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ORIGIN OF QUANTUM COMPUTING

Feynman (‘\ )
Can quantum systems be probabilistically simulated by a classical computer?

— The answer is almost certainly, no!

— Use quantum systems/computers to simulate quantum systems!

(birth of quantum simulation)

A natural question:

What other problems can quantum computers solve more quickly than classical computer? J

Deutsch (1’15,:5):
Foundation of quantum computing!

— Deutsch-Jozsa algorithm (1992) quantum algorithm faster than any classical algorithm




EARLY ALGORITHMS: SHOR

Shor (1994 )
Solves the discrete logarithm and factoring problem efficiently with a quantum computer! J

Terrible situation: public-key cryptography currently deployed is broken by using an “efficient”

quantum computer
— Cryptographic community worried about this since many years. . .

There exists quantum resistant solutions: post-quantum cryptography (active research topic)

American’s government (2017 & 2023) has launched processes to standardized post-quantum

cryptosystems




EARLY ALGORITHMS: GROVER

Grover (\“‘a‘vv):

Find an element in a list of size 1 in time O (/) while any classical algorithm needs a time & n

Consequence: size of keys in symmetric cryptography has to be x2.

( size of cryptosystem ¢ bits: best classical attack costs 2° (groven) 5 )



A BIG ISSUE: DECOHERENCE

Computations are “noisy”

> Quantum bits are very fragile, they quickly interfere with the environment: decoherence

P Quantum architectures are not “ideal”
— Faults in computation can theoretically be “corrected”: quantum error correcting codes

Theorem [Aharonov, Ben-0r, 1997]:

Quantum computation is possible provided the noise is sufficiently low J




QUANTUM CRYPTOGRAPHY

Benett-Brassard (1984):
Quantum protocol for key-exchange J

» Already implemented

P If an authenticated canal has been established, unconditional security: relies strongly on

the validity of physic laws and not computational assumptions



PROGRAM OF THIS COURSE

— Basics of quantum computing and quantum information theory

e Quantum formalism with density operators, general measures, partial trace, etc. . .

e Quantum circuit model, quantum algorithms (Deutsch—Josza, Simon, Grover, Quantum Fourier
Transform, Shor, Kitaev)

e Basics of quantum error correcting codes and quantum cryptography

References:

» Nielsen and Chuang, Quantum computation and quantum information,

— Nice introduction to quantum computing and quantum information

» de Wolf's lecture notes: https://arxiv.org/abs/1907.09415,

— Nice for advanced quantum algorithms

P Childs's lecture notes: https://www.cs.umd.edu/~amchilds/qa/,

— Nice for advanced topics

» Zemor's lecture notes: https://www.math.u-bordeaux.fr/~gzemor/QuantumCodes.pdf,

— Introduction to quantum error correcting codes 6
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https://arxiv.org/abs/1907.09415
https://www.cs.umd.edu/~amchilds/qa/
https://www.math.u-bordeaux.fr/~gzemor/QuantumCodes.pdf

EVALUATION OF THIS COURSE

1. An exam (3 hours): 4 pages of personal notes are allowed

— Three exercises seen during the Exercise Sessions will be at the exam

2. Presentation of a research article or a chapter of some lecture notes (30min)



A WARNING

You are in a course of computer science

Computer science: art of computing

— We don't care that an object “exists”, we want to compute it efficiently!

Using the law of quantum physic: new model of computation

What does mean quantum computing? What is a quantum algorithm? J

— This course is not about the law of physics or about the “technologies” to verify/use them



COURSE OUTLINE

1. Classical Bits Versus Quantum Bits
2. Your First Quantum Algorithm
3. n-qubits Systems

4. Bra-ket and Ket-bra Notation




CLASSICAL BITS VERSUS QUANTUM BITS



CLASSICAL BIT

> Classical bit: b € {0,1} with XOR operation (1 @®1=000=0and1®0=0p1= 1)

P Probabilistic bit: <Z> where

p £ p(b = 0)

q & pb =)

» Evolution during a computation (a probabilistic bit stays a probabilistic bit):

p p’\ _fa b p a+c=1 T hed>0
<q) — (q’> = (c d) (q) where { bad—1 and a,b,c,d > 0.

Probabilistic computation: multiplication by a stochastic matrix )

Examples: b - b@®bandb+— bP1

(@)= @)=0 0@ = 6=6)=6 o)
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QUANTUM BIT (QUBIT)

“A superposition of classical states”

> A qubit [+) is an element of C? with Hermitian norm 1:
[) = a|0) + B 1) with o, 3 € (calted amthucle) and |a|’ + |8 =1

where (]0) , |1)) orthonormal basis of C2. Usually defined as



QUANTUM BIT (QUBIT)

“A superposition of classical states”

> A qubit [+) is an element of C? with Hermitian norm 1:
|y = a|0) + B 1) with o, 8 € C (calted amthude) and |a|’ + |8 =1

where (]0) , |1)) orthonormal basis of C2. Usually defined as

=) 0= ()

We “cannot see” a superposition, we “can only see” classical states: measure and observe!

> Measurement: probabilistic orthogonal projection. Given |eo) , |e;) € C? orthonormal basis:

Lo . . _ measure leg) with prob. ‘CM|2
Measuring in the basis (|eo) , [e1)) : |¥) = aleo)+ B |e1) —— { lex) with prob. |82

Exercise: Computational versus Hadamard basis
1. Show that (|4) , |—)) is an orthonormal basis of C? where
def 1

+) € —=(0) + ) and \—>d§f%<\o>—h>)

2. Give the outcome distribution when measuring |0), |—), and % |0) + \/§|1) in the bases

(1), 11) and (14, 1)) 12




QUANTUM BIT (QUBIT)

P Qubit: |¢) € C? of Hermitian norm
P Measuring in the orthonormal basis (|eg) , |e1)):

leo) with probability ||
le;) with probability |8/

w>:a|eo>+5|ew>w>{

A measurement is a computation you have access to

— See Lecture 2 for a precise definition of measurement. . .



QUANTUM BIT (QUBIT)

P Qubit: |¢) € C? of Hermitian norm
P Measuring in the orthonormal basis (|eg) , |e1)):

leo) with probability ||
le;) with probability |8/

w>:a|eo>+5|ew>w>{

A measurement is a computation you have access to

— See Lecture 2 for a precise definition of measurement. . .

Are there other computations over qubits we have access to?




QUANTUM BIT (QUBIT)

P Qubit: |¢) € C? of Hermitian norm
P Measuring in the orthonormal basis (|eg) , |e1)):

leo) with probability ||
le;) with probability |8/

w>:a|eo>+5|ew>w>{

A measurement is a computation you have access to

— See Lecture 2 for a precise definition of measurement. . .

Are there other computations over qubits we have access to?

— Yes! Unitary evolutions



UNITARY EVOLUTIONS

_(a b 2x2 : ) . (a ¢
V= (c d) € C°77, then its conjugate transpose U' = 5 3

» Unitary evolution: U € C?*? unitary matrix <= UUt =1,

[¥) — Ul)

Is it true that a qubit is still a qubit after a unitary evolution? Why? )
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UNITARY EVOLUTIONS

U= (a Z) € C**?, then its conjugate transpose U = (% g)

» Unitary evolution: U € C?*? unitary matrix <= UUt =1,

[¥) — Ul)

Is it true that a qubit is still a qubit after a unitary evolution? Why? )

— Yes! Unitary evolutions preserve the Hermitian norm (more generally the Hermitian product)

Unitary evolutions are invertible!

1) 25 U 1) L UTU ) = [9) J

» U € C?*2 unitary over qubits is often called quantum gate
— It exists a small set of gates which is universal (be patient, wait Lecture 4)
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QUANTUM GATES

To define a quantum gate: enough to specify the image of an orthonormal basis and then
extended it by linearity

But it has to map an orthonormal basis to an orthonormal basis!

Exercise: Quantum Gates?

Are the following linear operators over qubits be quantum gates?
1.10) = [1) and 1) = = (10) = [1))

2.10) — |1) and |1) — |0)

Quantum gates have matrix representations!

For instance: |0) — |1) and |1) — |0) has the representation: (O !

1 O).Onlylinearoperatorthat

maps [0) = (;) to 1) = (?) and |1) to |0)



EXAMPLE OF QUANTUM GATES

> NOT-gate X:
Linear op. Matrix rep.
[0) — [1) U
1) = [0) -
» Hadamard-gate H:
Linear op. Matrix rep.
0) = Loy +1) | , (1 1
M=o -m | V2,

Exercise:
1. What is the effect of applying H on |0) and measuring it?

2. What is the effect of applying H on |0) twice?
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CLASSICAL VERSUS QUANTUM COMPUTATION

Is quantum computation over qubits the same than classical computation over probabilistic bits?

Exercise:

Show that there is no stochastic matrix P which when applied to 0, i.e. to (;) simulates the

effect of the Hadamard gate

The “—1" gives you a huge power. . .



YOUR FIRST QUANTUM ALGORITHM



THE DEUTSCH-JOSZA PROBLEM

Problem:

o Input: f: {0,1}" — {0, 1} either constant or balanced

e Output: 0 if and only if fis constant

Query complexity to f to find the correct answer with certainty:
» Classically: 1+ %

» Quantumly: 1
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THE DEUTSCH-JOSZA ALGORITHM FOR N =1

P Suppose that we have access to the following gate (see Exercise Session)

1b) (=1)® |b)

in the basis (|0) , 1))
o—{n HuH v —"H

1. Applying H: = (/0) + |1))

» The algorithm

> Analysis

2. Applying Ug:

o

3. Applying H:

Q10+ YO _ 1 o
H< - >7f(< 1YOH|0) + (<1fOH 1))

—)© 10) + (=10 )
V2

(o) +|1>)) 5 (10) + 1) =

Sl-

O+ (=1 Jo) + (=@ = (=Y 1)
2 ) 20




CORRECTION OF THE DEUTSCH-JOSZA ALGORITHM FOR N =1

Before measuring we have computed:

aer (VO + Y0 j0) + (=)@ — (=1y?) )

[thout) = 2
» If f constant:
[Yout) = £ 0)
» If fbalanced, namely f(0) # f(1):
[tout) = £ “)

21



CORRECTION OF THE DEUTSCH-JOSZA ALGORITHM FOR N =1

Before measuring we have computed:

aer (VO + Y0 j0) + (=)@ — (=1y?) )

[thout) = 2
» If fconstant:
[Yout) = £ 0)
» If fbalanced, namely f(0) # f(1):
[tout) = £ “)

Measuring in the (|0) , |1)) basis leads to (with probability one)

|0) if fconstant or |1) if fbalanced
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n QUBITS SYSTEMS



FINITE DIMENSION

During all this course we will work in finite dimension, think cV

— Vector spaces have finite dimension, linear operators can be written as matrices, etc. . .

23



TENSOR PRODUCT

Given two vector spaces V and W, the tensor product v ® w between v € Vand w € W verifies:
(1) for any scalar z,
Z(vew)=(2v) @w =V ® (zw)

(2) foranyvy,v; €V,
M+v)w=vw+v,w

(3) forany wi,w, € W,
VR (W + W) =VRW +VEe W,

The tensor product v ® w as a column/row product:

v\ e wy)

VN

24



TENSOR PRODUCT OF SPACES

Tensor product of spaces:

Vand W be two vector spaces with bases the vi's and the w; respectively
V =Span(vi,...,vy) and W =Span(wi,...,Wy)
The vector space V ® W is defined as being generated by the v;'s and the w;’s

vew L span (vew : 1<i<n, 1<j<m)

» Dimension is multiplicative

dimV ® W = dimVdimW = nm

» Basis, (V1, ..., Vn) (resp. (W1, . .., Wp)) be a basis of V (resp. W)

(vi®ew:1<i<n, 1<j<m)isabasisof V@ W

» Characterization
XEVRW < Joy; : X= D aijv;®@W

1<i<n
15j<m

Classical error:

x € V® W, thenitexistsv € Vandw € Wsuch thatx = v ® w. J 55




SCALAR PRODUCT OVER TENSOR PRODUCT SPACES

Vi, ..., Vn) ( resp. (Wi, . .. ,Wm)) be a basis of V (resp. W)

Scalar product over tensor product spaces:
Suppose that V (resp. W) is equipped by a scalar product (-, )y (resp (-, ‘)W) The scalar

product over V® W is defined as (and extended by bitinearity) as:

def
(Vi @ Wj, Vi ® Wedvaw = (Vi i)y - (W), We)w

An important remark: J

Ifvi L vy, then forallwy, wy: (v @ wi) L (V2 ® wy)
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LINEAR OPERATOR OVER TENSOR PRODUCT OF SPACES

(V1, ..., Vn) (resp. (Wi, .oy Wm)) be a basis of V (resp. W)
Linear operator over tensor product of spaces:
Given A, B be linear operators over V, W, A ® B is a linear operator over V ® W be defined (and

extended by linearity) as:
A®B (vi®w)) v ® Bw;

» Characterization:

C linear operator over V@ W <= 3a;,A;,Bj : C=>_ a; A ® B
i

Classical error:

C linear operator over V ® W, then there exists A, B linear operators over Vand WstC=A® B J

27



MATRIX REPRESENTATION OF TENSOR PRODUCT

Tensor product of matrices:

Let A % (a;)1<i<n € C™™ and B € C7%Y, then
1<j<m
a1B @B - a1 B
02113 Gz,zB a,mB
A®B d:ef ) c Cnpxmq
Gn,1B Gn,ZB an,mB
b
Example:
1% 2 2
1 2 1%x3 3
E <2>®<3>* 2x2| = |4
2X3 6
0 0 1 1
_ (0 1 1 1 1 _ 1 0 0 1 —1
. X®H*<1 0>®ﬁ<1 71)*\& 1 1 0 0
1 -1 0 0
y
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PROPERTIES OF THE TENSOR PRODUCT OF MATRICES

Properties:

Forany o € C,A,B € C"*" and C,D € CP*1
1 a(A®C) = (aA)®C=A® (al)

2. A+B)®C=A®C+B®C

3. CR(A+B)=CRA+C®B

4. If we can form matrices products AC and BD, then
(A® B) (C® D) = (AC) ® (BD)

5. If A, B are invertible, then 1 4 4
(A®B)” =A" ®B™ .

Classical error:
ARB=B®A J
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N QUBITS SYSTEMS

» A qubit [¢) is an element of C* with Hermitian norm 1

> Aregister of n qubits |) is an element of C* ® - - - ® C2 = C’ with Hermitian norm 1
[ ————

n times
Let (|0, |1)) be an orthonormal basis of C?. Then,
(16) ®Ib2) ® -+ @ bn) : by, bn € {0,1})

is an orthonormal basis of C? ® - - - ® C* = C’
= ——

n times

» Notation: forb = (bq,...,bs) € {0,1}" and |31), [12) , - . ., |¥n) be qubits

b= [bibz...bn) £ [b)@[b2)® - -®Ibn) and |9} [¢2) .. [n) & [1)@I2)®- - -@|ehn)

P Characterization: any register |¢) € c? ofn qubits can be written as

[¥) = D ox|x) whereax€C (catled amplitude) and > o]’ =1
xe{0,1}" xe{0,1}1
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N QUBITS SYSTEMS

» A qubit [¢) is an element of C* with Hermitian norm 1

> Aregister of n qubits |) is an element of C* ® - - - ® C2 = C’ with Hermitian norm 1
[ ————

n times
Let (|0, |1)) be an orthonormal basis of C?. Then,
(16) ®Ib2) ® -+ @ bn) : by, bn € {0,1})

is an orthonormal basis of C? ® - - - ® C> = C
= ——

n times

» Notation: forb = (bq,...,bs) € {0,1}" and |31), [12) , - . ., |¥n) be qubits

b= [bibz...bn) £ [b)@[b2)® - -®Ibn) and |9} [¢2) .. [n) & [1)@I2)®- - -@|ehn)

P Characterization: any register |¢) € c? ofn qubits can be written as

[¥) = D ox|x) whereax€C (catled amplitude) and > o]’ =1
xe{0,1}" xe{0,1}1
A remark: choose your orthonormal basis!

From any (|eo) , |e1)) orthonormal basis of C?, then <|e,1> R -® |e,vn>) foriy,...,in € {0,1}"

is an orthonormal basis of €’ ® - - - ® C> = C
e ———

n times
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SOME EXERCISES OF THE EXERCISE SESSION

Exercise:
1. Compute the scalar product between |+) |1), |00) and |[11) where |+) = % (o) —|1))
2. Let(Jeo), |e1)) be an orthonormal basis of C?. Show that (’e,»1> 000 \e,n>) for
i, ..., in € {0,1}"is an orthonormal basis of C? @ - - - ® C2 = 2"
N e’
n times

3. Do we have |00) + |10) = (]0) + |1)) ® |0)?

4. (*) Do there exist two qubits |11) and |¢,) such that

% (100) + [11)) = [1) ® [¢62)

5. Do there exist two qubits |¢1) and |+,) such that

3 (100) +107) + 110) + 1) = ) ® luz)

31



SEPARABLE VERSUS ENTANGLED STATES

Separable versus entangled states:
A n-qubit system |¢) that can be decomposed as |¢) = |¢1) ® |4,) is called separable

When there is no such decomposition, the state is called entangled

)
Example:
1. Separable states,
1 1 1
00) = |0 0 and = (]00) 4+ |01) + |10} + |11)) = — (]|0) + |1 — (|0) + 1
|00) = |0) ® |0) 5 (100) +[07) +[10) +|11)) ﬁ(|>|>)®\/§(\>|>)

2. Entangled state,

1
i (100) +[11))

— Entangled states play a crucial role in quantum computation/information (teleportation,

quantum cryptography, . . . )
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MEASURING N QUBITS SYSTEMS

» Measuring in the basis |e;) |e2) - - - |en):

) = Z Qi e,1> ey ) [measure, ‘er> -+ |ej, ) with probability |y, .. j, 2
thgeoos in€e{0,1}"
P Measuring the first register in the basis (|eo) , |e1)):

leo) |40) with probability |ag|?

measure
) = e eo) [sho) + e fen) ) === { lex) [46:) with probability | |2

Be careful: necessarily |ao|? + ai|* = 1. )

Exercise:
Give the outcome distribution of measuring in the basis (|bb") : b, b’ € {0,1}) the first registers
of the following two-qubits:

0 <\/§\o>+\/§n>>, Vaton T+ /Tnoy ang 1oy —1m)a0 - 1)
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UNITARY FOR n QUBITS SYSTEMS

Unitary evolution U € C* ** unitary matrix <= UUT = Id J

Exercise:

Is the following operator a unitary of C? @ C%:

o O O =
o o - O
- O O O
o - O O

Describe the image of |bb”) for b, b" € {0, 1}

34



BRA-KET AND KET-BRA NOTATION



THE BRA-KET NOTATION

Scalar Product:

Let|ey),...,|e,n) be an orthonormal basis, [v) &f > ailer) and ) & > Bilei). Then

(wle) € 3 wip;

» Ket-notation: |4) is called a ket

(e}

> Bra-notation: aket [¢) = | | isavector of €7,

(] & (M,) )T = (e ... @) isabra (don’t forget the conjugate, @;, not a,)

Useful notation:

— It enables to interpret (i) as (Y| - |¢)

Bra

Ket

(¥l

[¥)

36



THE KET-BRA NOTATION:

The |p )+ | operator:
lexwl: (€2)*" — ()"
[9") — leXwl [9")

def

@|¢") o) -

Exercise:
1. Give the image of |0) and |1) by [0)(1] + |1)(0]. Give the matrix representation of this

operator. Do you recognize a quantum gate?

2. Let (]i))iez be an orthonormal basis. Which operator is

D lixil?

IeET

37



ADJOINT OF AN OPERATOR:

Adjoint of an operator:

AT is known as the adjoint of A J

Exercise:

1. showthat (Alg) )" = (ol AT

2. showthat (Ie)wl)' = [4)el

38



AN IMPORTANT PROPERTY

Be careful with adjoint/dagger over tensor product! ( S )

Proposition:

We have,

(10 19)) = (el wl. (A@B) =AT®B! and (U(le)|¥)) = (el (I !

Proof:
Use the definition of tensor product as multiplication raw/column. J

Classical error:
(I 1))" = @il and (a@B)' =BT @Al J
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EXERCISE SESSION
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