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THE OBJECTIVE OF THE DAY

Computer science: art of computing. . .

What do we mean by quantum computing?

— The quantum circuit model!



COURSE OUTLINE

1. Notation and Basic Circuits
e Quantum Circuits: Representation of Unitaries and Measurement
e The Quantum Gate CNOT

e Controlled Unitaries
2. The Solovay-Kitaev Theorem and the Quantum Gate Model (universal quantum gates)
3. Simulating Classical Circuits with Quantum Circuits

4. Quantum Parallelism and Interference

5. A quantum Algorithm: Simon’s Algorithm




ALGORITHMIC COST?

What is the cost to compute 2"?




ALGORITHMIC COST?

What is the cost to compute 2"?

P Trivial approach: compute 2 X 2 X 2 X ... ntimes...
— It costs 11 operations!
P Clever approach: recursive algorithm, given nif n > 1 compute res < 2"/* and compute res
otherwise output 2

— It costs ~ log, (1) operations (exponential improvement)!

Two lessons to take-away:

1. You have to be smart when computing something (algorithmic science)

2. Afirst model of cost: enumerate the number of basic operations (additions and
multiplications)
— Itis an high level point of view, often convenient but rather “limited”

Boolean Circuits:
In what follows: focus on a “low” level to estimate the computational cost

— boolean circuits & number of gates




CLASSICAL COMPUTATION: CIRCUIT MODEL

Boolean circuit: finite directed acyclic (no loop) graph with AND, OR and NOT classical gates

which has input and output nodes

A circuit computes f: {0,1}" — {0, 1} if given n input bits x, it outputs m bits given by f(x)

Two questions:

e What are the classical gates that enable to compute any function f : {0,1}" — {0,1}"?

e How to define the efficiency of a circuit?




CLASSICAL GATES AND UNIVERSALITY

Universality:

Logic gates AND, OR and NOT are enough to compute any function f : {0,1}" — {0,1}"

(yes these gates enable to compute n s 2" )

Is it doable quantumly?

Problem: any quantum operation is invertible (even unitary) but AND is not invertible. . .



CLASSICAL GATES AND UNIVERSALITY

Universality:

Logic gates AND, OR and NOT are enough to compute any function f : {0,1}" — {0,1}"

(yes these gates enable to compute n s 2" )

Is it doable quantumly?

any quantum operation is invertible (even unitary) but AND is not invertible. . .

The Toffoli gate takes 3 input bits and it outputs 3 bits as follows:
Toffoli(x,y,z) = (x,y,z XOR (x AND y)) )
Inversability and universality:
e The Toffoli gate is
e Any classical circuit computing a function f consisting of // gates in the set
{AND, OR, NOT} can be computed using )

— In particular: the number of Toffoli gates is 5



CIRCUITS AND RUNNING TIME

Many different circuits can compute a function f: {0,1}" — {0,1}"

How can we distinguish them?




CIRCUITS AND RUNNING TIME

Many different circuits can compute a function f: {0,1}" — {0,1}"

How can we distinguish them?

— Some circuits are more efficient than others!

Running time:
We define the running time of a circuit computing f as the number of used gates AND, OR and NOTJ

Ideal situation: an efficient circuit
Given n input nodes: the circuit uses O(n*) gates for some constant k

— We say that it has a cost poly(n)

In this course: we only care of being poly(n) (even if the constant kis large. . . )

Exercise:
Is it equivalent to define our running-time model as the number of Toffoli gates to compute a

function f? Why?




UNIFORMLY POLYNOMIAL CIRCUITS

But is the classical circuit model meaningful?

P: class of languages L C {0, 1}* “for which it exists an efficient algorithm” to decide x € L or not

Complexity theory: uniformly polynomial circuits
Family of circuits C e {Cn}n with n input bits and one output bit such that there is
polylog(n)-space Turing machine that outputs C, given n

LEU{xe{0,1" : Cx) =1}

n

L € P if and only if there exits a uniform family of circuits C such that L = L¢

— Given a uniform family of circuits C = {C,}: C, has at most poly(n)-gates!



AND QUANTUM COMPUTATION?

What about quantum computation?
Is the circuit model reasonable? If yes, what is doable quantumly and at which cost? J




AND QUANTUM COMPUTATION?

What about quantum computation?

Is the circuit model reasonable? If yes, what is doable quantumly and at which cost?

Two intuitions:

» “Quantum circuit” because Toffoli gates are universal and
invertible. . .
— Therefore: define a “reasonable” model of computation

» Complexity of computation will be taken into account from

— Therefore: we expect quantum circuits to in a similar vein than

in the classical case




NOTATION AND BASIC CIRCUITS



STATE SPACE, COMPUTATIONAL BASIS AND MEASUREMENT

During this course we consider the state space ¥ = ¢? ® - ®C?of n-qubits register
R —

n times

State space, computational basis and measurement:

We will always write n-qubits registers as

ST axlx)  where [x) = |xi, ... %) <:|x1)®-~-®|xn))and ST el =1

x€ {0,131 xe {0,137

The family (X))xe (0,130 1S known as the computational basis

— All the considered measurements (in this course) will be in the computational basis



QUANTUM CIRCUIT AND TENSORIAL PRODUCT

Given two quantum states [¢»), |12) and two unitaries Uy, U,, the circuit representation of

(U1 ® U2) (I [12))
is given by
1) Uy
[12) Uz
Exercise:

|00)+|01)
1. What becomes —

when feeding to the above circuit?

2. Describe a quantum circuit that transforms [00) into %

1



QUANTUM CIRCUIT AND TENSORIAL PRODUCT

Solution:

|00)+]01)
1. What becomes i

when feeding to the above circuit?

It becomes: U; [0) & U, <%) = LU1[0) ® Uz [0) + J5U1 [0) ® Us [1)

2. Describe a quantum circuit that transforms |00) into “‘))%

) [x]

o




QUANTUM CIRCUIT AND MEASUREMENT

A measurement in the computational basis converts |1) = « |0) + B|1) into a probabilistic

classical bit b € {0, 1} where

P(b=0) = |af> and P(b=1) = |8

The circuit representation of a measurement is:

lv) —{>F=0»

Exercise:

Give the distribution of the following probabilistic bits b:

1. |0> b
R Ll [l iz




QUANTUM CIRCUIT AND MEASUREMENT

Solution:

Give the distribution of the following probabilistic bits b:

Lo —— =0

The output bit b is uniform, namely: P(b =0) =P(b=1) = }

o — A=

As H? = I, the output bit b is always zero

14



THE QUANTUM CNOT GATE:

Let us introduce the Controlled-NOT gate (umtary) over 2-qubits:
CNOT : |a,b) +— |a,a & b)
Itis a unitary (It maps the computational basis to the computational basis)

Quantum CNOT-gate |a, b) — |a,

e Matrix representation:

[ e e
o o = O
- O O O
o = O O

e Circuit representation:

|a) ——e—— |a)

|b) —@— laeb)




BE CAREFUL

la,b) — |a,a @ b)

is the quantum generalization of the XOR operation!

Be careful:

The XOR operation (a, b) — a & b cannot be a quantum operation because is not invertible J

16



SWAPPING

Given two wires, is it possible to swap two qubits?

ran)
N

D
J
D
Ay

|a,b) — |a,a & b)
— lad (a®b),adb)
— |b, (a @ b) & b)
= |b,a)




COPYING QUBIT

Given a qubit |9}, is it possible to build a quantum circuit that copies it?

— No! Because the no-cloning theorem

But it is doable for classical bit (b, 0) — (b,0 & b) = (b, b) ...



COPYING QUBIT

Given a qubit |9}, is it possible to build a quantum circuit that copies it?

— Because the no-cloning theorem

But it is doable for classical bit (b, 0) — (b,0 & b) = (b, b) ...

Take a look at the quantum case:

a|0) + B|1) —e——
b —x X— b
0 o 5 «|00) + B |11)
— 1y xoypl—
0y ——
We have built an state!




BELL STATES

i) & 10,0 + (=1, (1Y)
xy) = V2 )

The quantum circuit building Bell states:

i~ ——
) ——P—

[xy)

Hel  [0) + (=1)"[1) 10, + (D159 evor, 10,9) 4+ (=) 11, (1@ )
X, y) —= NG ®ly) = i 20 7 )

19



CONTROLLED UNITARY

Controlled U-gate:
Let U be any unitary over n-qubits. The controlled U-gate has one control qubit |b) and n target

qubits |4). It is defined as
e Ifb=0,itoutputs |b) ® |1)

e Ifb=1,itoutputs |b) ® U |v)

Circuit representation:

— Controlled-U = If condition then instruction U otherwise do nothing

Exercise:

Show that the CNOT gate is the controlled X-gate J

20



QUANTUM CIRCUITS

starting from n qubits initialized at |O”> and then successively apply the two

admissible operations (unitary and measurements)

Applying Uy and then U, is equivalent to applying U,Uq

— We can assume the algorithm performs a unitary, then a measurement, then a unitary, then

measurement and so on. . .

We will consider only algorithms where

— As powerful as general algorithms (admitted)

—@:
o=
o=

Pldy)

21



AUXILIARY QUBITS

U:lg) — Ulp)

— Itis often easier to build U’ : |¢) |0),, — U( |w)) [0) 3ux

Extra qubits are called auxiliary qubits, ancilliary qubits or workspace

— itis important that they start at |0) and end at |0) (see Exercise Session)

22



SOLOVAY-KITAEV THEOREM AND GATE MODEL



UNIVERSAL CLASSICAL GATES

Any classical function can be computed with gates {AND, OR, NOT} (universat gates)

What are the universal quantum gates?

The following gate is crucial:

The 7 /8-gate:

It maps |0) — [0) and |1) — e/™/* |1):

Origin of the terminology:

. ‘ o o—im/8 0
Up to an unimportant global phase Tis equalto T = ¢ 0 oin /8

24



UNIVERSAL QUANTUM GATES: THE SOLOVAY-KITAEV THEOREM

{CNOT, H, T} are universal quantum gates

Solovay-Kitaev theorem (ad mitted) 3

Let G = {CNOT, H, T}. Any unitary U over n-qubits can be approximated by applying
1
0] (22” Iogz' (7>>
e

In other words, from the description of U, one can construct a sequence Gy, ..., Gy € G with
N = 0(2*" log"(1)) and

gates from G with accuracy e

Gy ... — U|| <,

where ||Gy - - - G — U|| e max|yy [|Gn - - - G [p) — U |y)|| is the operator norm

4
— The log term is important: exponential accuracy with a number of gates

Other universal quantum gates?

Yes! The CNOT and qubits gates are also universal J

25



SOLOVAY-KITAEV THEOREM: BE CAREFUL

How many resources are needed to compute a fixed unitary U over n qubits?

P First definition: it requires one resource, the unitary U
— Stupid definition: same thing that saying, to compute classically any function f asks one

resource, the function f

We want a the smallest and simplest set of operations to define the needed resources

26



SOLOVAY-KITAEV THEOREM: BE CAREFUL

How many resources are needed to compute a fixed unitary U over n qubits?

P First definition: it requires one resource, the unitary U
— Stupid definition: same thing that saying, to compute classically any function f asks one

resource, the function f

We want a the smallest and simplest set of operations to define the needed resources

» Second definition: the number of quantum gates {CNOT, H, T} to approximate well-enough U

— Problem: is this definition meaningful?

26



SOLOVAY-KITAEV THEOREM: BE CAREFUL

How many resources are needed to compute a fixed unitary U over n qubits?

P First definition: it requires one resource, the unitary U
— Stupid definition: same thing that saying, to compute classically any function f asks one

resource, the function f

We want a the smallest and simplest set of operations to define the needed resources

» Second definition: the number of quantum gates {CNOT, H, T} to approximate well-enough U

— Problem: is this definition meaningful? Yes, by Solovay-Kitaev,

. . 1 . .
possible with O <; log* (—)) gates {CNOT, H, T} to approximate any unitary
&
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SOLOVAY-KITAEV THEOREM: BE CAREFUL

How many resources are needed to compute a fixed unitary U over n qubits?

P First definition: it requires one resource, the unitary U
— Stupid definition: same thing that saying, to compute classically any function f asks one

resource, the function f

We want a the smallest and simplest set of operations to define the needed resources

» Second definition: the number of quantum gates {CNOT, H, T} to approximate well-enough U
— Problem: is this definition meaningful? Yes, by Solovay-Kitaev,
. . 1 . .
possible with O <; log* (—)) gates {CNOT, H, T} to approximate any unitary
&

Be careful:

Solovay-Kitaev tells it is possible to approximate any unitary by using {CNOT, H, T}

but a priori it asks for 27" resources. . .

Does any unitary need an exponential number of {CNOT, H, T} to be built?

26



SOLOVAY-KITAEV THEOREM: BE CAREFUL

How many resources are needed to compute a fixed unitary U over n qubits?

P First definition: it requires one resource, the unitary U
— Stupid definition: same thing that saying, to compute classically any function f asks one

resource, the function f

We want a the smallest and simplest set of operations to define the needed resources

» Second definition: the number of quantum gates {CNOT, H, T} to approximate well-enough U
— Problem: is this definition meaningful? Yes, by Solovay-Kitaev,
. . 1 . .
possible with O <; log* (—)) gates {CNOT, H, T} to approximate any unitary
&

Be careful:

Solovay-Kitaev tells it is possible to approximate any unitary by using {CNOT, H, T}

but a priori it asks for 27" resources. . .

Does any unitary need an exponential number of {CNOT, H, T} to be built?

No! As for classical computations there are algorithms/unitaries easy to compute, other not. . . 26



SOLOVAY-KITAEV FOR ONE QUBIT GATES

A reasonable model to define the cost of a quantum computation, i.e. computing a unitary

The number of {CNOT, H, T} to approximate well-enough the unitary J

But would you be happy to implement X or Y with this set of quantum gates?

— A priori no! The set of operations {CNOT, H, T} is not very flexible. . .

Unitary over 1 and 2-qubits are the “simplest” operations J

Wouldn't be more reasonable to use as model of cost: the number of unitaries over 1and 2-qubits?

27



SOLOVAY-KITAEV FOR ONE QUBIT GATES

A reasonable model to define the cost of a quantum computation, i.e. computing a unitary

The number of {CNOT, H, T} to approximate well-enough the unitary J

But would you be happy to implement X or Y with this set of quantum gates?

— A priori no! The set of operations {CNOT, H, T} is not very flexible. . .

Unitary over 1 and 2-qubits are the “simplest” operations J

Wouldn't be more reasonable to use as model of cost: the number of unitaries over 1and 2-qubits?

Yes and by Solovay-Kitaev both models are “poly(\)-equivalent”
We can approximate any unitary over 1and 2 qubits with accuracy 2~ and

0 ()\“) quantum gates {CNOT7 H,T}

27



THE QUANTUM GATE MODEL

The quantum gate model:
The quantum running time of a unitary U is the amount of 1 and 2-qubit gates needed to apply U

The running time of a single-qubit measurement is 1

Exercise:
Give a simple argument to explain why quantum gates over 1-qubit are not universal, i.e. are not

enough to describe any quantum computation

28



A NATURAL QUESTION, ALLOW ME TO INSIST

One may say that estimating the running time as the number of 1-2 qubits unitaries is an overkill

— It can be hard to build some 1 or 2 qubits unitary. . .

A more reasonable model:

Running time: number H, T and CNOT gates that are used J

— The “difficulty” to implement quantum circuits reduces to build this small set of gates!

By the Solovay-Kitaev theorem:

The running time of the above model is the same than in the quantum gate model, but up to

polynomial factor (in the input length n ) if one targets an exponentially close accuracy. . .

In conclusion: lot of debates to define the running time of quantum circuits. . .
For us: no debates, we don't care of polynomial factors (even if it is a hard problem to handle in

“practice”. . . ) and we will use the quantum gate model

29



TO TAKE AWAY: YOU SAID ALGORITHM?

P Algorithm: series of simple and determined in advance instructions (addition, multiplication,
if condition then instruction, while condition do instruction)

— Efficient algorithm: small number of instructions!

P Quantum algorithm: series of 1, 2-qubits unitaries and then measurements

— Efficient quantum algorithm: small amount of 1, 2-qubits unitaries and measurements!

Efficient quantum algorithm: poly(n)-repetitions of a circuit starting from |O ) with poly(17) J

unitaries and measurements over 1, 2-qubits

Efficient computing: a difficult task

For many problems, it is (very) hard to find a small number of instructions solving it J

Shor’s quantum algorithm has been a breakthrough: it solves with “few” quantum-instructions
a problem (facton'ng) such that all known classical algorithms ask a huge number of

instructions. . .
30



CLASSICAL CIRCUITS WITH QUANTUM CIRCUITS



CLASSICAL CASE

Computing classically a function f with T gates can be transformed into a reversible circuit Crey

that only consists of O(T) Toffoli gates, possibly with some junk state junk(x).

XﬁL — x
x —~ — f(x) ? - {# Crev — (9
# L junk()

Informally, the junk part keeps a place to perform intermediary computations

Simulating classical circuits with quantum circuits:
Classical Toffoli gates can be interpreted as a quantum unitary acting on three qubits:
Toffoli |x, y, Z) i IX,V,Z @ xy)
Therefore: Crey can be interpreted as a unitary U:
u ‘x, 0™) € 1x) 1£(x)) ljunk(x)

» Quantum computers are at least as powerful as classical computers!
32



REMOVING THE JUNK PART AND IMPLEMENTING Uy

The unitary Uy:

For any function f: {0,1}" — {0, 1} that can be computed classically with a circuit running in
time T, there exists a quantum circuit on n 4+ m qubits that runs in time O(T) that can perform the
unitary

Us = [x) ly) — [%) |y @ f(X))

Be careful:

[x) — |f(x)) may not be a quantum operation (for instance f be the zero function) J

— The auxiliary qubit |y) ensures that Uy is a unitary!

58



REMOVING THE junk PART AND IMPLEMENTING Uy

Proof:

1. Oninput |x) |y) |0) |0), first swap the second and fourth registers to get |x) |0) |0) |y).

2. Apply Crey ON the 3 first registers to get the state |x) [f(x)) [junk(x)) |y).

3. Forifrom 1to m, apply a CNOT gate between the i wire of the second register and the i

wire of the forth register. We then have the state |x) |f(x)) [junk(x)) |y & f(x)).

4. Apply C,, on the three first registers to get the state |x) |0) |0) |y @ f(x)).

5. Swap the second and forth register to get the state |x) |y & f(x)) [0) |0).

v
Ixy x)
Iv) ly & f(x))
Crev (28
0) 0)
10 10)
& 34




QUANTUM PARALLELISM AND INTERFERENCE



QUANTUM PARALLELISM: ONE BIT FUNCTIONS

Letf: {0,1} — {0,1}

Ur: ) 1) = 1) ly @ f(x))

Consider the following quantum circuit:

0 -
Uy [1)
[0) ———— —

What quantum state is [1)?

36



QUANTUM PARALLELISM: ONE BIT FUNCTIONS

Letf: {0,1} — {0,1}

Ur: ) 1) = 1) ly @ f(x))

Consider the following quantum circuit:

0 -
Uy [1)
[0) ———— —

What quantum state is [1)?

L 10+ — 100)+]10)
1. After the first gate we have: vl ® |0) = v

2. Applying Ur leads to (use the Linearity):
) = \OfO))\}Hf())

— We have a superposition of the values of f
36



QUANTUM PARALLELISM: GENERAL CASE

Tensorization of the Hadamard gate:

Consider,
HE" e .. oH
%/—J
n times
Then,

H®n|0n>:\/‘|27 Z |X)

xe {0,131

The following circuit performs the quantum parallelism (heref: {0,1}" — {0, 1}’”)

T
U T f0)

xe{0,1}1

|07) ——— —

37



IS QUANTUM PARALLELISM USEFUL?

Measurement of # >« I, f(x)) gives f(x) for only one value of x.. . . J

— Interference is a nice example of how using quantum parallelism!

The “—1" of the Hadamard gate gives you a huge power. . .

38



INTERFERENCE (DEUTSCH’S ALGORITHM)

Consider the following circuit (heref: {0,1} — {0, 1})

0
0

Ur

=

What is the value of b?

39



INTERFERENCE (DEUTSCH’S ALGORITHM)

Consider the following circuit (heref: {0,1} — {0, 1})

o ——7H S
o {7

What is the value of b?

[00) —[01)+]10) —[11)
7 ’

-

i . 10+ 10— _
. After applying the X and H gates: 7 ® =5 =

2. Applying Uy leads to (use the linearity):
10,£(0)) — 10,1 0)) + LA — M1@f1) [ +2HD g 10=I0 0= sy
2 T 2R o DS i) # )

w

. Applying the last Hadamard gate leads to (use that H? = I,):
{ 10y @ =10 i) = 1)

ﬁ'\
e 2 i) # )

4. Measuring the first qubit always leads to f(0) & f(1)!

— We obtained a global property of f (i.e., f(0) @f(1)) with only one evaluation of f(x)! 39



SIMON’S ALGORITHM



SIMON’S PROBLEM

The problem:

o Input: A function f: {0,1}" — {0,1}"
e Promise: 3s € {0,1}": (f(x) =fly) <= (x=y)or(x=y® s))

e Goal: Find s

4



SIMON’S ALGORITHM

1. Start from the 2n qubit state, with 2 registers of n qubits

o) = [0") [0")
2. Apply H®" on the first n qubits to get
lyr) = > o)
fxe{m}”

3. Apply Uy on the state to get

1 1
—— S v
[42) = \/» XE%:”” [x) [f(x) ) ygm:m i (Ixy) + Ixy @ s)) ly)

4. Measure the second register and obtain some value y € Im(f). The resulting state on the first
register is

[a(y)) = (Ixy) + %y @ 's))

7
5. Apply H®" on the first register to get

1 Xy -Z 1 (XyEBS -z
> %(—1) + \72( 1) z)

ze{0,1}"

[bs(y \F




SIMON’S ALGORITHM

5. Apply H®" on the first register to get
1 1 Xy -Z 1 (xyPs)-z
[s(y)) = Wi > %(*1) + %(*1) z) .

z€{0,1}"

Now, if s - z = 0 mod 2, we have (%(—1)"3"Z + %(—W)(XV@S)'Z) = V2(=1)¥?andif
s-z=1mod 2, we have (%(—1)"3"Z + %(—W)W@S)‘Z) = 0. Therefore, we can write
2 .
lbs(v)) =/ 5 D Ca) kA

ze{0,1}"
$-z=0 mod 2

6. Measure this state in the computational basis. You get a random z satisfyingz-s = 0

43



WHY DOES IT WORK?

I, denotes {0, 1} modulo 2. It is a field
FJ is a n-dimensional I, vector space

{zeF): z-s=3,z5 =0 € F,} is a subspace of F; with dimension n — 1

The above algorithm gives (z1, ..., z;) st >, ziS; = 0 mod 2
We repeat the algorithm m times to get m random values z(", ..., z(™ ¢ F} satisfying M .s=0

We obtain the following system (s is the unknown): Zs = 0 where z & (sz)) 1<i<n
1<j<m

— IfZ € F}*" has rank n — 1, we perform a Gaussian elimination to recover s!

It will be verified with high probability if m large enough, m = Cn for some constant C > 0

44



CONCLUSION: RUNNING TIME OF SIMON'S ALGORITHM

T be the classical running-time of f

Running time in the quantum gate model of one iteration:

e In Step 3 we apply Ug: by using O(T) quantum gates over qubits
e In Steps 2 and 5 we apply 2n times H

e In Step 4 we perform a measurement on n-registers qubits: n measurements over qubits (in

the computational basis)

b
It costs quantumly 4n + O(T) J

e We repeat O(n) times an iteration: it costs O(n? 4 nT)
e We solve a system by a classical Gaussian elimination: it costs O(n”) J

Simon'’s algorithm costs O(n? 4+ n*> + nT) = O(n* + nT) J i




A LAST CONCLUSION

P We have solved Simon’s problem in polynomial time with high probability with only O(n)

queries to f (Le,, O(n) calls to Uy, step 3>

Is it doable classically?

P Simon has proved that any classical randomized algorithm that finds s with high probability

needs to make > C+/2" queries to f where C constant
— Quantum computing provides an exponential advantage!

There are many results about the query complexity of quantum algorithms

» Ronald de Wolf's lecture notes, Chapters 11-12.

https://arxiv.org/pdf/1907.09415.pdf

46
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A LAST CONCLUSION

P We have solved Simon’s problem in polynomial time with high probability with only O(n)

queries to f (Le,, O(n) calls to Uy, step 3>

Is it doable classically?

P Simon has proved that any classical randomized algorithm that finds s with high probability

needs to make > C+/2" queries to f where C constant
— Quantum computing provides an exponential advantage!

There are many results about the query complexity of quantum algorithms

» Ronald de Wolf's lecture notes, Chapters 11-12.

https://arxiv.org/pdf/1907.09415.pdf

But one may say that solving Simon’s problem is useless. . .

Simon'’s algorithm has been “the starting point” of Shor’s algorithm that quantumly breaks all
current deployed public-key cryptography J

|
— Come at Lecture 6! 46
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