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THE OBJECTIVE OF THE DAY

o Grover's algorithm

o Introduction to the Quantum Fourier Transform (QFT) but by starting with the classical case!




COURSE OUTLINE

1. Grover's Search Algorithm
2. Amplitude Amplification
3. Introduction to the Discrete Fourier Transform

4. Quantum Fourier Transform (QFT) over Z/2"Z (integers modulo 2”): QFTz /507




GROVER’S SEARCH ALGORITHM



AT THE ORIGIN

Given some list L, what is the cost for classically finding a fixed xo?
— Itis, a priori, gL!

But is it always the case?



AT THE ORIGIN

Given some list L, what is the cost for classically finding a fixed xo?
— Itis, a priori, gL!

But is it always the case? No!

If the list L has some “structure” it can be helpful:
P Sorted list: time log #L with a binary search

P> Hash table: constant time (in the average/amortized complexity model)

Our aim with Grover's algorithm: treating quantumly the case where we are given a list without
any structure J




THE PROBLEM

Input: a function f: {0,1}" — {0,1}

Goal: find x € {0,1}" such that f(x) = 1

— Can be viewed as a model of data search in an (x,f(x)) 0.0
xe{0,

of size (exponential)

Finding a solution:

Let N % 4{0,1}" = 2"

e Classically a randomized algorithm would need @(%) queries to fand in time O(% Cost(f))

e Grover can solve this problem with only O ( ) queries to fand in time O (ﬁ Cost(f))




GROVER: AN IMPORTANT IMPROVEMENT

Symmetric cryptography: exhaustive search for the secret key with 128 bits in AES (encryption)

requires 2°° classical operations

— Quantumly: 2" operations which is reachable. . .

Consequence:

— All secret keys in symmetric encryption have to be size x2 (at least. .. ) J

Grover offers a generic attack against symmetric encryption schemes, but there are many other

ways of taking advantage of quantum computers. . .

e Breaking Symmetric Cryptosystems using Quantum Period Finding. M. Kaplan, G. Leurent,

A. Leverrier, M. Naya-Plasencia

https://arxiv.org/pdf/1602.05973


https://arxiv.org/pdf/1602.05973

AN OPTIMAL COMPLEXITY

Lower bound:

Any algorithm solving the search problem for f: {0,1}" — {0, 1} with t solutions needs to

make

Q («/%) queries to f

— Grover's algorithm is “optimal” (up to constants) in the number of queries to f

A good/bad news:

If Grover’s search problem was solvable in time log® 2" = n: any NP-problem could be solvable

(with good probability) in polynomial time with a quantum computer. . .

—— There are lower-bounds for the running time of quantum algorithms solving some problems!

e Lecture notes by Ronald de Wolf, Chapter 11

https://arxiv.org/pdf/1907.09415.pdf


https://arxiv.org/pdf/1907.09415.pdf

IDEA: SPLIT YOUR QUANTUM STATE

First, with quantum parallelism, we build:

9 ST If0)

(I) Fundamental idea of Grover’s algorithm:

Write |+) as:
Yeood) = 5 2 X IfX)
l ¢ d> ‘ﬂxe{on}”

1) = sin 6 [1hgooa ) + cos @ |1hpaq)  Where

Iwbad):\/;n—t 22 X))

T xe{0,1}"
(x)

with |wg00d> and |¢paq) are quantum states by definition of t (number of solutions)

But what is the value of 6?




IDEA: SPLIT YOUR QUANTUM STATE

First, with quantum parallelism, we build:
def 1
lp) = = ST %) 1A

xe{0,1}1

(1) Fundamental idea of Grover’s algorithm:

Write |+) as:
Yeood) = 5 2 X IfX)
l ¢ d> ‘ﬂxe{on}”

1) = sin 6 [1hgooa ) + cos @ |1hpaq)  Where

Iwbad):\/;nf 22 X))

L xe{0,1}"
(x)

with |¢good> and |¢paq) are quantum states by definition of t (number of solutions)

But what is the value of 6?

— @ is such that =% — —= <= 0 = arcsin \ 7 (we need to know t to know 0)

(1) Fundamental idea of Grover’s algorithm:

Move 6 to Z! J
8




THE ANGLE 67?

[p) = sin 0 |hgooq) + cos O [Yhpag) Where |thgo0q) uniform superposition of solutions

What is @ when there are few solutions, namely t < 2"?




THE ANGLE 67?

[p) = sin 0 |hgooq) + cos O [Yhpag) Where |thgo0q) uniform superposition of solutions

What is @ when there are few solutions, namely t < 2"?

—>sin0 = /5, therefore 6~ ,/3h =0 and [¢) = |tpaq)



PICTURING THE ALGORITHM

Exercise Session 4: we can make reflections over a quantum state!

We start by building |4)

|'¢’good>

)
[%bad)

l
A
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PICTURING THE ALGORITHM

Exercise Session 4: we can make reflections over a quantum state!

Reflection over |1)

|'¢’good>
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[%bad)



PICTURING THE ALGORITHM

Exercise Session 4: we can make reflections over a quantum state!

Reflection over |1paq)

|'¢’good>

)
"‘ [¥bad)



PICTURING THE ALGORITHM

Exercise Session 4: we can make reflections over a quantum state!

Reflection over |)

|'¢’good>

I )

— |



PICTURING THE ALGORITHM

Exercise Session 4: we can make reflections over a quantum state!

andsoonuptom/2...

|'¢’good>

I I

— |

Number k of iterations to reach |gooq ): 0 — (2k + 1)6

Choose the number k of iterations (reﬂections over [1paq) and |¢) ) such that

T 1 T [2"

T haresin gt 2 &V
on

™ s
2R+1)0 = — < k= — —
(2k+1) 2 460

N —

4 arcsin




HOW TO COMPUTE THE REFLECTIONS

1 1
gsos) = 2 D0 W) and e =~ 30 10 100)
\/Exe{ow}” mxe{oﬂ}”
Reflection oVer |tpag):
1d®2Z: [x) [b) —s (=1)°|x) |b) J
Reflection over [):

Exercise Session 4: we can build a reflection Ry, over [¢) with O(n) elementary gates and two
calls to U which is such that

U0 10) = 19) (= Zb Treqonyn I 1f0)) )

— Choose U = U - (H®” ® Id)

— In Grover’s algorithm we crucially used that !

1



ALGEBRAIC STATEMENT

Proposition:

We have:

R R
i [4) [, X
cos a [Ppad) +5'na|wgood> ﬂ) cos (20 + ) [hpag) + sin (20 + ) |"/)good>

Proof:
) = c08 0 |¥bag) +5in 6 [thg00a) L |%) = 5in 6 |4pag) — c058 |thgooa)
From there:
|¥aa) = cos0 ) +sin0 [t ) and  [goos) = sin09) — cos |y )
By definition of the reflections and trigonometric rules:
Ri) Riypag) (cos o [Yhpag) + sin o [1hgood )) = Rjyy (cos a [thpag) — sin o [Ygo0d))
= Ry (cos acos @ — sin asin ) |1)) + (cos asin 6 + sin a cos 6) |¢L>
= cos(a + 0) |4) — sin(a + 6) ]wi>

= (cos(ax + 0) cos 0 — sin ausin(0 + &) [1Pbag) + (cos (o + 6) sin 6 + sin(cx + 6) cos 0) |Pgo0d )
= COS( + O‘) I"Z)bad) + sin ( + 0‘) W)good> O




GROVER’S ALGORITHM

Grover's algorithm:
I. Build |9) = cos @ |)pag) + sin 6 ‘wgood>

2. Apply k times the unitary RW’>R\% g on the quantum state |¢)
a

Measure, if the last qubit is 1 return the first n qubits; otherwise repeat from Step 1

Probability of success (use the previous proposition):

P, = sin® (2k6 + 6)

How to choose the number of iterations k?




GROVER’S ALGORITHM

Build |¢) = cos 0 |1ppaq) + sin O iwgood>

Apply the unitary RW’>Ri%ad) on the quantum state |v)
Measure, if the last qubit is 1 return the first n qubits; otherwise repeat from Step 1 )
Probability of success (use the previous proposition):
Py = sin’ (2R6 + 0)
4

How to choose the ?

Choose k & [(z — 9) 25 | then (again some calculations):

1 20 i t
P,>- andk=0 — | as @ = arcsin\/ —
4 V7t V 2n




TO SUMMARIZE

Grover’s algorithm finds a solution with constant probability

(bounded away from 0 by a constant)

by running the unitary RW’>R|% 02 0 ( 4) number of times
a
> = :
R|wbad> Id ® Z: one quantum gate

> Rjyy: O(n) quantum gates + 2 calls to U = Uy (H®" @ Id)

Cost of Grover’s algorithm:

The cost of Grover’s algorithm to find a solution, with constant probability, in the quantum gate

0 (ﬁ max(n, Tf))

where Ty is the classical running time to compute f

model is given by

14



ISSUES

e Need to run the algorithm | (5 — 6) | 5, where 6 = arcsin 4 /Zi,, and therefore to know t. . .

— If number of iterations chosen too large, the success probability sin ((2& + 1)0)2

goes down!

e if tis known, can we tweak the algorithm to end up in exactly the good state, namely P, = 1?

— Exercise Session to overcome these issues!



AMPLITUDE AMPLIFICATION



THE PROBLEM

A be a classical/quantum algorithm that can find a solution x (i,e., flx) = 1) with probability p

— One can repeat O (%) times A to find a solution with constant probability

Why?




THE PROBLEM

A be a classical/quantum algorithm that can find a solution x (i,e., flx) = 1) with probability p

— One can repeat O (%) times A to find a solution with constant probability

Why?

Amplitude amplification:

Assume you have a classical or quantum algorithm A ( ) that can find

a solution x to the search problem (f(x) 1) in time T with probability

If fis computable in time Ty, then we can compute (quantumly) a solution in time

0 (i max(n, T,)) with success probability > C (constant)




GENERALIZATION OF GROVER’S ALGORITHM?

Pick a random x € {0, 1}" and output x

— This algorithm runs in time O(n) and it finds a solution with probability p = 57

Using amplitude amplification: you can find a solution in time ~ 4/ Q

Grover: quantization of the random search in an unstructured data set. . .

Amplitude amplification is more useful when we know algorithms better than random search

— It also gives a quadratic speed-up for these algorithms!



THE ALGORITHM

Lecture 4:

If A is quantum: measurements only at the end of the computation and starts from |Om>

— Before the final measurement: A outputs a state |+), and measuring the output register

gives a solution x with probability p

Al0™) = |¢) = 2oxefo,13n x 1X) [ox) , where 37, q lax|” = p

Write:

[¢) = sin@ |'¢'good> + cos 6 |ihpag) where W)good> &

where sin = \/p

1
e Z ax [X) |ex)
xe {0,1}"
(x)

19



THE ALGORITHM

Lecture 4:

If A is quantum: measurements only at the end of the computation and starts from |Om>

— Before the final measurement: A outputs a state |+), and measuring the output register

gives a solution x with probability p

Al0™) = |¢) = 2oxefo,13n x 1X) [ox) , where 37, q lax|” = p

Write: ] P
[¢) = sin@ |'¢'good> + cos 6 |ihpag) where ‘wgood> = Sino Z ax [X) [x)

x€{0,1}"
(X)

where sin = \/p

Run Grover’s algorithm with the reflections Ry, v« [x) |y) — (=1 |x) y) (see Exercise
al
Session 1to compute this unitary) and Ry over [¢) but:
Ry # O(n) quantum gates + 2 calls to U = Uy (H" ® 1) which was designed to build

= 2 X IFO) -

Amplitude amplification: Ry, is O(n) quantum gates + 1 callto U = Aand TcalltoU™" = AT 19



BE CAREFUL

When performing amplitude amplification on a quantum algorithm A, we supposed it performs
no measurements (at least we restrict A before its final measurement) J

— To be able to perform A

20



AMPLITUDE AMPLIFICATION IS MAKING SOMETHING STRONG

Grover's search algorithm in amplitude amplification shows a strong statement. Given
4
%) = alpu)+8 [y ) where [p) € Span( [x) < f(x) = 1) and |¢) € Span( Ix) : f(x) = 1)

After amplitude amplification: |¢") ~ |¢y)

(even equal with exact grover when amplitude « is known)

Be careful:

To run amplitude amplification: you need to be able to build [) . .. J

21



APPLICATION: HOW DO WE QUANTUMLY COMPUTE RANDOMIZED ALGORITHMS?

Lecture 4: given a deterministic A, one can run U 4 in & same time

If A is randomized?

Classical modelization (think of R as the seed of a pseudo-random generator):

A : pickarandom R € {0,1}", compute A(R) to get some outcome xg

— Randomness chosen at the beginning: the algorithm can be interpreted as deterministic

22



APPLICATION: HOW DO WE QUANTUMLY COMPUTE RANDOMIZED ALGORITHMS?

Lecture 4: given a deterministic A, one can run U 4 in & same time

If A is randomized?

Classical modelization (think of R as the seed of a pseudo-random generator):

A : pickarandom R € {0,1}", compute A(R) to get some outcome xg

— Randomness chosen at the beginning: the algorithm can be interpreted as deterministic

AR [Y)) = [R) |y + x&) )

0 ]07) £ 2 S R0 A 2 SR b

Re{0,1}1 Re{ow}f

measuring outputs a solution with probability p

— We can use amplitude amplification on this algorithm!

(the quantum algorithm finds a solution in time C°S\I/(EA) instead of COSL classmally)

22



DISCRETE FOURIER TRANSFORM



A LITTLE BIT OF FINITE GROUP THEORY

e (G, +) be a finite Abelian group
e Character group: G = {xg:9€G} =G

e Setof characters: homomorphism from G to the unit complex circle U = {z € C : |z| = 1}
Xg:6 — U
X > xg(x), such that

VX, ¥ € G, xg(X +Y) = xq(X) - xg(¥)

Examples:

> G=TF) =T, x --- x F, with F, binary field {0, 1} embedded with & (addition modulo z)
———
n times n
Wy €F), ) = (—1Y where x-y =3 xy,
i=1
> G=2/2"zZ,

_ 2imxy

WX,y € Z/2"Z, xx(y)=e 2

Nice reading about characters on finite Abelian groups:

https://kconrad.math.uconn.edu/blurbs/grouptheory/charthy.pdf
24


https://kconrad.math.uconn.edu/blurbs/grouptheory/charthy.pdf

FUNDAMENTAL PROPERTIES OF CHARACTERS

- otherwise
gea X€EG

ZXX(Q))TV(Q)Z{ gG gt?érj/i?ey and Zx(x)i(y)={ ﬁG it J

e The matrix (%) . is unitary, in particular:
x,y€

<&> is an orthonormal basis for the scalar product (f, g) = Zf(y)@(y)
V6 / xeo

yEG

XX i “ ier is”
(\/E)XEG sometimes called the “Fourier basis J

e The translation operator is diagonal in the Fourier basis

7:(G—>C) — (G—oC)
f +—  7a(f) : x € G f(x+ a) then

(xy) = xy(a) -+ xy
(N

eigenvalue eigenvector

25



SOME EXERCISES OF THE EXERCISE SESSION

Exercise:

1. Prove that for any character x € @,
o G ifx =1
Z x(9) = { 0 otherwise
geG
2. How do you deduce from that
= 16 ifxx = xy
gze:GXx(Q)Xy(Q) - { 0  otherwise

3. Consider the function f,

f93

X o)

—
—  x(9)

What can you say about f3?

4. How can you deduce from the previous point that we also have

. [ 46 ifx=y
D> x(Ox() = { 0  otherwise

x€6

26



THE ORTHOGONAL SUBGROUP

Orthogonal subgroup:

For a subgroup H of G we denote by H* the orthogonal subgroup defined by

HE déf{gec . VheH, Xg(h):1}

— Important concept in Simon'’s algorithm and Shor’s algorithm! (see Lecture 4&6)

_ [ tH ifgeHt
> xo(h) = { 0  otherwise J

heH

27



CLASSICAL FOURIER TRANSFORM

Fourier transform:

Given a finite abelian group G and f: G — C, its Fourier transform is

vxeG, fx & f S x)

y€EG

Notice that:

?( X) = <f, Vi where (-, -) is the standard scalar product over functions, (f, g) & > xes f(X)g(x)

( \X}) orthonormal basis for this scalar product and ?(x): x-th coefficient of fin this basis
%6/ xe6

Exercise:

Compute the Fourier transform of the following functions F; — C,

e f(0) =1and 0 otherwise
o VXxeF), f(x)=

e Does it remind you of something?

28



CLASSICAL VERSUS QUANTUM FOURIER TRANSFORM

Classical Fourier Transform Quantum Fourier Transform: OFT,

f= (1) |9 = Teea 100 ) (Il = 1)

X€G

00 = = 5, JOTW) QFTs [9) € o) = 36 FX) Ix

— In particular: Vx € G, QFT; |x —= 26 Xy (X) 1y

(It corresponds to the fact that §,(y) = Wf&) where §y is the Kronecker symbol and 6,"="|x) )
Exercise:

Show that |vy) is a quantum state

Formally, given any finite group G: ( [X) ) . denotes an orthonormal basis of an Hilbert space of
XE€

dimension #G

29



COST FOR COMPUTING THE CLASSICAL FOURIER TRANSFORM

Given x, what is the cost for (classically) computing?(x)? J

30



COST FOR COMPUTING THE CLASSICAL FOURIER TRANSFORM

Given x, what is the cost for (classically) computing?(x)? J

— It costs G (it is needed #G additions) ... Be careful: in practice §G = 2"

What is the cost for (classically) computingf namely all the?(x)’s? J
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COST FOR COMPUTING THE CLASSICAL FOURIER TRANSFORM

Given x, what is the cost for (classically) computingf(x)? J

— It costs G (it is needed #G additions) ... Be careful: in practice §G = 2"

What is the cost for (classically) computingf namely all the?(x)’s? J

. 2
— It costs naively (ﬁG)

We can do much better to compute? J

The Fast Fourier Transform (FFT): computing f costs O (4G log 4G) (in most cases. . . )

30



FAST FOURIER TRANSFORM: CLASSICAL CASE

Suppose that G = Z/2"Z, in particular §G = 2"

-
N % 2m and wN < cf%
Divide and conquer strategy:

N—

) =

( Yo+ wly S R )

k odd

3\

S\

i+’ —s 3 AR ”)

k even )? odd

— Therefore we reduce the computation of?(j) to two Fourier transforms over Z/2"'Z
Cost: T(2") = 2T(2"~") + 0(2"), therefore T(2") = 0(2" log(2") ) = 0 (n2")
N’

rec. calls

31



FAST QUANTUM FOURIER TRANSFORM

Computing the quantum Fourier transform:

e QFT; can be implemented in the quantum gate model in time O( log® ﬁG)

e QFTy/yz can be implemented in time O( log® N) in the quantum gate model
e QFT;/;ng can be implemented in time O(nz) in the quantum gate model (here
n=log2" = |ogu(Z/2”Z))

e QFT; 5, can be implemented up to some accuracy * in time O(n log n)

in the quantum gate model

° QFTFQ can be implemented in time O(n) in the quantum gate model

— than computing the classical Fourier transform, even with the FFT trick
which is for instance O(n2") in the case of Z/2"Z

32



A PARTICULAR CASE: HADAMARD TRANSFORM

Quantum Fourier Transform over F} (the set {0, 1}" with the @ operation term by term)?

— Characters are given by xx(y) = (—1)*Y where x -y = > xjy;

700 = —= 3= 1)

ye]Fg

Quantum Fourier Transform in ) (QFTFQ):

QT 1) = —= 5= (=) Iy)

n
yEF)

— QFTgy = H®" and

58



QUANTUM FOURIER TRANSFORM QFT; /1,



OUR AIM

Give an efficient quantum circuit for computing QFT., /-, J

Gates that we will use:

1M 1 0 )
Hfﬁc 71> (Hadamard) R57<0 ezz%r) (Phaserotat\on)

0) |x) — |0) |x
C-Rs : 107 bx) 100 bx) ControHed—RS)

[1) 1X) = 1) Rs [x)

85



FIRST REMARK: DECOMPOSE THE OPERATOR

Notation:
For any integer j € [0,2" — 1], binary decomposition j = jy . . . j, where j; is the most significant bit
n
j= ZZHJIZ
£=1
Forany x € [0,2 I
=|x,..., )
QFT \ R Az i)
by — o j
v =
1 P o (Z” 2721)
k- - ) 2 2
= Ze o= ) ljry e yin)
V2N =0
1 A=) P
_ 2imR-2" %], I f
=—=> 1le s in)
2" j=0 £=1
- @, (em )
4

— QFTy, /0y, |R) is a separable quantum state!

Be careful: we crucially use the fact that we work in ) 36



FIRST REMARK: DECOMPOSE THE OPERATOR

2imk2 ¢
How to compute ®)_, (WT“»?

Idea: write the binary decomposition of k- 27¢

n
; —m—¢
) ) 2im 2 2"=M—£ky
cZMrM o (m:1

M( > z”*m*@em>
=e \™= (ifm <n—4¢ then 2"~" ¢ ¢ N)

14
2f7r< > 2*’%“_“,”)
=e il (N — € — Mgy <— —Mnew)

4
0) +ezf7rh»z*z 11y |0) + €20 kn—e41°+kn |7y
V2 N V2
where for any integer j = ji ... jp
def J 2 —¢
0.j1 h=5 = ;2 Je
4

37



TO SUMMARIZE

QFT; /on7 |R) is equal to:

[0) 4 2m0:kn |1y [0) + %m0 kn—1fn |1 |0) + 2 0-Fikn—g--+Fkn 1)y
(Rt g (022t g g 220

where

kR=30_,2""%ke € [0,2" —1] and O0.kn...Rnp1—p = 30_, 2 “Rns1—e € [0,7)

To build this quantum state, we will crucially use:

b . 2i70.05~ b s—1,
CRs b} [1) = [bY & Z" [1) = |b) e [1) where 0.0°"'h=0.0...0b

s times

C-Rs |b) |0) = |b) |0)

38



THE CASE 2°

Aim: starting from |kq, k,, R3)building
|0> + eZer.k3 “> ® ‘0> + le'rrO.hzh3 “> ® ‘O> 4 eZin.quZ}g |r|>
V2 V2 V2

1. Sending |ks) through H:

_1\k3 2im0.R3
TRSLR \o>+(\f;) m _ |o>+e\5 1) (O_kFOM:OOF%imﬂ)

1. Sending |ks) | k) through I, ® H and then C-R;:

0 2im0.ky |4 - 0 2im0.0k3 (2im0.ky |9 0 2im0.kak3 19
s} (k) 22 [y [+ TR ey [0) TN L (0) He i
V2 V2 V2
0y 4620 Rak3 |1y
|k2) R, -
|0>+92m—0.k3 1)
[ks) [ 1 |— e

39



THE CASE 2°

3. Sending |ks) |k2) |R1) through the following circuit:

2i70.kyRy R
k) Rs UE il Tl

[k2) - [2)

[R3) Iks)

Combining this with the previous circuit gives almost the good state not in the good order: !

40



THE CASE 2°

3. Sending |ks) |k2) |R1) through the following circuit:

2i70.kyRy R
k) Rs UE il Tl

[k2) - [2)

[R3) Iks)

Combining this with the previous circuit gives almost the good state not in the good order: !

QFT over Z/8Z:
[Re)
k) H L
Iks) —H]

40



GENERAL CASE

QFT over Z/8Z:

k) —{ H ] R |
o) . H -

|ks) —H]

The general case Z/2"7Z will follow the same pattern: O(n?) 4+ n - SWAP = O(n?) = O( (log 2”)2)

gates
— In particular gates Ry, ..., R, are used!
1 0 ) ) -
ButRs = 0 2ix | is very close to the identity if s > logn J
e

If one allows errors: removing all the Rs fors > Clogn (with C constant) will lead to the result
with accuracy < 1

— In that case: only O(n log n) gates! 41



GENERAL CASE: THE QUANTUM CIRCUIT

10)+e20:hn |1y
N

10)+¢’ 1)

|Rn—1)

5)

2im0._qkn
V7

10) 4020y 1y
%

[0y 420 1k gy
%1

42



EXERCISE SESSION
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