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ORIGIN OF QUANTUM COMPUTING

Feynman (1981)
Can quantum systems be probabilistically simulated by a classical computer?
— The answer is is almost certainly, no!

— Use quantum systems/computers to simulate quantum systems!

(birth of quantum simulation)

A natural question

What other problems can quantum computers solve more quickly than classical computer? J

Deutsch (1985)

Foundation of quantum computing!
— Deutsch-Jozsa algorithm (1992) quantum algorithm faster than any classical algorithm




EARLY ALGORITHMS: SHOR

Shor (1

Solves the discrete logarithm and factoring problem in polynomial time with a quantum computer!J

Terrible situation: public-key cryptography currently deployed is broken by using an “efficient”

guantum computer

— Crypto community worried about this since many years...

There exists quantum resistant solutions: post-quantum cryptography (active research topic)
American’s government (2017) has launched a process to standardized post-quantum primitives J




EARLY ALGORITHMS: GROVER

Grover (1996)
Find an element in a list of size 1 in time O (/) while any classical algorithm needs a time & n J

Consequence: size of keys in symmetric cryptography has to be x2.



A BIG ISSUE: DECOHERENCE

Computations are “noisy”

P> Quantum bits are very fragile, they quickly interfere with the environment: decoherence

» Quantum architectures are not “ideal”
— Faults in computation can theoretically be “corrected”: quantum error correcting codes

Theorem 1. [Aharonov, Ben-0r, 1997]

Quantum computation is possible provided the noise is sufficiently low J




QUANTUM CRYPTOGRAPHY

Benett-Brassard (1984)

Quantum protocol for key-exchange J

» Already implemented

» If an authenticated canal has been established, unconditional security: relies only on
the validity of physic laws and not computational assumptions



PROGRAM OF THIS COURSE

— Basics of quantum computing and quantum information theory

e Quantum formalism with density operators, general measures, partial trace, etc...

e Quantum circuit model, quantum algorithms (Deutsch-Josza, Simon, Grover, Quantum Fourier

Transform, Shor)

e Basics of quantum error correcting codes and quantum cryptography

References:

» Nielsen and Chuang, Quantum computation and quantum information,

— Nice introduction to quantum computing and quantum information

» de Wolf's lecture notes: https://arxiv.org/abs/1907.09415,

— Nice for advanced quantum algorithms

» Zemor's lecture notes: https://www.math.u-bordeaux.fr/~gzemor/QuantumCodes.pdf,

— Introduction to quantum error correcting codes


https://arxiv.org/abs/1907.09415
https://www.math.u-bordeaux.fr/~gzemor/QuantumCodes.pdf

EVALUATION OF THIS COURSE

1. An exam (3 hours): an A3 sheet allowed

— Three exercises seen during the Exercise Sessions will be at the exam.

2. Presentation of a research article or a chapter of some lecture notes (30min).



A WARNING

You are in a course of computer science

Computer science: art of computing

—— We don't care that an object “exists”, we want to compute it efficiently!

Using the law of quantum physic: new model of computation

What does mean quantum computing? What is a quantum algorithm? J

— This course is not about the law of physics or about the “technologies” to verify/use them



CLASSICAL BITS VERSUS QUANTUM BITS



CLASSICAL BIT

» Classical bit: b € {0,1}

P Probabilistic bit: <Z) where

p € p(b = 0)

qE€r(b=1)

» Evolution during a computation (a probabilistic bit stays a probabilistic bit):

p p"\ _ (a b\ (p atc=1 A el @
<q)‘>(q/>_(c d) (q) where{ bad—1 and a,b,c,d > 0.

Probabilistic computation: multiplication by a stochastic matrix )

Examples: b — b@®bandb— bd1

@)= 06)=6 o) @) = (=)= o))




QUANTUM BIT (QUBIT)

“A superposition of classical states”

> A qubit [4) is an element of C* with Euclidean norm 1:
|y = a|0) 4+ B |1) with a, 8 € C (called amplitude) and |a|* + |B]* =1

where (|0) , |1)) orthonormal basis of C2. Usually defined as
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QUANTUM BIT (QUBIT)

“A superposition of classical states”

> A qubit [4) is an element of C* with Euclidean norm 1:
|y = a|0) 4+ B |1) with a, 8 € C (called amplitude) and |a|* + |B]* =1

where (|0) , |1)) orthonormal basis of C2. Usually defined as
1 0
|0) = <0> and |1) = (1)

We “cannot see” a superposition, we “can only see” classical states: measure and observe!

» Measurement: probabilistic orthogonal projection. Given |eo) , |e1) € C? orthonormal basis:
o . ith prob. |a|?
M the b ] _ measuyre |€o> W‘I
easuring in the basis (|eg) , |e1)) : |¥) = aleo) + Bler) — lex} with prob. |8[2
Exercise: Computational versus Hadamard basis
1. Show that (|+) , |—)) is an orthonormal basis of C? where

) & 50+ ) and =) & 0y~ 1)

2. Give the outcome distribution when measuring |0), |—), and \4/3 |0) + \/gh) in the bases
(10, [1) and (I+) , [=))-
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QUANTUM BIT (QUBIT)

» Qubit: |) € C? of Hermitian norm 1,

P> Measuring in the orthonormal basis (|eg) , |e1)):

leg) with prob. |a?
ler) with prob. |8

) :aleo>+ﬁlew>mﬂ’e{

A measurement is a “computation” you have access to

— See Lecture 2 for a precise definition of measurement...
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QUANTUM BIT (QUBIT)

» Qubit: |) € C? of Hermitian norm 1,

P> Measuring in the orthonormal basis (|eg) , |e1)):

leg) with prob. |a?
ler) with prob. |8

) :aleo>+ﬁlew>mﬂ’e{

A measurement is a “computation” you have access to

— See Lecture 2 for a precise definition of measurement...

Are there other computations over qubits we have access to?

— Yes! Unitary evolutions



UNITARY EVOLUTIONS

» Unitary evolution: U € C?*? unitary matrix <= UUt =1,

[¥) — Ul)

Is it true that a qubit is still a qubit after a unitary evolution? Why? )

— Yes! Unitary evolutions preserve the Hermitian norm (more generally the inner-product)

Unitary evolutions are inversible!

)~ U ) 25 Ut ) = 1)

» U e C**? unitary over qubits is often called quantum gate

— It exists a small set of gates which is universal



QUANTUM GATES

To define a quantum gate: enough to specify the image of an orthonormal basis and then
extended it by linearity

But it has to map an orthonormal basis to an orthonormal basis!

Exercise: Quantum Gates?

Are the following linear operators over qubits be quantum gates?
1.10) = 1) and [1) = —5 (|0) — [1)),

2.10) — [1) and |1) — |0).

Quantum gates have matrix representations!

For instance: |0) — |1) and |1) — |0) has the representation: (?

maps [0) = (;) to 1) = (?) and |1) to |0).

;) Only linear operator that

14



EXAMPLE OF QUANTUM GATES

> NOT-gate X:
Linear op. Matrix rep.
10) = |1) 0 1
1) = 10) 1o
» Hadamard-gate H:
Linear op. Matrix rep.
o)~ oy +1y) |, (17
e 00 -1 | V2,

Exercise:

1. What is the effect of applying H on |0) and measuring it?
2. What is the effect of applying H on |0) twice?




CLASSICAL VERSUS QUANTUM COMPUTATION

Is quantum computation over qubits the same than classical computation over probabilistic bits?

Exercise:
Show that there is no stochastic matrix P which when applied to 0, i.e. to (;) simulates the

effect of the Hadamard gate

The “—1" gives you a huge power...

16



YOUR FIRST QUANTUM ALGORITHM



THE DEUTSCH-JOSZA PROBLEM

Problem

o Input: f: {0,1}" — {0, 1} either constant or balanced,
e Output: 0 if and only if f is constant.

Query complexity to f:

» Classically: 1+ %
> Quantumly: 1.



THE DEUTSCH-JOSZA ALGORITHM FOR N =1

» Suppose that we have access to the following gate (see exercise session)
|b) (=1Y© by

in the basis (]0) , |1))

=
o3

» The algorithm

P> Analysis
1. Applying H: % (j0Yy + 1)),
2. Applying Ug:
1 _ _ (=010 + (=) )
0 (5 00+ 1) = =5 (U100 + 1) = —
3. Applying H:
YO U0) + (=)D ) 1 7(0) f(1)
H < s == ((71) H10) + (=1 |1>)
(YO + (=) o) + (=0 = (1Y) 1y
= 2




CORRECTION OF THE DEUTSCH-JOSZA ALGORITHM FOR N =1

Before measuring we have computed

ar (GO + ) 10) + () = (=)

o) ;
» If f constant:

[thout) = £ |0) .
» If fbalanced, namely f(0) # f(1):

[thout) = £ [1) .

20



CORRECTION OF THE DEUTSCH-JOSZA ALGORITHM FOR N =1

Before measuring we have computed

ar (GO + ) 10) + () = (=)

o) ;
» If f constant:
[thout) = £ |0) .
» If fbalanced, namely f(0) # f(1):
[thout) = £ [1) .
Measuring in the (|0) , [1)) basis leads to (with probability one)
|0) if fconstant or |1) if f balanced J

20



N QUBITS SYSTEM



FINITE DIMENSION

During all this course we will work in finite dimension, think cV

— Vector spaces have finite dimension, linear operator can be written as matrices, etc...

22



TENSOR PRODUCT

Given two vector spaces V and W, the tensor product v ® w between v € Vand w € W verifies:
(1) for any scalar z,
Z(vew)=(2v) @w =V ® (zw)

(2) foranyvy,v; €V,
VMi+V)QW=viW+Vv, QW

(3) foranywi,w, € W,
VR (W +W) =VRW +VRW,

Think the tensor product v ® w as a column/row product:

W\ )

23



TENSOR PRODUCT OF SPACES

Tensor Product of Spaces
Vand W be two vector spaces with bases the v;'s and the w; respectively

V =Span(vi,...,vy) and W =Span(wi,...,Wpy)
The vector space V @ W is defined as being generated by the v;'s and the w;’s

vew L span (vew : 1<i<n, 1<j<m)

» Dimension,
dimV ® W = dimVdimW = nm

» Basis, (Vi,...,Vn) (resp. (W1, ..., Wy)) be a basis of V (resp. W)
(vi@w;:1<i<n, 1<j<m)isabasisof V@ W

» Characterization,
XEVRW <= Jajj : Xx= > oV ®W,

1<i<n
1Zj<m

Classical Error:

X € V® W, then there existsv € Vand w € W such thatx = v @ w. J

24



SCALAR PRODUCT OVER TENSOR PRODUCT SPACES

(V1, .., Vn) (resp. (Wi, .y W) ) be a basis of V (resp. W).

Scalar product over tensor product spaces

Suppose that V (resp. W) is equipped by a scalar product (-, -)y (resp. (-, -)w). The scalar product
over V® W is defined as (and extended by bilinearity) as

def
(Vi ® W), Vi @ Wedvew = (Vi Vi)y (W), We)w

An important remark J

Ifvi L vy, then forallwy, wy: vi @ wy L v, @ wy

25



LINEAR OPERATOR OVER TENSOR PRODUCT OF SPACES

(Vi, .., Vn) (resp. (Wi, ..y W) ) be a basis of V (resp. W).

Linear Operator over tensor product of spaces

Given A, B be linear operator over V, W, A ® B is a linear operator over V ® W be defined (and
extended by linearity) as
A®B (vi®w) L av; ® B

» Characterization,

C linear operator over V@ W <= 3Ja;, A, B; : C:Za, A ® B;
i

Classical Error:

C linear operator over V ® W, then there exists A, B linear operators over Vand WstC = A ® B. J
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MATRIX REPRESENTATION OF TENSOR PRODUCT

Tensor product of matrices

Let A % (a;)1<i<n € C™™ and B € C7%Y, then
1<j<m
a1B @B - a1 B
02113 Gz,zB a,mB
A®B d:ef ) c Cnpxmq
Gn,1B Gn,ZB an,mB
b
Example:
1% 2 2
1 2 1%x3 3
E <2>®<3>* 2x2| = |4
2X3 6
0 0 1 1
_ (0 1 1 1 1 _ 1 0 0 1 —1
. X®H*<1 0>®ﬁ<1 71)*\& 1 1 0 0
1 -1 0 0
y
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PROPERTIES OF THE TENSOR PRODUCT OF MATRICES

Properties: forany a € C,A,B € C and C,D € C/
L a(A®C) =(aA)®C=A® (al),
. A+B)®C=A®C+B®C
C®(A+B)=CRA+CR®B,
If we can form matrix products AC and BD, then
(A®B) (C® D) = (AC) ® (BD)

5. If A, B are invertible, then (AeB)'=A""®B.

Classical Error:

A®RB=B®A. J
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N QUBITS SYSTEM

» A qubit [¢) is an element of C? with Hermitian norm 1,

P Aregister of n qubits |¢) is an element of C’®---®C2=C" with Euclidean norm 1.
*’—1

n times

Let (|0, |1)) be an orthonormal basis of C%. Then,
(Ib1) ® |b2) ® -+ @ [bn) : b1y, bn € {0,1})

is an orthonormal basis of C? ® - - - ® C> = C
e ————

n times

> Notation: for by, ...,bn, € {0,1} and |¢n) , |¢2) , ..., |¥n) be qubits

|biba...ba) L b1y @ b2y @ @by and [ir) [92) - .. ) L J9hn) @ 192) @ - - - @ [9hn)

» Characterization: any register |¢) € C° of n qubits can be written as

[$) = > ox|x) where ayx € C(called amplitude) and > Jaul* =1.
x€{0,1}" x€{0,1}1

29



N QUBITS SYSTEM

» A qubit [¢) is an element of C? with Hermitian norm 1,

P Aregister of n qubits |¢) is an element of C’®---®C2=C" with Euclidean norm 1.
ﬁf—/

n times

Let (|0, |1)) be an orthonormal basis of C%. Then,
(Ib1) ® |b2) ® -+ @ [bn) : b1y, bn € {0,1})

is an orthonormal basis of C? ® - - - ® C> = C
e ————

n times

> Notation: for by, ...,bn, € {0,1} and |¢n) , |¢2) , ..., |¥n) be qubits

|biba...ba) L b1y @ b2y @ @by and [ir) [92) - .. ) L J9hn) @ 192) @ - - - @ [9hn)

» Characterization: any register |¢) € C° of n qubits can be written as

[$) = > ox|x) where ayx € C(called amplitude) and > Jaul* =1.
x€{0,1}" x€{0,1}1

A remark: choose your orthonormal basis!

From any (|eo) , |e1)) orthonormal basis of C?, then (|e,1> o |e,n>> foriy, ..., in € {0,1}"is an

orthonormal basis of C* ® - - - ® C2 = C” .
—————
n times 29




SOME EXERCISES OF THE EXERCISE SESSION

Exercise:

1. Compute the scalar product between |+) |1), |00) and |11) where |+) = % (Joy —|1).

2. Let (leo), |er)) be an orthonormal basis of C2. Show that (’e,w> ... |ei, ) for
ih,...,in € {0,1}"is an orthonormal basis of C? @ - - - ® C2 = C2".
D e e

n times

3. Do we have [00) + [10) = (]0) + |1)) ® |0)?
4. (*) Do there exist two qubits |+1) and |¢,) such that

]
V2

5. Do there exists two qubits |+7) and |¢,) such that

(100) +[11)) = |¢1) @ [¢2) -

2100 +107) + 110) + 1) = ) ® |2 .

30



SEPARABLE VERSUS ENTANGLED STATES

Separable versus entangled states:

A n-qubit system [¢) that can be decomposed as |¢) = |¢1) ® |12) is called separable.
When there is no such decomposition, the state is called entangled.

Example:
1. Separable states
1

V2

1

i 10y +11)

(100) +101) +[10) + 1)) = —= (10) + 1)) ®

1
|00) = |0) ® |0) and 5
2. Entangled state

1
Vi (100) +[11))

— Entangled states play a crucial role in quantum computation/information (teleportation,
quantum cryptography, ...)

31



MEASURING n QUBITS SYSTEM

» Measuring in the basis |e1) |e2) .. . |en):

|7/J> = Z Q- ip

iyeees ine{0,1}n

measure
ey len) "=

eh> ... |ej, ) with probability |y, .., |*

» Measuring the first register in the basis (|eo) , |e1))

_ measyre leo) [1po) with prob. ‘ao‘z
1) = o leo) o) + o fen) ) "4 {1207 )t prod o]

Be careful: necessarily |ao|? + |a1|* = 1. J

Exercise:

Give the outcome distribution of measuring in the basis (|bb") : b, b € {0,1}) the first registers
of the following two-qubits

0 (\/;ow\/gm), Varon T+ /oy ang 2 a0y - 1m)a9 - 1m)
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UNITARY FOR n QUBITS SYSTEMS

Unitary evolution U € C* X7 unitary matrix <= UUT = 1. J

Exercise:

Is the following operator a unitary of C? @ C%:

o O o -
o o - O
- O O O
o = O O

Describe the image of |bb”) for b, b’ € {0,1}.
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BRA-KET AND KET-BRA NOTATION



THE BRA-KET NOTATION

Scalar Product:

Let|e),...,|e,n) be an orthonormal basis, |v) & >oiaile) and |¢) el > Bilei). Then

Wle) €S wp.

i

» Ket-notation: |¢) is called a ket

o
> Bra-notation: aket [¢) = | : | isavector of €7,
aon
W € ()t = (@ ... @n)isabra
Useful notation:
— It enables to interpret (i|p) as (Y| - |¢). J

Bra | Ket
(Wl | [¥)

85




THE KET-BRA NOTATION:

The |¢)(v| operator
loxwl: (€)®" — ()"
[") — leXwl |¢")

def

(W|e") le) .

Exercise:
1. Give the image of |0) and |1) by [0)(1] + |1)(0]. Give the matrix representation of this

operator. Do you recognize a quantum gate?

2. Let (]i)) be an orthonormal basis. Which operator is

D lixil.-

36



ADJOINT OF AN OPERATOR:

Adjoint of an operator

AT is known as the adjoint of A J

Exercise:
1. Show that (A|¢)) = (o] AT,
2. Show that (JeX )t = [¥)el.

37



AN IMPORTANT PROPERTY

Be careful with adjoint/dagger over tensor product... (do not reverse the order...)

Proposition:
We have + + t i
(o) 1¥))" = (el (¥] and (A®B)'=A"®B

Proof:
See exercise session! J
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