LECTURE 1 INTRODUCTION TO QUANTUM COMPUTING

INF587 Quantum computer science and applications

Thomas Debris-Alazard

Inria, École Polytechnique

ORIGIN OF QUANTUM COMPUTING

Feynman (1981)

Can quantum systems be probabilistically simulated by a classical computer?

→ The answer is is almost certainly, no!

→ Use quantum systems/computers to simulate quantum systems! (birth of quantum simulation)

A natural question

What other problems can quantum computers solve more quickly than classical computer?

Deutsch (1985)

Foundation of quantum computing!

→ Deutsch-Jozsa algorithm (1992) quantum algorithm faster than any classical algorithm

1

EARLY ALGORITHMS: SHOR

Shor (1994)

Solves the discrete logarithm and factoring problem in polynomial time with a quantum computer!

Terrible situation: public-key cryptography currently deployed is broken by using an "efficient" quantum computer

----- Crypto community worried about this since many years...

There exists quantum resistant solutions: post-quantum cryptography (active research topic)

American's government (2017) has launched a process to standardized post-quantum primitives

EARLY ALGORITHMS: GROVER

Grover (1996)

Find an element in a list of size n in time $O\left(\sqrt{n}\right)$ while any classical algorithm needs a time $\approx n$

Consequence: size of keys in symmetric cryptography has to be $\times 2$.

A BIG ISSUE: DECOHERENCE

Computations are "noisy"

- Quantum bits are very fragile, they quickly interfere with the environment: decoherence
- Quantum architectures are not "ideal"
 - → Faults in computation can theoretically be "corrected": quantum error correcting codes

Theorem 1. [Aharonov, Ben-Or, 1997]

Quantum computation is possible provided the noise is sufficiently low

QUANTUM CRYPTOGRAPHY

Benett-Brassard (1984)

Quantum protocol for key-exchange

- ► Already implemented
- ► If an authenticated canal has been established, unconditional security: relies only on the validity of physic laws and not computational assumptions

PROGRAM OF THIS COURSE

- → Basics of quantum computing and quantum information theory
- Quantum formalism with density operators, general measures, partial trace, etc...
- Quantum circuit model, quantum algorithms (Deutsch-Josza, Simon, Grover, Quantum Fourier Transform, Shor)
- · Basics of quantum error correcting codes and quantum cryptography

References:

- ▶ Nielsen and Chuang, Quantum computation and quantum information,
 - \longrightarrow Nice introduction to quantum computing and quantum information
- ▶ de Wolf's lecture notes: https://arxiv.org/abs/1907.09415,
 - --- Nice for advanced quantum algorithms
- ► Zemor's lecture notes: https://www.math.u-bordeaux.fr/~gzemor/QuantumCodes.pdf,
 - ---> Introduction to quantum error correcting codes

EVALUATION OF THIS COURSE

- 1. An exam (3 hours): an A3 sheet allowed
 - \rightarrow Three exercises seen during the Exercise Sessions will be at the exam.
- 2. Presentation of a research article or a chapter of some lecture notes (30min).

You are in a course of computer science

Computer science: art of computing

 \longrightarrow We don't care that an object "exists", we want to compute it efficiently!

Using the law of quantum physic: new model of computation

What does mean quantum computing? What is a quantum algorithm?

→ This course is not about the law of physics or about the "technologies" to verify/use them

CLASSICAL BIT

- ▶ Classical bit: $b \in \{0, 1\}$
- ightharpoonup Probabilistic bit: $\binom{p}{q}$ where

$$p \stackrel{\text{def}}{=} \mathbb{P}(b=0)$$
$$q \stackrel{\text{def}}{=} \mathbb{P}(b=1)$$

Evolution during a computation (a probabilistic bit stays a probabilistic bit):

$$\binom{p}{q} \longrightarrow \binom{p'}{q'} = \binom{a}{c} \quad \binom{b}{d} \quad \text{where } \left\{ \begin{array}{l} a+c=1 \\ b+d=1 \end{array} \right. \text{ and } a,b,c,d \ge 0.$$

Probabilistic computation: multiplication by a stochastic matrix

Examples: $b \rightarrow b \oplus b$ and $b \mapsto b \oplus 1$

$$\begin{pmatrix}p\\q\end{pmatrix}\longrightarrow\begin{pmatrix}1\\0\end{pmatrix}=\begin{pmatrix}1&1\\0&0\end{pmatrix}\begin{pmatrix}p\\q\end{pmatrix}\quad\text{and}\quad\begin{pmatrix}p\\q\end{pmatrix}\longrightarrow\begin{pmatrix}q\\p\end{pmatrix}=\begin{pmatrix}0&1\\1&0\end{pmatrix}\begin{pmatrix}p\\q\end{pmatrix}$$

"A superposition of classical states"

▶ A qubit $|\psi\rangle$ is an element of \mathbb{C}^2 with Euclidean norm 1:

$$|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle\,$$
 with $\alpha,\beta\in\mathbb{C}$ (called amplitude) and $|\alpha|^2+|\beta|^2=1$ where $(|0\rangle,|1\rangle)$ orthonormal basis of \mathbb{C}^2 . Usually defined as

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

"A superposition of classical states"

▶ A qubit $|\psi\rangle$ is an element of \mathbb{C}^2 with Euclidean norm 1:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
 with $\alpha, \beta \in \mathbb{C}$ (called amplitude) and $|\alpha|^2 + |\beta|^2 = 1$

where $(|0\rangle, |1\rangle)$ orthonormal basis of \mathbb{C}^2 . Usually defined as

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

We "cannot see" a superposition, we "can only see" classical states: measure and observe!

▶ Measurement: probabilistic orthogonal projection. Given $|e_0\rangle$, $|e_1\rangle \in \mathbb{C}^2$ orthonormal basis:

Measuring in the basis (
$$|e_0\rangle$$
, $|e_1\rangle$): $|\psi\rangle = \alpha |e_0\rangle + \beta |e_1\rangle \stackrel{\textit{measure}}{\longrightarrow} \left\{ \begin{array}{c} |e_0\rangle \text{ with prob. } |\alpha|^2 \\ |e_1\rangle \text{ with prob. } |\beta|^2 \end{array} \right.$

Exercise: Computational versus Hadamard basis

1. Show that ($\left|+\right\rangle ,\left|-\right\rangle$) is an orthonormal basis of \mathbb{C}^{2} where

$$|+\rangle\stackrel{\text{def}}{=}\frac{1}{\sqrt{2}}\left(|0\rangle+|1\rangle\right)$$
 and $|-\rangle\stackrel{\text{def}}{=}\frac{1}{\sqrt{2}}\left(|0\rangle-|1\rangle\right)$

2. Give the outcome distribution when measuring $|0\rangle$, $|-\rangle$, and $\frac{1}{\sqrt{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle$ in the bases $(|0\rangle, |1\rangle)$ and $(|+\rangle, |-\rangle)$.

- Qubit: $|\psi\rangle\in\mathbb{C}^2$ of Hermitian norm 1,
- ▶ Measuring in the orthonormal basis ($|e_0\rangle$, $|e_1\rangle$):

$$\left|\psi\right\rangle = \alpha \left|e_{0}\right\rangle + \beta \left|e_{1}\right\rangle \stackrel{\textit{measure}}{\longrightarrow} \left\{ \begin{array}{c} \left|e_{0}\right\rangle \text{ with prob. } \left|\alpha\right|^{2} \\ \left|e_{1}\right\rangle \text{ with prob. } \left|\beta\right|^{2} \end{array} \right.$$

A measurement is a "computation" you have access to

→ See Lecture 2 for a precise definition of measurement...

- Qubit: $|\psi\rangle \in \mathbb{C}^2$ of Hermitian norm 1,
- ▶ Measuring in the orthonormal basis ($|e_0\rangle$, $|e_1\rangle$):

$$\left|\psi\right\rangle = \alpha \left|e_{0}\right\rangle + \beta \left|e_{1}\right\rangle \stackrel{\textit{measure}}{\longrightarrow} \left\{ \begin{array}{c} \left|e_{0}\right\rangle \text{ with prob. } \left|\alpha\right|^{2} \\ \left|e_{1}\right\rangle \text{ with prob. } \left|\beta\right|^{2} \end{array} \right.$$

A measurement is a "computation" you have access to

→ See Lecture 2 for a precise definition of measurement...

Are there other computations over qubits we have access to?

- Qubit: $|\psi\rangle \in \mathbb{C}^2$ of Hermitian norm 1,
- ▶ Measuring in the orthonormal basis ($|e_0\rangle$, $|e_1\rangle$):

$$|\psi\rangle = \alpha\,|e_0\rangle + \beta\,|e_1\rangle \stackrel{\textit{measure}}{\longrightarrow} \left\{ \begin{array}{c} |e_0\rangle \text{ with prob. } |\alpha|^2 \\ |e_1\rangle \text{ with prob. } |\beta|^2 \end{array} \right.$$

A measurement is a "computation" you have access to

→ See Lecture 2 for a precise definition of measurement...

Are there other computations over qubits we have access to?

→ Yes! Unitary evolutions

UNITARY EVOLUTIONS

 \blacktriangleright Unitary evolution: $\textbf{U} \in \mathbb{C}^{2 \times 2}$ unitary matrix $\iff \textbf{U}\textbf{U}^\dagger = \textbf{I}_2$

$$|\psi\rangle \longrightarrow \mathsf{U}\,|\psi\rangle$$

Is it true that a qubit is still a qubit after a unitary evolution? Why?

→ Yes! Unitary evolutions preserve the Hermitian norm (more generally the inner-product)

Unitary evolutions are inversible!

$$|\psi\rangle \stackrel{\mathsf{U}}{\longrightarrow} \mathsf{U}\,|\psi\rangle \stackrel{\mathsf{U}^{\dagger}}{\longrightarrow} \mathsf{U}^{\dagger} \mathsf{U}\,|\psi\rangle = |\psi\rangle$$

- ${\color{blue} \blacktriangleright} \ \ {\textbf{U}} \in \mathbb{C}^{2 \times 2}$ unitary over qubits is often called quantum gate
 - → It exists a small set of gates which is universal

To define a quantum gate: enough to specify the image of an orthonormal basis and then extended it by linearity

But it has to map an orthonormal basis to an orthonormal basis!

Exercise: Quantum Gates?

Are the following linear operators over qubits be quantum gates?

1.
$$|0\rangle \mapsto |1\rangle$$
 and $|1\rangle \mapsto \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$,

2.
$$|0\rangle \mapsto |1\rangle$$
 and $|1\rangle \mapsto |0\rangle$.

Quantum gates have matrix representations!

For instance: $|0\rangle \mapsto |1\rangle$ and $|1\rangle \mapsto |0\rangle$ has the representation: $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Only linear operator that maps $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ to $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $|1\rangle$ to $|0\rangle$.

► NOT-gate X:

Linear op.	Matrix rep.
$\begin{array}{c} 0\rangle \mapsto 1\rangle \\ 1\rangle \mapsto 0\rangle \end{array}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

► Hadamard-gate H:

Linear op.	Matrix rep.
$ 0\rangle \mapsto \frac{1}{\sqrt{2}} (0\rangle + 1\rangle)$ $ 1\rangle \mapsto \frac{1}{\sqrt{2}} (0\rangle - 1\rangle)$	$\begin{array}{c c} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

Exercise:

- 1. What is the effect of applying \boldsymbol{H} on $|0\rangle$ and measuring it?
- 2. What is the effect of applying H on $|0\rangle$ twice?

CLASSICAL VERSUS QUANTUM COMPUTATION

 $Is \ quantum \ computation \ over \ qubits \ the \ same \ than \ classical \ computation \ over \ probabilistic \ bits?$

Exercise:

Show that there is no stochastic matrix **P** which when applied to 0, *i.e.* to $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, simulates the effect of the Hadamard gate

The "-1" gives you a huge power...

THE DEUTSCH-JOSZA PROBLEM

Problem

- Input: $f: \{0,1\}^n \to \{0,1\}$ either constant or balanced,
- Output: 0 if and only if f is constant.

Query complexity to f:

- ightharpoonup Classically: $1 + \frac{2^n}{2}$,
- Quantumly: 1.

THE DEUTSCH-JOSZA ALGORITHM FOR n=1

Suppose that we have access to the following gate (see exercise session)

$$|b\rangle$$
 $(-1)^{f(b)}|b\rangle$

► The algorithm

- Analysis
- 1. Applying H: $\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$,
- 2. Applying U_f :

$$U_{f}\left(\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\right) = \frac{1}{\sqrt{2}}(U_{f}|0\rangle + U_{f}|1\rangle) = \frac{(-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle}{\sqrt{2}}$$

3. Applying H:

$$\begin{split} H\left(\frac{(-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle}{\sqrt{2}}\right) &= \frac{1}{\sqrt{2}}\left((-1)^{f(0)}H|0\rangle + (-1)^{f(1)}H|1\rangle\right) \\ &= \frac{\left((-1)^{f(0)} + (-1)^{f(1)}\right)|0\rangle + \left((-1)^{f(0)} - (-1)^{f(1)}\right)|1\rangle}{2} \end{split}$$

Before measuring we have computed

$$|\psi_{\mathrm{out}}\rangle \stackrel{\mathrm{def}}{=} \frac{\left((-1)^{f(0)} + (-1)^{f(1)}\right)|0\rangle + \left((-1)^{f(0)} - (-1)^{f(1)}\right)|1\rangle}{2}$$

► If *f* constant:

$$|\psi_{\mathrm{out}}\rangle=\pm\,|0\rangle$$
 .

▶ If f balanced, namely $f(0) \neq f(1)$:

$$|\psi_{\mathrm{out}}
angle = \pm \left|1
ight
angle$$
 .

Before measuring we have computed

$$|\psi_{\text{out}}\rangle \stackrel{\text{def}}{=} \frac{\left((-1)^{f(0)} + (-1)^{f(1)}\right)|0\rangle + \left((-1)^{f(0)} - (-1)^{f(1)}\right)|1\rangle}{2}$$

► If *f* constant:

$$|\psi_{\mathrm{out}}\rangle=\pm\,|0\rangle$$
 .

▶ If f balanced, namely $f(0) \neq f(1)$:

$$|\psi_{
m out}
angle=\pm\left|1
ight
angle$$
 .

Measuring in the ($|0\rangle$, $|1\rangle$) basis leads to (with probability one)

$$|0\rangle$$
 if f constant or $|1\rangle$ if f balanced

n **QUBITS SYSTEM**

FINITE DIMENSION

During all this course we will work in finite dimension, think \mathbb{C}^N

→ Vector spaces have finite dimension, linear operator can be written as matrices, etc...

Given two vector spaces V and W, the tensor product $\mathbf{v} \otimes \mathbf{w}$ between $\mathbf{v} \in V$ and $\mathbf{w} \in W$ verifies:

(1) for any scalar z,

$$z(v \otimes w) = (zv) \otimes w = v \otimes (zw)$$

(2) for any $\mathbf{v}_1, \mathbf{v}_2 \in V$.

$$(\mathbf{v}_1 + \mathbf{v}_2) \otimes \mathbf{w} = \mathbf{v}_1 \otimes \mathbf{w} + \mathbf{v}_2 \otimes \mathbf{w}$$

(3) for any $\mathbf{w}_1, \mathbf{w}_2 \in W$,

$$v\otimes (w_1+w_2)=v\otimes w_1+v\otimes w_2$$

Think the tensor product $v \otimes w$ as a column/row product:

$$\begin{pmatrix} v_1 \\ \vdots \\ v_N \end{pmatrix} \begin{pmatrix} w_1 & \cdots & w_N \end{pmatrix}$$

Tensor Product of Spaces

V and W be two vector spaces with bases the \mathbf{v}_i 's and the \mathbf{w}_j respectively

$$V = \text{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$$
 and $W = \text{Span}(\mathbf{w}_1, \dots, \mathbf{w}_m)$

The vector space $V \otimes W$ is defined as being generated by the \mathbf{v}_i 's and the \mathbf{w}_i 's

$$V \otimes W \stackrel{\text{def}}{=} \text{Span} (\mathbf{v}_i \otimes \mathbf{w}_j : 1 \leq i \leq n, 1 \leq j \leq m)$$

▶ Dimension,

$$\dim V \otimes W = \dim V \dim W = nm$$

Basis, (v_1, \ldots, v_n) (resp. (w_1, \ldots, w_m)) be a basis of V (resp. W)

$$(\mathbf{v}_i \otimes \mathbf{w}_j : 1 \le i \le n, \ 1 \le j \le m)$$
 is a basis of $V \otimes W$

Characterization,

$$\mathbf{x} \in V \otimes W \iff \exists \alpha_{i,j} : \mathbf{x} = \sum_{\substack{1 \leq i \leq n \\ 1 \leq i \leq m}} \alpha_{i,j} \ \mathbf{v}_i \otimes \mathbf{w}_j$$

Classical Error:

 $\mathbf{x} \in V \otimes W$, then there exists $\mathbf{v} \in V$ and $\mathbf{w} \in W$ such that $\mathbf{x} = \mathbf{v} \otimes \mathbf{w}$.

SCALAR PRODUCT OVER TENSOR PRODUCT SPACES

$$(\mathbf{v}_1,\ldots,\mathbf{v}_n)$$
 (resp. $(\mathbf{w}_1,\ldots,\mathbf{w}_m)$) be a basis of V (resp. W).

Scalar product over tensor product spaces

Suppose that V (resp. W) is equipped by a scalar product $\langle \cdot, \cdot \rangle_V$ (resp. $\langle \cdot, \cdot \rangle_W$). The scalar product over $V \otimes W$ is defined as (and extended by bilinearity) as

$$\langle \mathbf{v}_i \otimes \mathbf{w}_j, \mathbf{v}_k \otimes \mathbf{w}_\ell \rangle_{V \otimes W} \stackrel{\mathsf{def}}{=} \langle \mathbf{v}_i, \mathbf{v}_k \rangle_V \ \langle \mathbf{w}_j, \mathbf{w}_\ell \rangle_W$$

An important remark

If
$$\mathbf{v}_1 \perp \mathbf{v}_2$$
, then for all $\mathbf{w}_1, \mathbf{w}_2$: $\mathbf{v}_1 \otimes \mathbf{w}_1 \perp \mathbf{v}_2 \otimes \mathbf{w}_2$

$$(\mathbf{v}_1,\ldots,\mathbf{v}_n)$$
 (resp. $(\mathbf{w}_1,\ldots,\mathbf{w}_m)$) be a basis of V (resp. W).

Linear Operator over tensor product of spaces

Given A, B be linear operator over V, W, $A \otimes B$ is a linear operator over $V \otimes W$ be defined (and extended by linearity) as

$$A \otimes B (v_i \otimes w_j) \stackrel{\text{def}}{=} Av_i \otimes Bw_j$$

Characterization.

C linear operator over
$$V \otimes W \iff \exists \alpha_i, A_i, B_i : C = \sum_i \alpha_i A_i \otimes B_i$$

Classical Error:

C linear operator over V \otimes W, then there exists A, B linear operators over V and W s.t C = A \otimes B.

MATRIX REPRESENTATION OF TENSOR PRODUCT

Tensor product of matrices

Let $\mathbf{A} \stackrel{\text{def}}{=} (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}} \in \mathbb{C}^{n \times m}$ and $\mathbf{B} \in \mathbb{C}^{p \times q}$, then

$$\mathbf{A} \otimes \mathbf{B} \stackrel{\text{def}}{=} \begin{pmatrix} a_{1,1}\mathbf{B} & a_{1,2}\mathbf{B} & \cdots & a_{1,m}\mathbf{B} \\ a_{2,1}\mathbf{B} & a_{2,2}\mathbf{B} & \cdots & a_{2,m}\mathbf{B} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n,1}\mathbf{B} & a_{n,2}\mathbf{B} & \cdots & a_{n,m}\mathbf{B} \end{pmatrix} \in \mathbb{C}^{np \times mq}$$

Example:

1.
$$\binom{1}{2} \otimes \binom{2}{3} = \binom{1 \times 2}{1 \times 3}_{2 \times 2}_{2 \times 3} = \binom{2}{3}_{4}_{6}$$

2.
$$\mathbf{X} \otimes \mathbf{H} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}$$

PROPERTIES OF THE TENSOR PRODUCT OF MATRICES

Properties: for any $\alpha \in \mathbb{C}$, $A, B \in \mathbb{C}^{m \times n}$ and $C, D \in \mathbb{C}^{p \times q}$

1.
$$\alpha (A \otimes C) = (\alpha A) \otimes C = A \otimes (\alpha C)$$
,

$$2. (A + B) \otimes C = A \otimes C + B \otimes C,$$

3. $C \otimes (A + B) = C \otimes A + C \otimes B$,

4. If we can form matrix products AC and BD, then

$$(A\otimes B)\ (C\otimes D)=(AC)\otimes (BD)$$

5. If A, B are invertible, then

$$\left(\mathbf{A}\otimes\mathbf{B}\right)^{-1}=\mathbf{A}^{-1}\otimes\mathbf{B}^{-1}.$$

Classical Error:

$$A\otimes B=B\otimes A.$$

n **QUBITS SYSTEM**

- ightharpoonup A qubit $|\psi\rangle$ is an element of \mathbb{C}^2 with Hermitian norm 1,
- A register of *n* qubits $|\psi\rangle$ is an element of $\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 = \mathbb{C}^{2^n}$ with Euclidean norm 1.

Let (|0 \rangle , |1 \rangle) be an orthonormal basis of \mathbb{C}^2 . Then,

$$(|b_1\rangle\otimes|b_2\rangle\otimes\cdots\otimes|b_n\rangle\ :\ b_1,\ldots,b_n\in\{0,1\})$$

is an orthonormal basis of $\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 = \mathbb{C}^{2^n}$.

- Notation: for $b_1, \ldots, b_n \in \{0, 1\}$ and $|\psi_1\rangle, |\psi_2\rangle, \ldots, |\psi_n\rangle$ be qubits $|b_1b_2 \ldots b_n\rangle \stackrel{\text{def}}{=} |b_1\rangle \otimes |b_2\rangle \otimes \cdots \otimes |b_n\rangle$ and $|\psi_1\rangle |\psi_2\rangle \ldots |\psi_n\rangle \stackrel{\text{def}}{=} |\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_n\rangle$
- ► Characterization: any register $|\psi\rangle \in \mathbb{C}^{2^n}$ of *n* qubits can be written as

$$|\psi\rangle = \sum_{\mathbf{x} \in \{0,1\}^n} \alpha_{\mathbf{x}} \, |\mathbf{x}\rangle \quad \text{ where } \alpha_{\mathbf{x}} \in \mathbb{C} \, (\text{called amplitude}) \quad \text{and } \sum_{\mathbf{x} \in \{0,1\}^n} |\alpha_{\mathbf{x}}|^2 = 1.$$

n QUBITS SYSTEM

- lacktriangle A qubit $|\psi\rangle$ is an element of \mathbb{C}^2 with Hermitian norm 1,
- A register of n qubits $|\psi\rangle$ is an element of $\underbrace{\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2}_{n \text{ times}} = \mathbb{C}^{2^n}$ with Euclidean norm 1.

Let (|0 \rangle , |1 \rangle) be an orthonormal basis of \mathbb{C}^2 . Then,

$$(|b_1\rangle \otimes |b_2\rangle \otimes \cdots \otimes |b_n\rangle : b_1, \ldots, b_n \in \{0, 1\})$$

is an orthonormal basis of $\underbrace{\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2}_{n \text{ times}} = \mathbb{C}^{2^n}$.

Notation: for $b_1, \ldots, b_n \in \{0, 1\}$ and $|\psi_1\rangle, |\psi_2\rangle, \ldots, |\psi_n\rangle$ be qubits

$$|b_1b_2\dots b_n\rangle \stackrel{\text{def}}{=} |b_1\rangle \otimes |b_2\rangle \otimes \dots \otimes |b_n\rangle \quad \text{and} \quad |\psi_1\rangle \, |\psi_2\rangle \dots \, |\psi_n\rangle \stackrel{\text{def}}{=} |\psi_1\rangle \otimes |\psi_2\rangle \otimes \dots \otimes |\psi_n\rangle$$

► Characterization: any register $|\psi\rangle \in \mathbb{C}^{2^n}$ of *n* qubits can be written as

$$|\psi\rangle = \sum_{\mathbf{x} \in \{0,1\}^n} \alpha_{\mathbf{X}} \, |\mathbf{x}\rangle \quad \text{ where } \alpha_{\mathbf{X}} \in \mathbb{C} \, (\text{called amplitude}) \quad \text{and} \quad \sum_{\mathbf{x} \in \{0,1\}^n} |\alpha_{\mathbf{x}}|^2 = 1.$$

A remark: choose your orthonormal basis!

From any $(|e_0\rangle, |e_1\rangle)$ orthonormal basis of \mathbb{C}^2 , then $(|e_{i_1}\rangle \dots |e_{i_n}\rangle)$ for $i_1, \dots, i_n \in \{0, 1\}^n$ is an orthonormal basis of $\underline{\mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2} = \mathbb{C}^{2^n}$.

Exercise:

- 1. Compute the scalar product between $|+\rangle |1\rangle$, $|00\rangle$ and $|11\rangle$ where $|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle |1\rangle)$.
- 2. Let $(|e_0\rangle, |e_1\rangle)$ be an orthonormal basis of \mathbb{C}^2 . Show that $(|e_{i_1}\rangle \dots |e_{i_n}\rangle)$ for $i_1, \dots, i_n \in \{0, 1\}^n$ is an orthonormal basis of $\underbrace{\mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2}_{n \text{ times}} = \mathbb{C}^{2^n}$.
- 3. Do we have $|00\rangle + |10\rangle = (|0\rangle + |1\rangle) \otimes |0\rangle$?
- 4. (*) Do there exist two qubits $|\psi_1\rangle$ and $|\psi_2\rangle$ such that

$$\frac{1}{\sqrt{2}}\left(|00\rangle+|11\rangle\right)=|\psi_1\rangle\otimes|\psi_2\rangle.$$

5. Do there exists two qubits $|\psi_1\rangle$ and $|\psi_2\rangle$ such that

$$\frac{1}{2}\left(|00\rangle+|01\rangle+|10\rangle+|11\rangle\right)=|\psi_1\rangle\otimes|\psi_2\rangle.$$

Separable versus entangled states:

A n-qubit system $|\psi\rangle$ that can be decomposed as $|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$ is called separable. When there is no such decomposition, the state is called entangled.

Example:

1. Separable states

$$|00\rangle = |0\rangle \otimes |0\rangle \quad \text{and} \quad \frac{1}{2} \left(|00\rangle + |01\rangle + |10\rangle + |11\rangle \right) = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \otimes \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right)$$

2. Entangled state

$$\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$$

ightarrow Entangled states play a crucial role in quantum computation/information (teleportation, quantum cryptography, ...)

► Measuring in the basis $|e_1\rangle |e_2\rangle \dots |e_n\rangle$:

$$\left|\psi\right\rangle = \sum_{i_1, \dots, i_n \in \{0,1\}^n} \alpha_{i_1 \cdots i_n} \left|e_{i_1}\right\rangle \cdots \left|e_{i_n}\right\rangle \overset{\textit{measure}}{\longrightarrow} \left|e_{j_1}\right\rangle \dots \left|e_{j_n}\right\rangle \text{ with probability } \left|\alpha_{j_1 \cdots j_n}\right|^2$$

• Measuring the first register in the basis $(|e_0\rangle, |e_1\rangle)$

$$\left|\psi\right\rangle = \alpha_{0}\left|e_{0}\right\rangle\left|\psi_{0}\right\rangle + \alpha_{1}\left|e_{1}\right\rangle\left|\psi_{1}\right\rangle \stackrel{\textit{measure}}{\longrightarrow} \left\{\begin{array}{c}\left|e_{0}\right\rangle\left|\psi_{0}\right\rangle \text{ with prob. }\left|\alpha_{0}\right|^{2}\\\left|e_{1}\right\rangle\left|\psi_{1}\right\rangle \text{ with prob. }\left|\alpha_{1}\right|^{2}\end{array}\right.$$

Be careful: necessarily
$$|\alpha_0|^2 + |\alpha_1|^2 = 1$$
.

Exercise:

Give the outcome distribution of measuring in the basis ($|bb'\rangle:b,b'\in\{0,1\}$) the first registers of the following two-qubits

$$|0\rangle\left(\sqrt{\frac{1}{3}}\,|0\rangle+\sqrt{\frac{2}{3}}\,|1\rangle\right),\quad\sqrt{\frac{1}{2}}\,|01\rangle+\sqrt{\frac{1}{3}}\,|11\rangle+\sqrt{\frac{1}{6}}\,|10\rangle\quad\text{and}\quad\frac{1}{2}\left(|0\rangle-|1\rangle\right)\left(|0\rangle-|1\rangle\right)$$

Unitary evolution
$$\mathbf{U} \in \mathbb{C}^{2^n \times 2^n}$$
 unitary matrix $\iff \mathbf{U}\mathbf{U}^{\dagger} = \mathbf{I}_{2^n}$.

Exercise:

Is the following operator a unitary of $\mathbb{C}^2\otimes\mathbb{C}^2$:

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

Describe the image of $|bb'\rangle$ for $b, b' \in \{0, 1\}$.

THE BRA-KET NOTATION

Scalar Product:

Let $|e_1\rangle$,..., $|e_{2^n}\rangle$ be an orthonormal basis, $|\psi\rangle\stackrel{\text{def}}{=}\sum_i\alpha_i\,|e_i\rangle$ and $|\varphi\rangle\stackrel{\text{def}}{=}\sum_i\beta_i\,|e_i\rangle$. Then

$$\langle \psi | \varphi \rangle \stackrel{\mathsf{def}}{=} \sum_i \overline{\alpha_i} \beta_i.$$

- **Ket-notation:** $|\psi\rangle$ is called a ket

$$\langle \psi | \stackrel{\mathrm{def}}{=} (|\psi \rangle)^\dagger = \left(\overline{lpha_1} \quad \dots \quad \overline{lpha_{2^n}}
ight)$$
 is a bra

Useful notation:

 \longrightarrow It enables to interpret $\langle \psi | \varphi \rangle$ as $\langle \psi | \cdot | \varphi \rangle$.

Bra	Ket
$\langle \psi $	$ \psi\rangle$

THE KET-BRA NOTATION:

The $|\varphi\rangle\langle\psi|$ operator

$$\begin{split} |\varphi\rangle\langle\psi| : \left(\mathbb{C}^2\right)^{\otimes n} &\longrightarrow \left(\mathbb{C}^2\right)^{\otimes n} \\ |\psi'\rangle &\longmapsto |\varphi\rangle\langle\psi| \left|\psi'\right\rangle \stackrel{\text{def}}{=} \left\langle\psi|\psi'\right\rangle |\varphi\rangle \,. \end{split}$$

Exercise:

- 1. Give the image of $|0\rangle$ and $|1\rangle$ by $|0\rangle\langle 1| + |1\rangle\langle 0|$. Give the matrix representation of this operator. Do you recognize a quantum gate?
- 2. Let $(|i\rangle)$ be an orthonormal basis. Which operator is

$$\sum_i |i\rangle\langle i| \; .$$

ADJOINT OF AN OPERATOR:

Adjoint of an operator

 \mathbf{A}^{\dagger} is known as the adjoint of \mathbf{A}

Exercise:

- 1. Show that $(\mathbf{A}\,|arphi\rangle)^\dagger=\langlearphi|\,\mathbf{A}^\dagger$,
- 2. Show that $(|\varphi\rangle\langle\psi|)^\dagger=|\psi\rangle\langle\varphi|.$

AN IMPORTANT PROPERTY

Be careful with adjoint/dagger over tensor product... (do not reverse the order...)

Proposition:

We have

$$\left(\left|\varphi\right\rangle \left|\psi\right\rangle \right)^{\dagger} = \left\langle \varphi\right| \left\langle \psi\right| \quad \text{and} \quad \left(\mathbf{A} \otimes \mathbf{B}\right)^{\dagger} = \mathbf{A}^{\dagger} \otimes \mathbf{B}^{\dagger}$$

Proof:

See exercise session!

