposition of solutions

What is θ when there are few solutions, namely t� 2n?

−→ sin θ =
√

t
2n , therefore θ ≈

√
t
2n ≈ 0 and |ψ〉 ≈ |ψbad〉
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PICTURING THE ALGORITHM

Exercise Session 4: we can make reflections over a quantum state!

We start by building |ψ〉

|ψbad〉

∣∣ψgood〉

|ψ〉
θ
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PICTURING THE ALGORITHM

Exercise Session 4: we can make reflections over a quantum state!

and so on up to π/2 . . .

|ψbad〉

∣∣ψgood〉

|ψ〉
θ

3θ

4θ

Number k of iterations to reach
∣∣ψgood〉: θ −→ (2k + 1)θ

Choose the number k of iterations
(
reflections over |ψbad〉 and |ψ〉

)
such that

(2k + 1)θ =
π

2
⇐⇒ k =

π

4θ
−

1
2
=

π

4 arcsin
√

t
2n

−
1
2
≈
π

4

√
2n

t

 

10



HOW TO COMPUTE THE REFLECTIONS

∣∣ψgood〉 =
1
√
t

∑
x∈{0,1}n
f(x)=1

|x〉 |f(x)〉 and |ψbad〉 =
1

√
2n − t

∑
x∈{0,1}n
f(x)=0

|x〉 |f(x)〉

Reflection R|ψbad〉 over |ψbad〉:

Id⊗ Z : |x〉 |b〉 7−→ (−1)b |x〉 |b〉

Reflection R|ψ⟩ over |ψ〉:

Exercise Session 4: we can build a reflection R|ψ⟩ over |ψ〉 with O(n) elementary gates and two
calls to U which is such that

U
∣∣0n〉 |0〉 = |ψ〉 ( = 1√

2n
∑

x∈{0,1}n |x〉 |f(x)〉
)

−→ Choose U = Uf ·
(
H⊗n ⊗ Id

)

−→ In Grover’s algorithm we crucially used that |ψ〉 can be built!
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ALGEBRAIC STATEMENT

Proposition:

We have:

cosα |ψbad〉 + sinα
∣∣ψgood〉 R|ψ⟩R|ψbad〉−−−−−−−−→ cos (2θ + α) |ψbad〉 + sin (2θ + α)

∣∣ψgood〉

Proof:

|ψ〉 = cos θ |ψbad〉 + sin θ
∣∣ψgood〉 ⊥ ∣∣∣ψ⊥

〉
= sin θ |ψbad〉 − cos θ

∣∣ψgood〉
From there:

|ψbad〉 = cos θ |ψ〉 + sin θ
∣∣∣ψ⊥

〉
and

∣∣ψgood〉 = sin θ |ψ〉 − cos θ
∣∣∣ψ⊥

〉
By definition of the reflections and trigonometric rules:

R|ψ⟩R|ψbad〉
(
cosα |ψbad〉 + sinα

∣∣ψgood〉) = R|ψ⟩
(
cosα |ψbad〉 − sinα

∣∣ψgood〉)
= R|ψ⟩ (cosα cos θ − sinα sin θ) |ψ〉 + (cosα sin θ + sinα cos θ)

∣∣∣ψ⊥
〉

= cos(α + θ) |ψ〉 − sin(α + θ)
∣∣∣ψ⊥

〉
= (cos(α + θ) cos θ − sinα sin(θ + α)) |ψbad〉 + (cos (α + θ) sin θ + sin(α + θ) cos θ)

∣∣ψgood〉
= cos (2θ + α) |ψbad〉 + sin (2θ + α)

∣∣ψgood〉
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GROVER’S ALGORITHM

Grover’s algorithm:

1. Build |ψ〉 = cos θ |ψbad〉 + sin θ
∣∣ψgood〉

2. Apply k times the unitary R|ψ⟩R|ψbad〉 on the quantum state |ψ〉

3. Measure, if the last qubit is 1 return the first n qubits; otherwise repeat from Step 1

Probability of success
(
use the previous proposition

)
:

Pk = sin2 (2kθ + θ)

How to choose the number of iterations k?

Choose k def
=
⌈(
π
2 − θ

) 1
2θ
⌉
, then

(
again some calculations

)
:

Pk ≥
1
4

and k = O
(√

2n

t

)
as θ = arcsin

√
t
2n
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TO SUMMARIZE

Grover’s algorithm finds a solution with constant probability(
bounded away from 0 by a constant

)
by running the unitary R|ψ⟩R|ψbad〉 a O

(√
2n
t

)
number of times

▶ R|ψbad〉 = Id⊗ Z: one quantum gate

▶ R|ψ⟩ : O(n) quantum gates + 2 calls to U = Uf
(
H⊗n ⊗ Id

)

Cost of Grover’s algorithm:

The cost of Grover’s algorithm to find a solution, with constant probability, in the quantum gate

model is given by

O
(√

2n

t
max(n, Tf)

)

where Tf is the classical running time to compute f
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ISSUES

• Need to run the algorithm
⌈(
π
2 − θ

)⌉ 1
2θ where θ = arcsin

√
t
2n and therefore to know t. . .

−→ If number of iterations chosen too large, the success probability sin
(
(2k + 1)θ

)2
goes down!

• if t is known, can we tweak the algorithm to end up in exactly the good state, namely Pk = 1?

 

−→ Exercise Session to overcome these issues!
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AMPLITUDE AMPLIFICATION



THE PROBLEM

A be a classical/quantum algorithm that can find a solution x
(
i.e., f(x) = 1

)
with probability p

−→ One can repeat O
(
1
p

)
times A to find a solution with constant probability

Why?

Amplitude amplification:

Assume you have a classical or quantum algorithm A
(
without measurement

)
that can find

a solution x to the search problem
(
f(x) = 1

)
in time T with probability p

If f is computable in time Tf , then we can compute
(
quantumly

)
a solution in time

O
(

T√p max(n, Tf)
)
with success probability ≥ C

(
constant

)
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GENERALIZATION OF GROVER’S ALGORITHM?

Pick a random x ∈ {0, 1}n and output x

−→ This algorithm runs in time O(n) and it finds a solution with probability p = t
2n

Using amplitude amplification: you can find a solution in time ≈
√

2n
t

 

Grover: quantization of the random search in an unstructured data set. . .

 

Amplitude amplification is more useful when we know algorithms better than random search

−→ It also gives a quadratic speed-up for these algorithms!
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THE ALGORITHM

Lecture 4:

If A is quantum: measurements only at the end of the computation and starts from
∣∣0m〉

−→ Before the final measurement: A outputs a state |ψ〉, and measuring the output register

gives a solution x with probability p

A
∣∣0m〉 = |ψ〉 =

∑
x∈{0,1}n αx |x〉 |φx〉 , where

∑
x:f(x)=1 |αx|

2 = p

Write:
|ψ〉 = sin θ

∣∣ψgood〉 + cos θ |ψbad〉 where
∣∣ψgood〉 def

=
1

sin θ

∑
x∈{0,1}n
f(x)=1

αx |x〉 |φx〉

where sin θ =
√
p

Run Grover’s algorithm with the reflections R|ψbad〉 : |x〉 |y〉 7→ (−1)f(x) |x〉 |y〉
(
see Exercise

Session 1 to compute this unitary
)
and R|ψ⟩ over |ψ〉 but:

R|ψ⟩ 6= O(n) quantum gates + 2 calls to U = Uf
(
Hn ⊗ I2

)
which was designed to build

1√
2n
∑

x |x〉 |f(x)〉 . . .

Amplitude amplification: R|ψ⟩ is O(n) quantum gates + 1 call to U = A and 1 call to U−1 = A−1
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BE CAREFUL

When performing amplitude amplification on a quantum algorithm A, we supposed it performs

no measurements
(
at least we restrict A before its final measurement

)

−→ To be able to performA−1
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AMPLITUDE AMPLIFICATION IS MAKING SOMETHING STRONG

Grover’s search algorithm in amplitude amplification shows a strong statement. Given

|ψ〉 = α |ψV〉+β
∣∣∣ψ⊥

V

〉
where |ψV〉 ∈ Span

(
|x〉 : f(x) = 1

)
and

∣∣∣ψ⊥
V

〉
∈ Span

(
|x〉 : f(x) = 1

)⊥

After amplitude amplification:
∣∣ψ′〉 ≈ |ψV〉(

even equal with exact grover when amplitude α is known
)

Be careful:

To run amplitude amplification: you need to be able to build |ψ〉 . . .
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APPLICATION: HOW DO WE QUANTUMLY COMPUTE RANDOMIZED ALGORITHMS?

Lecture 4: given a deterministic A, one can run UA in ≈ same time

If A is randomized?

Classical modelization
(
think of R as the seed of a pseudo-random generator

)
:

A : pick a random R ∈ {0, 1}r, compute A(R) to get some outcome xR

−→ Randomness chosen at the beginning: the algorithm can be interpreted as deterministic

UA(|R〉 |y〉) = |R〉 |y + xR〉

  ∣∣0r〉 ∣∣0n〉 H⊗r⊗Id−−−−−→
1
√
2r

∑
R∈{0,1}r

|R〉
∣∣0n〉 UA−−→

1
√
2r

∑
R∈{0,1}r

|R〉 |xR〉

measuring outputs a solution with probability p 

−→ We can use amplitude amplification on this algorithm!(
the quantum algorithm finds a solution in time Cost(A)√p instead of Cost(A)

p classically
)
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DISCRETE FOURIER TRANSFORM



A LITTLE BIT OF FINITE GROUP THEORY

• (G,+) be a finite Abelian group

• Character group: Ĝ = {χg : g ∈ G} ∼= G

• Set of characters: homomorphism from G to the unit complex circle U = {z ∈ C : |z| = 1}

χg : G −→ U
x 7−→ χg(x), such that

∀x, y ∈ G, χg(x + y) = χg(x) · χg(y)

Examples:

▶ G = Fn2 = F2 × · · · × F2︸ ︷︷ ︸
n times

with F2 binary field {0, 1} embedded with ⊕
(
addition modulo 2

)
∀x, y ∈ Fn2 , χx(y) = (−1)x·y where x · y =

n∑
i=1

xiyi

▶ G = Z/2nZ,

∀x, y ∈ Z/2nZ, χx(y) = e−
2iπxy
2n

Nice reading about characters on finite Abelian groups:

https://kconrad.math.uconn.edu/blurbs/grouptheory/charthy.pdf
24
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FUNDAMENTAL PROPERTIES OF CHARACTERS

∑
g∈G

χx(g)χy(g) =
{

♯G if χx = χy
0 otherwise and

∑
χ∈Ĝ

χ(x)χ(y) =
{

♯G if x = y
0 otherwise

• The matrix
(
χx(y)√
♯G

)
x,y∈G

is unitary, in particular:(
χx√
♯G

)
x∈G

is an orthonormal basis for the scalar product 〈f, g〉 =
∑
y∈G

f(y)g(y)

(
χx√
♯G

)
x∈G

sometimes called the “Fourier basis”

• The translation operator is diagonal in the Fourier basis

τa : (G→ C) −→ (G→ C)
f 7−→ τa(f) : x ∈ G 7→ f(x + a) then

τx(χy) = χy(a)︸ ︷︷ ︸
eigenvalue

· χy︸︷︷︸
eigenvector
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SOME EXERCISES OF THE EXERCISE SESSION

Exercise:

1. Prove that for any character χ ∈ Ĝ,

∑
g∈G

χ(g) =
{

♯G if χ = 1
0 otherwise

2. How do you deduce from that

∑
g∈G

χx(g)χy(g) =
{

♯G if χx = χy
0 otherwise

3. Consider the function fg

fg : Ĝ −→ C
χ 7−→ χ(g)

What can you say about fg?

4. How can you deduce from the previous point that we also have

∑
χ∈Ĝ

χ(x)χ(y) =
{

♯G if x = y
0 otherwise
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THE ORTHOGONAL SUBGROUP

Orthogonal subgroup:

For a subgroup H of G we denote by H⊥ the orthogonal subgroup defined by

H⊥ def
=
{
g ∈ G : ∀h ∈ H, χg(h) = 1

}

−→ Important concept in Simon’s algorithm and Shor’s algorithm!
(
see Lecture 4&6

)

∑
h∈H

χg(h) =
{

♯H if g ∈ H⊥

0 otherwise
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CLASSICAL FOURIER TRANSFORM

Fourier transform:

Given a finite abelian group G and f : G −→ C, its Fourier transform is

∀x ∈ G, f̂(x) def
=

1
√
♯G
∑
y∈G

f(y)χx(y)

Notice that:

f̂(x) =
〈
f,
χx√
♯G

〉
where 〈·, ·〉 is the standard scalar product over functions, 〈f, g〉 def=

∑
x∈G f(x)g(x)(

χx√
♯G

)
x∈G

orthonormal basis for this scalar product and f̂(x): x-th coefficient of f in this basis

Exercise:

Compute the Fourier transform of the following functions Fn2 −→ C,

• f(0) = 1 and 0 otherwise

• ∀x ∈ Fn2 , f(x) = 1
2n

• Does it remind you of something?
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CLASSICAL VERSUS QUANTUM FOURIER TRANSFORM

Classical Fourier Transform Quantum Fourier Transform: QFTG

f =
(
f(x)
)
x∈G

∣∣ψf〉 =
∑

x∈G f(x) |x〉
(
‖f‖2 = 1

)
f̂(x) = 1√

♯G
∑

y∈G f(y)χx(y) QFTG |ψ〉
def
=
∣̂∣ψf〉 =

∑
x∈G f̂(x) |x〉

−→ In particular: ∀x ∈ G, QFTG |x〉 = 1√
♯G
∑

y∈G χy(x) |y〉(
It corresponds to the fact that δ̂x(y) =

χy(x)√
♯G where δx is the Kronecker symbol and δx“=”|x〉

)

Exercise:

Show that
∣∣ψf〉 is a quantum state

Formally, given any finite group G:
(
|x〉
)
x∈G

denotes an orthonormal basis of an Hilbert space of

dimension ♯G
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COST FOR COMPUTING THE CLASSICAL FOURIER TRANSFORM

Given x, what is the cost for
(
classically

)
computing f̂(x)?

−→ It costs ♯G
(
it is needed ♯G additions

)
. . . Be careful: in practice ♯G = 2n

What is the cost for
(
classically

)
computing f̂, namely all the f̂(x)’s?

−→ It costs naively
(
♯G
)2

We can do much better to compute f̂

The Fast Fourier Transform
(
FFT
)
: computing f̂ costs O (♯G log ♯G)

(
in most cases. . .

)
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FAST FOURIER TRANSFORM: CLASSICAL CASE

Suppose that G = Z/2nZ, in particular ♯G = 2n

N def
= 2n and ωN

def
= e−

2iπ
N

Divide and conquer strategy:

f̂(j) =
1
√
2n

N−1∑
k=0

f(k)ωjkN

=
1
√
N

(∑
k even

f(k)ω−jk
N + ω

j
N

∑
k odd

f(k)ωj(k−1)
N

)

=
1
√
2

(
1√
N/2

∑
k even

f(k)ωj/2kN/2 + ω
−j
N

1√
N/2

∑
k odd

f(k)ωj/2(k−1)
N/2

)

−→ Therefore we reduce the computation of f̂(j) to two Fourier transforms over Z/2n−1Z

Cost: T(2n) = 2T(2n−1) + O(2n), therefore T(2n) = O(2n log
(
2n
)︸ ︷︷ ︸

rec. calls

) = O
(
n2n
)
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FAST QUANTUM FOURIER TRANSFORM

Computing the quantum Fourier transform:

• QFTG can be implemented in the quantum gate model in time O
(
log3 ♯G

)
for any finite

Abelian group G

• QFTZ/NZ can be implemented in time O
(
log3 N

)
in the quantum gate model

• QFTZ/2nZ can be implemented in time O
(
n2
)
in the quantum gate model

(
here

n = log 2n = log ♯(Z/2nZ)
)

• QFTZ/2nZ can be implemented up to some accuracy a in time O
(
n log n

)
in the quantum gate model

• QFTFn2 can be implemented in time only O(n) in the quantum gate model

a for the norm operator

−→ Exponentially faster than computing the classical Fourier transform, even with the FFT trick

which is for instance O(n2n) in the case of Z/2nZ
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A PARTICULAR CASE: HADAMARD TRANSFORM

Quantum Fourier Transform over Fn2
(
the set {0, 1}n with the ⊕ operation term by term

)
?

−→ Characters are given by χx(y) = (−1)x·y where x · y =
∑n

i=1 xiyi

f̂(x) =
1
√
2n
∑
y∈Fn2

(−1)x·y f(y)

Quantum Fourier Transform in Fn2
(
QFTFn2

)
:

QFTFn2 |x〉 =
1
√
2n
∑
y∈Fn2

(−1)x·y |y〉

−→ QFTFn2 = H⊗n and its cost: O(n)
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QUANTUM FOURIER TRANSFORM QFTz/2nz



OUR AIM

Give an efficient quantum circuit for computing QFTZ/2nZ

Gates that we will use:

H =
1
√
2

(
1 1
1 −1

) (
Hadamard

)
Rs =

(
1 0

0 e
2iπ
2s

) (
Phase rotation

)

C-Rs :


|0〉 |x〉 7→ |0〉 |x〉

|1〉 |x〉 7→ |1〉 Rs |x〉

(
Controlled-Rs

)
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FIRST REMARK: DECOMPOSE THE OPERATOR

Notation:

For any integer j ∈ J0, 2n− 1K, binary decomposition j = j1 . . . jn where j1 is the most significant bit

j =
n∑
ℓ=1

2n−ℓjℓ

For any x ∈ J0, 2n − 1K,
|x〉 = |x1, . . . , xn〉

QFTZ/2nZ |k〉 =
1
√
2n

2n−1∑
j=0

e
2iπk·j
2n |j〉

=
1
√
2n

2n−1∑
j=0

e2iπk·
(∑n

ℓ=1 2
−ℓ jℓ

)
|j1, . . . , jn〉

=
1
√
2n

2n−1∑
j=0

n∏
ℓ=1

e2iπk·2
−ℓ jℓ |j1, . . . , jn〉

=
⊗n
ℓ=1

(
|0⟩+e2iπk·2

−ℓ
|1⟩√

2

)

−→ QFTZ/2nZ |k〉 is a separable quantum state!

Be careful: we crucially use the fact that we work in Z/2nZ 36



FIRST REMARK: DECOMPOSE THE OPERATOR

How to compute
⊗n
ℓ=1

(
|0⟩+e2iπk·2

−ℓ
|1⟩√

2

)
?

Idea: write the binary decomposition of k · 2−ℓ

e2iπk·2
−ℓ

= e
2iπ
(

n∑
m=1

2n−m−ℓkm

)

= e
2iπ

 n∑
m=n−ℓ+1

2n−m−ℓkm

 (
if m ≤ n− ℓ, then 2n−m−ℓ ∈ N

)
= e

2iπ
(
ℓ∑

m=1
2−mkn−ℓ+m

)
(n− ℓ− mold ←→ −mnew)

|0〉 + e2iπk·2
−ℓ
|1〉

√
2

=
|0〉 + e2iπ0.kn−ℓ+1···kn |1〉

√
2

where for any integer j = j1 . . . jp

0.j1 . . . jp
def
=

j
2p

=

p∑
ℓ=1

2−ℓjℓ
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TO SUMMARIZE

QFTZ/2nZ |k〉 is equal to:

(
|0〉 + e2iπ0.kn |1〉

√
2

)⊗(
|0〉 + e2iπ0.kn−1kn |1〉

√
2

)⊗
· · ·
⊗(

|0〉 + e2iπ0.k1kn−ℓ···kn |1〉
√
2

)

where

k =
∑n
ℓ=1 2

n−ℓkℓ ∈ J0, 2n − 1K and 0.kn . . . kn+1−p =
∑p
ℓ=1 2

−ℓkn+1−ℓ ∈ [0, 1)

To build this quantum state, we will crucially use:

C-Rs |b〉 |1〉 = |b〉 e
2iπb
2s |1〉 = |b〉 e2iπ0.0

s−1b |1〉 where 0.0s−1b = 0. 0 . . . 0b︸ ︷︷ ︸
s times

C-Rs |b〉 |0〉 = |b〉 |0〉
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THE CASE 23

Aim: starting from |k1, k2, k3〉building(
|0〉 + e2iπ0.k3 |1〉

√
2

)⊗(
|0〉 + e2iπ0.k2k3 |1〉

√
2

)⊗(
|0〉 + e2iπ0.k1k2k3 |1〉

√
2

)

1. Sending |k3〉 through H:

|k3〉
H−→
|0〉 + (−1)k3 |1〉

√
2

=
|0〉 + e2iπ0.k3 |1〉

√
2

(
0.k3 = 0 if k3 = 0 or 1

2 if k3 = 1
)

1. Sending |k3〉 |k2〉 through I2 ⊗ H and then C-R2 :

|k3〉 |k2〉
I2⊗H
−−−→ |k3〉

|0〉 + e2iπ0.k2 |1〉
√
2

C-R2−−−→ |k3〉
|0〉 + e2iπ0.0k3e2iπ0.k2 |1〉

√
2

= |k3〉
|0〉 + e2iπ0.k2k3 |1〉

√
2

|k2〉 H R2 |0⟩+e2iπ0.k2k3 |1⟩√
2

|k3〉 H |0⟩+e2iπ0.k3 |1⟩√
2
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THE CASE 23

3. Sending |k3〉 |k2〉 |k1〉 through the following circuit:

|k1〉 H R2 R3 |0⟩+e2iπ0.k1k2k3 |1⟩√
2

|k2〉 |k2〉

|k3〉 |k3〉

Combining this with the previous circuit gives almost the good state not in the good order: swap!

QFT over Z/8Z:

|k1〉 H R2 R3

|k2〉 H R2

|k3〉 H

40
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GENERAL CASE

QFT over Z/8Z:

|k1〉 H R2 R3

|k2〉 H R2

|k3〉 H

The general case Z/2nZ will follow the same pattern: O(n2) + n · SWAP = O(n2) = O
( (

log 2n
)2 )

gates

−→ In particular gates R2, . . . , Rn are used!

But Rs =
(
1 0

0 e
2iπ
2s

)
is very close to the identity if s� log n

If one allows errors: removing all the Rs for s ≥ C log n
(
with C constant

)
will lead to the result

with accuracy ≤ 1
n

−→ In that case: only O(n log n) gates! 41



GENERAL CASE: THE QUANTUM CIRCUIT

. . .

. . . . . . . . .

. . . . . .

. . . . . .

|k1〉 H R2 Rn−1 Rn |0⟩+e2iπ0.kn |1⟩√
2

|k2〉 H Rn−2 Rn−1 |0⟩+e2iπ0.kn−1kn |1⟩√
2

...

|kn−1〉 H R2 |0⟩+e2iπ0.k2...kn |1⟩√
2

|kn〉 H |0⟩+e2iπ0.k1...kn |1⟩√
2
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