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THE OBJECTIVE OF THE DAY

To answer the following questions:

• How can we model the quantum state after a measurement?

ex: |0⟩ with prob. 1/2 and |1⟩ with prob. 1/2

• How can we describe the quantum state relative to a subsystem?

ex: the first qubit of the EPR-pair |00⟩+|11⟩√
2

−→ Density operator/matrix and partial trace!
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COURSE OUTLINE

1. General Properties of Density Operators

2. The Reduced Density Operator, Partial Trace and Application to The teleportation

3. Schmidt Decomposition and Purification

−→ This course gives the basis of quantum information theory!
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DENSITY OPERATOR



OBSERVABLE: A REMINDER

Observable: an equivalent description of projective measurements

• Observable: M an Hermitian operator
(
i.e. M† = M

)
• M is diagonalizable in an orthonormal basis: orthogonal projectors Pm onto the eigenspaces

define the measurement

• Given |ψ⟩, average outcome value:

⟨M⟩ = ⟨ψ|M |ψ⟩ = tr
(
M |ψ⟩⟨ψ|

)
An example:

X defines a measurement with outcome ±1:

X = |+⟩⟨+| + (−1) |−⟩⟨−|

Given |0⟩
(
resp. |1⟩

)
, the average outcome value is 0:

⟨0| X |0⟩ = ⟨0|+⟩ ⟨+|0⟩ − ⟨0|−⟩ ⟨−|0⟩ =
1
2
−

1
2
= 0

⟨1| X |1⟩ = ⟨1|+⟩ ⟨+|1⟩ − ⟨1|−⟩ ⟨−|1⟩ =
1
2
−

1
2
= 0
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MEASUREMENTS ON A PROBABILITY MIXTURE OF QUANTUM STATES

Suppose that ρ is a probabilistic mixture of quantum states:

ρ :
∣∣ψj〉 with probability pj

What is the average outcome value given ρ and an observable M?

By law of total probabilities,∑
j

pj
〈
ψj

∣∣M ∣∣ψj〉 =
∑
j

pj tr
(
M
∣∣ψj〉〈ψj∣∣)

= tr

M
∑
j

pj
∣∣ψj〉〈ψj∣∣



It justifies to introduce probabilistic mixture of quantum states as:

Define the probabilistic mixture ρ as:

ρ =
∑
j

pj
∣∣ψj〉〈ψj∣∣
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THE DENSITY MATRIX

The density matrix:

The density matrix ρ corresponding to a probabilistic mixture of states (
∣∣ψj〉)j , the corresponding

quantum state being equal to
∣∣ψj〉 with probability pj , is given by

ρ
def
=

∑
j

pj
∣∣ψj〉〈ψj∣∣

−→
{
pi, |ψi⟩

}
is a set of states generating a density matrix ρ

The density matrix of a qubit:

|ψ⟩ =

(
α

β

)
⟨ψ| =

(
α β

)
|ψ⟩⟨ψ| =

(
|α|2 αβ

αβ |β|2
)

• Density matrix of |0⟩
(
resp. |1⟩

)
is(
1 0
0 0

) (
resp.

(
0 0
0 1

))

• Density matrix of |+⟩
(
resp. |−⟩

)
is( 1

2
1
2

1
2

1
2

) (
resp.

( 1
2 − 1

2
− 1

2
1
2

))
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COMPUTATION OF SOME DENSITY OPERATORS

Exercise:

• Compute the density matrix of:

1. the probabilistic mixture of |0⟩ with prob. 1
2 and |1⟩ with probability 1

2

2. the probabilistic mixture of |+⟩ with prob. 1
2 and |−⟩ with probability 1

2

3. what can you conclude?

• Compare the density matrix of |ψ⟩ with eiθ |ψ⟩. What can you conclude?
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SOLUTION

• We have:

1. Probabilistic mixture of |0⟩ with prob. 1
2 and |1⟩ with prob. 1

2 :

1
2
|0⟩⟨0| +

1
2
|1⟩⟨1| =

( 1
2 0
0 0

)
+

(
0 0
0 1

2

)
=

( 1
2 0
0 1

2

)
2. Probabilistic mixture of |+⟩ with prob. 1

2 and |−⟩ with prob. 1
2 :

1
2
|+⟩⟨+| +

1
2
|−⟩⟨−| =

1
2

( 1
2

1
2

1
2

1
2

)
+
1
2

( 1
2 − 1

2
− 1

2
1
2

)
=

( 1
2 0
0 1

2

)
3. These probabilistic mixtures have the same density operator: they are indistinguishable

• |ψ⟩ and eiθ |ψ⟩ have the same density operator: they are indistinguishable

−→ Wait a little bit to be convinced that “they are indistinguishable”
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A NEW FORMALISM FOR QUANTUM COMPUTATION AND INFORMATION?

We could
(
why not?

)
have stated quantum mechanics using density operators as the primary

model of states!

In particular: postulates of quantum mechanics given with density matrix point of view
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UNITARY EVOLUTION

Let U be a unitary. Suppose that |ψ⟩ is in the state |ψi⟩ with probability pi

−→ After applying U: |ψ⟩ will be in the state U |ψi⟩ with probability pi

(
|ψi⟩⟨ψi|

U−→U |ψi⟩⟨ψi|U†
)

ρ =
∑
i

pi |ψi⟩⟨ψi|
U−→

∑
i

piU |ψi⟩⟨ψi|U† = UρU†
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MEASUREMENT

Let (Mm)m be a quantum measurement. Suppose that |ψ⟩ is in the state |ψi⟩ with probability pi

• If the initial state is |ψi⟩, the probability to measure m is:

p(m|i) = ⟨ψi|M†
mMm |ψi⟩ = tr

(
M†
mMm |ψi⟩⟨ψi|

)

• Using the law of total probability, we measure m with probability:

p(m) =
∑
i

p(m|i)pi =
∑
i

tr
(
M†
mMm |ψi⟩⟨ψi|

)
pi = tr

(
M†
mMmρ

)

• If the initial state is |ψi⟩ and we have measured m, the state becomes:∣∣ψm
i
〉
=

Mm |ψi⟩√
tr
(
M†
mMm |ψi⟩⟨ψi|

) =
Mm |ψi⟩√
p(m|i)

The corresponding density operator ρm is:

ρm =
∑
i

p(i|m)
∣∣ψm

i
〉〈
ψ
m
i
∣∣ = ∑

i

p(i|m)
Mm |ψi⟩⟨ψi|M†

m
p(m|i)

=
∑
i

pi
p(m)

Mm |ψi⟩⟨ψi|M†
m

ρm =
MmρM†

m

tr
(
M†
mMmρ

)
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A SUMMARY

• Unitary Evolution U:
ρ

U−→UρU†

• Measurement (Mm)m :

1. Probability to measure m:
tr
(
M†
mMmρ

)
2. After measuring m:

MmρM†
m

tr
(
M†
mMmρ

)
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CHARACTERIZATION OF DENSITY OPERATORS

Theorem:

An operator ρ acting on an Hilbert space is a density operator if and only if

1. ρ is positive

2. tr (ρ) = 1

−→ This characterization does not rely on a set of interpretation!

In particular: give a description of quantum mechanics with density operators that does not take

as its foundation the state vector
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PROOF

Proof:

⇒: Suppose ρ =
∑

i pi |ψi⟩⟨ψi|. Then

tr (ρ) =
∑
i

pi tr (|ψi⟩⟨ψi|) =
∑
i

pi tr (⟨ψi|ψi⟩) =
∑
i

pi = 1

as (pi)i defines a distribution. Let |ψ⟩ be an arbitrary vector in the state space

⟨ψ| ρ |ψ⟩ =
∑
i

pi ⟨ψ|ψi⟩ ⟨ψi|ψ⟩ =
∑
i

pi |⟨ψ|ψi⟩|2 ≥ 0

⇐: Suppose ρ positive operator with trace one

By the spectral decomposition theorem, there exists an orthonormal basis (|i⟩)i
(
in

particular the |i⟩’s have norm 1
)
with associated positive eigenvalue (λi)i such that

ρ =
∑
i

λi |i⟩⟨i|

But,
tr (ρ) =

∑
i

λi = 1

Therefore ρ is a (λi)i-probabilistic mixture of the quantum states (|i⟩)i
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PURE VERSUS MIXED STATES

Pure state:

A state is called pure if it cannot be represented as a mixture (convex combination) of other

states

This is equivalent to the density matrix being a one dimensional projector, i.e. ρ = |ψ⟩⟨ψ| where

|ψ⟩ is a state
(
a unit vector

)

Mixed States:

A quantum system which is not in pure state is said to be in mixed states

Example:

1. |0⟩, |0⟩+|1⟩√
2

, |01⟩ and |00⟩+|11⟩√
2

are pure states

2. The probabilistic state “|0⟩ with probability 1
2 and |1⟩ with probability 1

2 ” is a mixed state
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A CHARACTERIZATION

Theorem:

Any density operator ρ verifies
tr
(
ρ
2
)

≤ 1

Furthermore,
tr
(
ρ
2
)

= 1 ⇐⇒ ρ is a pure state

Proof:

First: any density operator ρ can be written as
∑

i λi |i⟩⟨i| where (|i⟩)i orthonormal basis, λi ≥ 0

and
∑

i λi = 1
(
consequence of the fact that ρ positive operator and tr (ρ) = 1

)
. Therefore,

ρ
2 =

∑
i

λ
2
i |i⟩⟨i|

Using that (λi)i is a distribution concludes the proof
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BE CAREFUL: MANY WAYS TO REPRESENT SOME DENSITY OPERATOR

It may be tempting to interpret: ρ def
= 1

2 |0⟩⟨0| +
1
2 |1⟩⟨1| as “|0⟩ with prob.

1
2 and |1⟩ with prob. 1

2 ”.

But, ρ also verifies: ρ = 1
2 |+⟩⟨+| + 1

2 |−⟩⟨−| . . .

−→ They define the same statistics of measurements!

In quantum computing we deal with quantum states

Exercise:

1. Suppose that we are given “|0⟩ with probability 1
2 and |1⟩ with probability 1

2 ”

• Measure in the basis (|0⟩ , |1⟩), what do you obtain as distribution of outcomes?

• Measure in the basis (|+⟩ , |−⟩), what do you obtain as distribution of outcomes?

2. Suppose that we are given “|+⟩ with probability 1
2 and |−⟩ with probability 1

2 ”

• Measure in the basis (|+⟩ , |−⟩), what do you obtain as distribution of outcomes?

• Measure in the basis (|0⟩ , |1⟩), what do you obtain as distribution of outcomes?
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BE CAREFUL: UNITARY FREEDOM IN THE SET FOR DENSITY MATRICES

It may be tempting to interpret: ρ def
= 1

2 |0⟩⟨0| +
1
2 |1⟩⟨1| as “|0⟩ with prob.

1
2 and |1⟩ with prob. 1

2 ”.

But, ρ also verifies: ρ = 1
2 |+⟩⟨+| + 1

2 |−⟩⟨−| . . .

Eigenvectors and eigenvalues of a density operator just indicates one of many possible

sets that may give rise to a specific density matrix

What class of states does give rise to a particular density operator?

Theorem
(
admitted

)
:

ρ =
∑

i pi |ψi⟩⟨ψi| =
∑

i qi |φi⟩⟨φi| for quantum states (|ψi⟩)i and (|φi⟩)i and distributions (pi)i

and (qi)i if and only if

∀i,
√
pi |ψi⟩ =

∑
j

ui,j
√
qj

∣∣φj〉 where U = (ui,j)i,j be a unitary
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REDUCED DENSITY OPERATOR, PARTIAL TRACE



REDUCTION TO A SUBSYSTEM

Aim:

Being able to describe the first qubit of the EPR-pair |00⟩+|11⟩√
2

20



PARTIAL TRACE: REDUCTION TO A SUBSYSTEM

Problem:

Given ρAB ∈ A⊗ B,a what is the quantum state with respect to A?

a Abuse of notation, ρ density operator over A ⊗ B

−→ Answer: ρA def
= trB

(
ρAB

)
where:

{
ρA the reduced density operator for A
trB partial trace over B

Definition: partial trace

Given |a1⟩⟨a2| ∈ A and |b1⟩⟨b2| ∈ B, define

trB
(
|a1⟩⟨a2| ⊗ |b1⟩⟨b2|

)
= |a1⟩⟨a2| · tr

(
|b1⟩⟨b2|

)
= ⟨b1|b2⟩ · |a1⟩⟨a2| ∈ A

then extend trB by linearity

We could have defined trB directly as:

trB
(
ρ
AB
)

=
∑
i

(
Id⊗ ⟨i|

)
ρ
AB
(
I⊗ |i⟩

)
where (|i⟩)i orthonormal basis of B
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JUSTIFICATION OF THE PARTIAL TRACE

But why this definition?

“Reduced density operator provides the correct measurement statistics for measurements made

on system A”
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JUSTIFICATION OF THE PARTIAL TRACE

Given an observable M on a A:

−→ We want average measurements be the same when computed via ρA

or ρAB when we don’t “act” on B, i.e.

tr
(
MρA

)
= tr

(
(M⊗ I) ρAB

)
(1)

−→ This equation is verified by ρA = trB
(
ρAB

) (
little exercise using tr(A⊗ B) = tr(A) tr(B)

)
trB is the unique operator which verifies Equation (1):

Let f be a linear map of density operators on A⊗ B to density operators on A which verifies the

“average measurements”
tr
(
M f(ρAB)

)
= tr

(
(M⊗ I) ρAB

)
Let Mi be an orthonormal basis to the space of Hermitian operators on A with respect to the

scalar-product ⟨X, Y⟩ = tr (XY):

f(ρAB) =
∑
i

Mi tr
(
Mi f(ρAB)

)
=

∑
i

Mi tr
(
(Mi ⊗ I) ρAB

)
=

∑
i

Mi tr
(
Miρ

A
)

= ρ
A

Therefore: any operator which verifies the “average measurements” is the partial trace!
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AN IMPORTANT PROPERTY

Proposition:

Given two density operators ρA and ρB on a A and B:

trB
(
ρ
A ⊗ ρ

B
)

= ρ
A and trA

(
ρ
A ⊗ ρ

B
)

= ρ
B

trB : “trace out B” ; trA : “trace out A”

Proof:

Write ρA =
∑

i λi |i⟩⟨i| and ρB =
∑

j µj |j⟩⟨j| (for orthonormal bases). By definition

trB
(
ρ
A ⊗ ρ

B
)

=
∑
i,j

λiµj trB (|i⟩⟨i| ⊗ |j⟩⟨j|)

=
∑
i,j

λi |i⟩⟨i|

∑
j

µj ⟨j|j⟩


= ρ

A

where in the last line we used 1 = tr
(
ρB

)
=

∑
j µj
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AN EXAMPLE: THE EPR-PAIR

Consider the EPR-pair: 1√
2
(|00⟩ + |11⟩)

1. Compute the density matrix ρ12
(
1 and 2: first and second qubit

)
of the EPR-pair

2. Compute the reduced density matrices ρ1 and ρ2 with respect to the first and second qubit,

respectively. What can you conclude?

3. Is ρ12 = ρ1 ⊗ ρ2?

25



SOLUTION

Solution:

1. We have
ρ
12 =

1
2
(|00⟩⟨00| + |00⟩⟨11| + |11⟩⟨00| + |11⟩⟨11|)

Therefore
(
basis is ordered as (|00⟩ , |01⟩ , |10⟩ , |11⟩)

)
,

ρ
12 =

1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


2. Rewrite ρ12 as

ρ
12 =

1
2
(|0⟩⟨0| ⊗ |0⟩⟨0| + |0⟩⟨1| ⊗ |0⟩⟨1| + |1⟩⟨0| ⊗ |1⟩⟨0| + |1⟩⟨1| ⊗ |1⟩⟨1|)

Therefore,

ρ
1 = tr2

(
ρ
12
)

=
1
2
(|0⟩⟨0| + |1⟩⟨1|) =

Id
2

and ρ
2 = tr1

(
ρ
12
)

=
1
2
(|0⟩⟨0| + |1⟩⟨1|) =

Id
2

Although the original system was prepared as a pure state
(
complete knowledge

)
, the first

and the second qubit are a uniform mixture of qubits!

3. No: ρ12 ̸= ρ1 ⊗ ρ2 = Id
4
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CONSEQUENCE

If Alice and Bob share an EPR-pair:

▶ Alice’s qubit is a mixed state for which she has strictly no information/knowledge

▶ Bob’s qubit is a mixed state for which he has strictly no information/knowledge

The joint state of the EPR pair is known exactly while both its first and second qubit is completely

unknown
(
maximal uncertainty

)
!
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DENSITY OPERATOR VIEWPOINT: APPLICATION TO THE TELEPORTATION

Teleportation:

1. Recall that after Alice’s measurement, the quantum state that Alice and Bob share is with

probability 1
4 the three-qubits state |a, b⟩ |ψab⟩:

|ψab⟩
def
= α |b⟩ + (−1)aβ |1− b⟩

where a, b ∈ {0, 1}

Compute the reduced density operator ρB of Bob’s system
(
by tracing out the first two

qubits
)
once Alice has performed her measurement but before Bob has learned a, b

2. What can you conclude?
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DENSITY OPERATOR VIEWPOINT: APPLICATION TO THE TELEPORTATION

1. We have the following computation:

ρ
ab = |ab⟩⟨ab| ⊗ |ψab⟩⟨ψab|

= |ab⟩⟨ab| ⊗
(
|α|2 |b⟩⟨b| + (−1)aαβ |b⟩⟨1− b|+

(−1)aαβ |1− b⟩⟨b| + |β|2 |1− b⟩⟨1− b|
)

The density operator of the shared quantum state is:

ρ =
1
4

 ∑
a,b∈{0,1}

ρ
ab


By tracing out the first two qubits we get

ρB =
1
4

((
2|α|2 + 2|β|2

)
|0⟩⟨0| +

(
2|α|2 + 2|β|2

)
|1⟩⟨1|

)
=

1
2
(|0⟩⟨0| + |1⟩⟨1|)

=
Id
2

2. Bob’s state has no dependence upon the state |ψ⟩ being teleported: any measurements

performed by Bob will contain no information about |ψ⟩. It prevents Alice to transmit

information to Bob faster than light!
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LET ME INSIST

Whatever Alice is doing on her qubit, Bob has a uniform mixture of qubits

ρ =
Id
2

▶ Whatever the unitary evolution,

UρU† = ρ =
Id
2

▶ Whatever is the applied measure (Mm)m

p(m) = tr
(
M†
mMmρ

)
= tr

(
M†
mMm

Id
2

)
=

1
2

tr
(
M†
mMm

)

There are no dependence in |ψ⟩! Bob cannot extract anything about |ψ⟩!
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REMEMBER

Whatever Alice is doing on her own, Bob has a uniform mixture of qubits

−→ Bob cannot do anything to recover |ψ⟩!

Except if Bob knows Alice’s measurement

−→ The fact that information cannot be shared faster than light is prevented!
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SCHMIDT DECOMPOSITION AND PURIFICATION



STUDYING COMPOSITE QUANTUM SYSTEMS

Density operators and partial trace:

−→ Useful for studying composite quantum systems!

Two new useful tools:
▶ Schmidt decomposition

▶ Purification

33



SCHMIDT DECOMPOSITION

Theorem: Schmidt decomposition
(
admitted

)
:

For any pure |ψ⟩ ∈ A⊗ B, it exists

• a unique integer d

• an orthonormal set |a1⟩ , . . . , |ad⟩ ∈ A

• an orthonormal set |b1⟩ , . . . , |bd⟩ ∈ B

• λ1, . . . , λd > 0

such that
|ψ⟩ =

d∑
i=1

λi |ai⟩ |bi⟩

First consequence:

Given
(
pure

)
|ψ⟩ ∈ A⊗ B, then

ρ
A = trB(|ψ⟩⟨ψ|) =

d∑
i=1

λ
2
i |ai⟩⟨ai| and ρ

B = trA(|ψ⟩⟨ψ|) =
d∑
i=1

λ
2
i |bi⟩⟨bi|

Therefore, ρA and ρB have the same eigenvalues: the λ2i ’s and possibly 0!
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SCHMIDT’S NUMBER AND ENTANGLEMENT

Definition: Schmidt’s number

Given pure |ψ⟩ ∈ A⊗ B with Schmidt decomposition

|ψ⟩ =
d∑
i=1

λi |ai⟩ |bi⟩

The integer d is called Schmidt number. This number does not depend on the decomposition and

it depends only on |ψ⟩

Theorem: a useful characterization of entanglement

A pure state |ψ⟩ ∈ A⊗ B is entangled if and only if its Schmidt’s number is > 1 if and only if ρA

and ρB are mixed states
(
where ρ = |ψ⟩⟨ψ|

)

Proof:

See Exercise Session
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PURIFICATION

Given a mixed state ρ of A: is it possible to introduce another system R and a pure state

|ψ⟩ ∈ A⊗ R such that
ρ = trR

(
|ψ⟩⟨ψ|

)

Yes!

Spectral decomposition in an orthonormal basis of ρ:

ρ =
n∑
i=1

λi |i⟩⟨i|
(
the λi ’s are ≥ 0

)
It is enough (exercise!) to define |ψ⟩ as:

|ψ⟩ =
n∑
i=1

√
λi |i⟩ |i⟩

−→ This process is known as purification!

Relation between Schmidt decomposition and purification:

Purifying a mixed state: define a pure state whose Schmidt basis is just the basis in which the

mixed state is diagonal!
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CONCLUSION: DENSITY OPERATOR IN PRACTICE

When designing
(
advanced

)
quantum algorithms it may happen that

▶ we want to take into account in a clean way measurements when sophisticated quantum

entanglement is at stake

−→ Density operator formalism!

▶ we want to forget some qubits

−→ Density operator formalism with partial trace!

▶ we want pure states although some measurements have been performed

−→ Density operator formalism with purification at the cost of adding ancillas qubits!

However, in many situations, density operator is not useful, it adds useless formalism
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LAST LAST CONCLUSION

If you are interested in information theory and quantum information theory:

One book chapter about this topic
(
to be presented at the end of the course

)

▶ Chapter 11 up to 12.3 in Quantum Computation and Quantum Information, Michael A. Nielsen

and Isaac L. Chuang

Be careful:

I advise to follow lectures about classical information theory for this presentation!
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